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Proactive Locomotor Adjustments 
Are Specific to Perturbation 
Uncertainty in Below-Knee 
Prosthesis Users
Matthew J. Major  1,2, Chelsi K. Serba3, Xinlin Chen1, Nicholas Reimold3, Franklyn Ndubuisi-
Obi3 & Keith E. Gordon3,4

Sensory-motor deficits associated with below-knee amputation impair reactions to external 
perturbations. As such, below-knee prosthesis users rely on proactive control strategies to maintain 
locomotor stability. However, there are trade-offs (metabolic, comfort, etc.) associated with proactive 
strategies. We hypothesize that because proactive control strategies are costly, prosthesis users 
and non-impaired participants will use a priori knowledge (timing, direction) of an impending lateral 
perturbation to make specific gait adaptations only when the timing of the perturbation is known 
and the adaptation can be temporally-limited. This hypothesis was partially supported. When the 
perturbation timing was predictable, only prosthesis users, and only on their impaired side, increased 
their lateral margin of stability during the steps immediately preceding the perturbation when 
perturbation direction was either unknown or known to be directed towards their impaired side. This 
strategy should reduce the likelihood of requiring a corrective step to maintain stability. However, 
neither group exhibited substantial proactive adaptations compared to baseline walking when 
perturbation timing was unpredictable, independent of perturbation direction knowledge. The absence 
of further proactive stabilization behaviors observed in prosthesis users in anticipation of a certain but 
temporally unpredictable perturbation may be partially responsible for impaired balance control.

People use a combination of proactive and reactive control strategies to maintain locomotor stability1. Proactive 
control occurs prior to a perturbation, and includes both sensory-based anticipation (e.g. visual observation of 
a hazard) and, a learned predictive strategy to adapt locomotor patterns in preparation for the perturbation1. 
Reactive control occurs after the perturbation. This feedback-driven response is important for reacting to unan-
ticipated perturbations and for correcting errors2. The contribution of each control strategy to maintain loco-
motor stability is dependent on many factors including: ability to anticipate3 and sense2 a perturbation, prior 
experience4, and control strategy costs (metabolic5, cognitive6, etc.), and risk assessment7.

Approximately half of community-living persons with lower limb amputation fall each year8. For below-knee 
prosthesis users (BKPUs), the loss of proprioceptive feedback and active ankle joint control may impair reac-
tive control strategies9–13. These deficits may particularly challenge the maintenance of frontal-plane locomotor 
stability14,15, as frontal-plane stability depends heavily on active control in comparison to sagittal plane stability 
that benefits from passive dynamics16–18. As such, BKPUs often exhibit proactive control strategies to increase 
frontal-plane stability including; slow walking velocities, selecting faster, shorter, and wider steps, and greater 
lateral margins of stability (MoS) than non-impaired counterparts19–21.

Curiously, BKPUs appear to make only small anticipatory gait adaptations when repeatedly exposed to dis-
crete but temporally-unpredictable lateral perturbations22. This result is surprising considering that BKPUs are 
both fall prone8 and able to adapt gait patterns to further increase frontal-plane stability as evidenced by their 
response to environments that continuously challenge mediolateral balance15,20,23,24. However, it is reasonable 
that BKPUs may choose to make minimal proactive adaptations to increase stability in preparation for discrete 
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perturbations because evidence suggests that such adaptations are costly, requiring metabolic energy5, limiting 
maneuverability25,26, and potentially increasing discomfort due to soft tissue stress placed on the residuum27. 
Accordingly, when BKPUs anticipate a temporally-unpredictable perturbation with a known recoverable magni-
tude (i.e., below the threshold which would result in a fall) as employed in the study by Sturdy et al.22, choosing 
to maintain their preferred (already cautious) gait pattern would help avoid those costs associated with further 
proactive adaptations to increase stability. Consequently, the provision of spatiotemporal knowledge of a per-
turbation could in theory minimize the negative trade-offs associated with proactive gait stability strategies by 
encouraging context-specific adaptations. For example, knowing the timing of a perturbation during continuous 
walking would allow proactive strategies to be temporally-restricted to only the steps immediately preceding the 
perturbation rather than incurring an ongoing cost every step. Moreover, knowledge of both timing and direction 
could then encourage even more focused adaptions to prepare for an impending perturbation.

Therefore, the purpose of this study was to quantify the effects of a priori spatiotemporal information of a 
discrete, lateral perturbation on proactive locomotor strategies employed by non-impaired controls and BKPUs 
walking with passive prosthetic components (i.e., no active joint control). Given the theorized relationship 
between preferred control strategies and contextual information of a recoverable perturbation as driven by loco-
motor costs (metabolic, maneuverability), we aimed to address two primary hypotheses: H1) when perturbation 
instance is unknown and there is an inability to limit anticipatory costs, neither group would exhibit proactive 
gait adaptations irrespective of perturbation direction knowledge compared to baseline walking; and H2) when 
perturbation instance is known and anticipatory costs could be limited to a finite number of steps, both groups 
would exhibit time-dependent proactive strategies to enhance stability just prior to the perturbation onset. As 
a secondary hypothesis (H2b), we expected that when timing and direction of the perturbation was known, 
proactive adaptations of BKPUs would be more focused and asymmetric to specifically increase stability on the 
side of impaired limb due to the loss of sensory mechanisms and active joint control. Ultimately, our results from 
studying the effects of contextual perturbation information on proactive strategies of BKPUs and their differences 
compared to non-impaired individuals would enhance understanding of the mechanisms used by BKPUs to 
maintain locomotor stability.

Methods
Participants. Northwestern University Institutional Review Board approved the protocol, with the meth-
ods carried out in accordance with the relevant guidelines and regulations, and participants provided written 
informed consent including use of video and images expressing their likeness. All participants met the following 
inclusion criteria: 18 to 65 years, normal or corrected vision, and able to walk 10 minutes continuously with-
out undue fatigue or health risks. BKPUs met additional inclusion criteria: unilateral below-knee amputation, 
daily use of their clinically-prescribed prosthesis for ambulation without a mobility aid, at least one year experi-
ence using a prosthesis, and a residuum in good condition (no scars, ulcers, infections, etc.). Exclusion criteria 
included: musculoskeletal (apart from amputation) and/or vestibular pathologies affecting balance, currently 
on medications affecting proprioception and/or balance, and cognitive deficits that preclude understanding of 
testing instructions.

Experimental setup. Participants walked on an oversized treadmill, belt width 1.39 m (Tuff Tread, Willis, 
TX), providing space to respond to lateral perturbations. During walking, participants wore a trunk harness 
attached to a passive overhead safety device (Aretech, Ashburn, VA) that provided no bodyweight support and 
did not restrict frontal-plane motion (see Supplementary Data videos S1 and S2). Lateral perturbations were 
applied during walking at random times throughout the gait cycle using a custom-built, cable robotic device28,29 
(Fig. 1). Participants wore a pelvis harness attached to a pair of cables. Independent series-elastic linear motors 
created force on each cable. Load cells measured the applied forces. During all walking the cable-robot operated 
in transparent mode – zero net lateral force applied to the participant through equal and opposite tensile forces 
– to maintain continuous tension in the system. Lateral perturbations were created by modulating the load in 
each cable-motor such that a net lateral force of 12% bodyweight was applied for 400 msec. At the completion 

Figure 1. A participant-perspective image (left) and top-down schematic (right) of the perturbation robot.
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of a perturbation, the system returned to transparent mode operation. Based on pilot testing, we selected this 
perturbation magnitude as it was both challenging and recoverable (did not cause a fall or require participants to 
stop walking) for BKPUs.

A 60-inch monitor mounted 1.8 m in front of the treadmill and audio speakers provided visual and auditory 
feedback about the direction and timing of upcoming lateral perturbations (Fig. 1).

Retro-reflective markers were attached to the pelvis (superior iliac crests, anterior-superior iliac spines, spine 
sacral level 2, and two tracking markers) and bilaterally on the greater trochanter, lateral knee, lateral malleolus, 
calcaneus, and second and fifth metatarsals. Prosthetic foot markers were positioned to approximately match the 
sound foot. A ten-camera motion capture system recorded 3-D marker positions at 100 Hz (Qualisys, Göteborg, 
Sweden).

Experimental protocol. First, we recorded participant demographics and additional information from 
BKPUs on prosthesis use (type, experience), time since amputation, amputation etiology, functional balance, and 
socket comfort. Functional balance was measured using the Berg Balance Scale, known to be valid and reliable for 
lower limb prosthesis users30. The comfort of the prosthetic socket was evaluated with the Socket Comfort Score, 
a common ordinal-scale clinical outcome measure31.

Participants’ preferred self-selected walking speed was then identified through a staircase method of increas-
ing and decreasing the treadmill speed until desired speed was confirmed through verbal feedback. Participants 
were then given treadmill walking practice to familiarize them with the setup and protocol which lasted on aver-
age two minutes.

Following these initial assessments, participants then performed a series of walking trials at their preferred 
speed that were grouped into blocks of perturbation condition based on provided a priori knowledge:

 1. Baseline
 2. Unknown Time and Direction
 3. Unknown Time and Known Direction
 4. Known Time and Direction
 5. Known Time and Unknown Direction

Each of these blocks consisted of six trials, and as all blocks were repeated twice except for Baseline to collect 
an equal number of perturbations directed to the right and left side, this resulted in each participant completing 
a total of 54 trials. The testing order was randomized to minimize order bias although learning effects remain 
a possibility within each testing block. Conditions 2 and 3 were used to address the first primary hypothesis 
(H1), while conditions 4 and 5 addressed our second primary (H2) and secondary hypotheses (H2b). For the 
Known Direction conditions 3 and 4, all perturbations in a block were in the same direction. For the Unknown 
Direction conditions 2 and 5, perturbation direction was randomized within the block. Participants experienced 
the audio-visual feedback and the associated lateral perturbation (or lack thereof) for each condition during 
quiet standing immediately prior to beginning each testing block so that they would be able to anticipate the per-
turbation type and magnitude. Additionally, participants were informed that they would either not experience a 
perturbation (Baseline) or would experience a perturbation with a priori knowledge of the perturbation direction 
and/or timing prior to beginning each testing block.

Figure 2. Average (A) MoS, (B) step width, (C) step length, and (D) step time across four steps preceding 
Unknown Time perturbation step for each side and condition. Error bars denote 95% CI.
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Knowledge of the perturbation direction was provided using the monitor to display an arrow indicating the 
perturbation direction (left or right). A question mark was displayed when perturbation direction knowledge was 
unknown. Knowledge of the perturbation timing was provided using a progress bar timer (a visual rectangle that 
would fill from left to right - fully filled at the instant of perturbation) and a synchronized audible 5-second count-
down. During conditions when perturbation timing knowledge was unknown, the rectangle would not fill and no 
audio countdown was provided. During Baseline trials, although no perturbation was provided, a question mark 
was displayed on the monitor and participants received both visual and audio timing feedback.

Participants were instructed to walk along the center of the treadmill, marked by a distinct yellow chalk line, 
and to return to the treadmill center as quickly as possible following perturbations. Participants were specifically 
told not to treat the chalk line as a “tight-rope.” Participants were informed that rest between trials and testing 
blocks were permitted for as long as requested to minimize fatigue bias. Although participants regularly utilized 
rest breaks between blocks, none requested breaks between trials and so each block was tested during continuous 
walking. Subsequent trials (each discrete perturbation) were only started when the participant was observed to 
have fully regained steady-state walking (approximately 20 steps) and the treadmill belt was gradually stopped 
after each block.

Data Analysis. Qualisys processing software was used to fill gaps in tracked marker positions. Visual3D 
(C-Motion, Germantown, MD) software was used to low-pass filter marker position trajectories (Butterworth, 
6 Hz cut-off frequency). A Visual3D pelvis model was created using the 7 pelvis markers and instantaneous medi-
olateral whole-body center-of-mass (BCoM) position was estimated as the center of this model.

Initial contact and toe-off for each limb were estimated in Visual3D software as the maximum fore-aft distance 
between the calcaneus and pelvis center, and minimum distance between the 5th metatarsal and pelvis center, 
respectively. All of the event times were manually (visually) confirmed for accuracy and adjusted as appropriate. 
Custom MATLAB (Mathworks, Natick, MA) software was used to estimate the lateral margin-of-stability (MoS), 
step width, step length, and step time for each limb. Step width and MoS were assessed given their suggested 
relationship with generalized frontal-plane balance control32, while step length and time provide insight into 
gait regulation and can also affect frontal-plane stability33. Specifically, MoS was selected as means to quantify 

Figure 3. Average MoS for baseline and steps preceding perturbation step for each side during Known Time 
perturbation toward (A) impaired/non-dominant, (B) sound/dominant, and (C) unknown side. Error bars 
denote 95% CI.
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frontal-plane control as it not only demonstrates relationships with fall risk34–36, but is also an intuitive bio-
mechanical outcome permitting step-by-step analysis37 which was necessary to address our time-dependent 
hypothesis (H2). There exist other outcome measures such as nonlinear dynamic metrics which are also related 
to dynamic stability and falls but require data from several continuous minutes of walking32 and were hence not 
ideal for this analysis. Furthermore, although our approximation of BCoM position was based on a simplified 
pelvis model, evidence suggests that this technique is comparable to other more complex multi-segment models 
for estimation of MoS37.

Step width and length for a given limb and step were defined as the medial-lateral and anterior-posterior 
distance, respectively, between the heel markers of contralateral limb at initial contact and the following initial 
contact of limb in question. Step time was defined as the time between initial contact events, and stance time 
for a given limb was defined as the time between its initial contact and toe-off. MoS was defined as the mini-
mum distance between the instantaneous lateral extrapolated BCoM position, a velocity weighted lateral BCoM 
(BCoMLat) position, and the 5th metatarsal marker (BoSR/L) lateral position during stance33. Specifically, the MoS 
was calculated as:

− +BoS BCoM VBCoM g
l

( / )
(1)R L Lat Lat/

where, R/L refers to the right or left stance limb, VBCoMLat is lateral velocity of the BCoMLat, g is the acceleration 
due to gravity (9.81 m/s2), and l is approximated as trochanter height (m) times 1.34 (effective pendulum length 
for the inverted pendulum model). Based on this equation, all MoS values were positive as the extrapolated 
BCoM position remained within the boundaries of the metatarsal positions.

For the Unknown Time and Baseline conditions, these parameters were averaged separately for each limb 
across trials and the four steps preceding (n-1 through n-4) the perturbation step (n), which was defined as the 
step with the last initial contact prior to the perturbation instance. For the Known Time conditions, parameters 
were averaged across trials and separately for the first (n-1 and n-2) and second (n-3 and n-4) steps preceding 
the perturbation step (n). To ensure that equal number of trials were analyzed for each condition, only the first 
block of trials involving perturbations of an Unknown Direction were used for analysis and this choice had the 
advantage of also minimizing undesired effects of learning bias.

Statistical analysis. To address our hypotheses, separate three-way mixed ANOVAs (one between-group 
factor, two within-groups factors) were used to test main and interaction effects on MoS, step width, step 
length, and step time for data corresponding to either the Unknown (H1) or Known Time (H2) conditions. 
For the Unknown Time conditions, the tested main effects were group (BKPU, control), limb (impaired/sound, 
non-dominant/dominant), and perturbation direction (baseline, toward impaired/non-dominant limb, toward 
sound/dominant limb, and unknown). For the Known Time conditions, the tested main effects were group 
(BKPU, control), limb (impaired/sound, non-dominant/dominant), and step (baseline, 1st step before perturba-
tion step (step n-1 or 2), and 2nd step before perturbation (n-3 or 4)). The Known Time analysis was conducted 
separately for each perturbation direction (toward impaired/non-dominant limb, toward sound/dominant limb, 
and unknown) to address our secondary hypothesis (H2b) of the effects of perturbation direction knowledge. 
Baseline data were included in both ANOVA models as representative data when participants did not expect 
or experience a perturbation. Prior to final analysis and interpretation, an absence of violations of normality 
were confirmed using the Shapiro-Wilk test, and violations of sphericity were assessed using the Mauchly’s test. 
If the assumption of sphericity was violated, results were interpreted using a Greenhouse-Geisser correction. 
Bonferroni adjustments were used for multiple post hoc pairwise comparisons to minimize risk of Type-I error.

The frequency of limb with initial contact and the support phase (single or double) just prior to the perturba-
tion instance (i.e., step n) were also recorded for each condition as means to aid interpretation of stability meas-
ure results. A Freidman analysis was performed separately for each group to analyze the main effect of a priori 
knowledge on frequency (total number of trials) of the sound/dominant limb at initial contact and single support 
phase at step n. This analysis assessed if participants were more likely to have a particular limb in stance at the 
perturbation instance and if they were positioned in either single or double limb support.

Controls (n = 13: 7 female/6 male)

Age (years) 29 (11.0)

Average (St. Dev)

Mass (kg) 65.3 (9.7)

Height (m) 1.68 (0.07)

Below-knee prosthesis users (n = 6: 5 
female/1 male, 2 dysvascular amputation 
etiology/4 traumatic etiology)

Age (years) 48 (8)

Mass (kg) 70.2 (11.3)

Height (m) 1.65 (0.07)

Time since amputation (years) 14.0 (11.3–17.5)

Median (interquartile range)

Prosthesis use experience (years) 13.0 (11.0–17.3)

Prosthesis use frequency (hours/day) 15.8 (12.9–16.0)

Berg Balance Scale (ordinal scale 0–56) 55 (54–56)

Socket Comfort Score (ordinal scale 0–10) 9 (8–10)

Table 1. Participant characteristics.
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All statistical analyses were conducted using SPSS software (v24, IBM, Armonk, NY). The critical alpha for all 
analyses was 0.05.

Data availability. The datasets generated during and/or analyzed during the current study are avail-
able in the Northwestern University cloud-based digital repository, [https://digitalhub.northwestern.edu/
collections/09e7110d-7677-4b82-985a-a7c26ac46b57].

Results
Six BKPUs using their prescribed prostheses and 13 non-impaired controls participated in the study (Table 1). 
BKPU participants were experienced and regular prosthesis users (all reported use at 7 days/week), with comfort-
able sockets at testing time, and possessed high levels of functional balance (Table 1). All BKPUs walked with a 
non-articulated dynamic prosthetic foot. One BKPU participant was not comfortable walking with perturbations 
of 12% bodyweight. The perturbation magnitude was reduced to 10% bodyweight for all trials for this participant. 
These data were included in the analysis as the perturbations produced an observable destabilizing effect that was 
confirmed by the participant.

The average walking speeds (±SD) for controls and BKPUs were 1.3 ± 0.1 m/s and 0.8 ± 0.3 m/s, respectively. 
All participants completed the full set of testing blocks. Although noticeably destabilized by the perturbations, 
all participants were able to successfully recover (i.e., no falls, and no stoppage or change in treadmill belt speed) 
without assistance using a combination of side and cross-over stepping strategies (see Supplementary Data videos 
S1 and S2). Rest periods between testing blocks were used by all participants.

Average MoS, step width, step length, and step time across subjects and four steps preceding the perturbation 
step for each side and direction of the Unknown Time perturbations are displayed in Fig. 2. These data are sep-
arated by individual steps for the Known Time conditions in Figs 3–6. The percentage frequency of last limb to 
contact the ground prior to perturbation (perturbation step) and the support phase (single limb or double limb) 
at the instant of perturbation for each condition are found in Fig. 7. For Figs 2–7, the impaired and sound limb 
refer to the BKPUs, while the dominant and non-dominant limb refer to the control group.

Figure 4. Average step width for baseline and steps preceding perturbation step for each side during Known 
Time perturbation toward (A) impaired/non-dominant, (B) sound/dominant, and (C) unknown side. Error 
bars denote 95% CI.

https://digitalhub.northwestern.edu/collections/09e7110d-7677-4b82-985a-a7c26ac46b57
https://digitalhub.northwestern.edu/collections/09e7110d-7677-4b82-985a-a7c26ac46b57
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Unknown Time. For MoS, the main effect of perturbation condition was significant (F(3,51) = 4.014, 
p = 0.012)(Fig. 2A), with a reduction in MoS across limbs and groups for perturbation toward the impaired/
non-dominant limb compared to perturbation toward the sound/dominant limb (p = 0.047) and when direction 
is unknown (p = 0.009). Additionally, the main effect of limb was significant (F(1,17) = 5.171, p = 0.036), with 
MoS of the impaired/non-dominant limb greater than the sound/dominant limb. The main effect of group was 
not significant (F(1, 17) = 1.786, p = 0.199). For step width, the main effect of perturbation condition was signif-
icant (F(3, 51) = 3.101, p = 0.035), but post hoc comparisons were not significant (p ≥ 0.064) (Fig. 2B). The main 
effect of group also was not significant (p = 0.065).

For step length, the main effect of limb was significant (F(1,17) = 10.990, p = 0.004) with the impaired/
non-dominant limb step length greater than the sound/dominant limb (Fig. 2C). Additionally, the interac-
tion effect of limb*group was significant (F(1,17) = 13.593, p = 0.002), with differences in step length greater 
for the BKPU group compared to controls. The main effect of group on step length was also significant 
(F = (1,17) = 13.515, p = 0.002) with control group step length greater than the BKPU group.

For step time, the main effect of limb was significant (F(1,17) = 4.741, p = 0.044), with step time for the 
impaired/non-dominant limb greater than the sound/dominant limb (Fig. 2D). The main effect of perturba-
tion condition was significant (F(2.327, 39.552) = 3.224, p = 0.044), but post hoc comparisons were not signif-
icant (p ≥ 0.108). However, the interaction effect of condition*group was significant (F(2.327, 39.552) = 3.352, 
p = 0.039), with step time differences between conditions greater for the BKPU group than the control group. 
Additionally, the main effect of group was significant (F(1,17) = 10.850, p = 0.004), with step time for the BKPU 
group greater than controls.

Known Time and Known Perturbation Direction: Perturbation directed toward impaired/
non-dominant limb. For MoS, the three-way interaction of step*limb*group was significant 
(F(2,34) = 5.468, p = 0.009) (Fig. 3A). The main effect of limb was also significant (F(1,17) = 6.615, p = 0.020) 
with the impaired/non-dominant limb MoS greater than the sound/dominant limb. Upon further inspection, 
the step*limb interaction was not significant for either group (p ≥ 0.077), but BKPUs more clearly demonstrated 
greater impaired limb MoS at the steps just prior to perturbation (n-1/2) compared to the second set of prior steps 

Figure 5. Average step length for baseline and steps preceding perturbation step for each side during Known 
Time perturbation toward (A) impaired/non-dominant, (B) sound/dominant, and (C) unknown side. Error 
bars denote 95% CI.
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(n-3/4) and baseline. The main effect of group was not significant (F(1, 17) = 2.843, p = 0.110). For step width, no 
main or interaction effects were significant (p ≥ 0.061) (Fig. 4A).

For step length, the main effect of limb was significant (F(1,17) = 14.745, p = 0.001) with step lengths greater 
for the impaired/non-dominant limb compared to the sound/dominant limb (Fig. 5A). The interaction effect of 
limb*group was also significant (F(1,17) = 26.952, p < 0.001) with differences greater for the BKPU group than 
controls. The main effect of group was also significant (F(1,17) = 14.0.14, p = 0.002) with step length for the con-
trols greater than the BKPU group.

For step time, the main effect of step was significant (F(1.354, 23.013) = 4.316, p = 0.039), but post hoc com-
parisons were not significant (p ≥ 0.053) (Fig. 6A). However, the interaction effect of step*group was significant 
(F(1.354, 23.013) = 7.680, p = 0.006) with differences greater for the BKPU group compared to controls. The 
main effect of limb was significant ((F(1, 17) = 6.994, p = 0.017) with step time for the impaired/non-dominant 
limb greater than sound/dominant limb. Additionally, the main effect of group was significant (F(1,17) = 6.807, 
p = 0.018) with step time greater for the BKPU group than control group.

Known Time and Known Perturbation Direction: Perturbation directed toward sound/dom-
inant limb. For MoS, only the main effect of limb was significant (F(1,17) = 5.162, p = 0.036), with the 
impaired/non-dominant limb MoS greater than the sound/dominant limb, while the main effect of group was 
not significant (F(1,17) = 2.051, p = 0.170) (Fig. 3B). For step width, only the main effect of group was significant 
(F(1,17) = 4.753, p = 0.044) with step widths greater for the BKPU group than controls (Fig. 4B).

For step length, the main effect of limb was significant (F(1,17) = 20.145, p < 0.001), with step lengths greater 
for the impaired/non-dominant limb compared to the sound/dominant limb (Fig. 5B). Additionally, the inter-
action effect of limb*group was significant (F(1,17) = 27.945, p < 0.001) with differences greater for the BKPU 
group than controls. The main effect of group was also significant (F(1,17) = 13.146, p = 0.002) with step length 
for the controls greater than the BKPU group.

For step time, the main effect of limb was significant (F(1,17) = 8.110, p = 0.011) with step times of the 
impaired/non-dominant limb greater than the sound/dominant limb (Fig. 6B). The interaction effect of 
limb*group was significant (F(1,17) = 6.474, p = 0.021) with differences greater for the BKPU group than 

Figure 6. Average step time for baseline and steps preceding perturbation step for each side during known-
time perturbation toward (A) impaired/non-dominant, (B) sound/dominant, and (C) unknown side. Error bars 
denote 95% CI.
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controls. The main effect of group was also significant (F(1,17) = 12.278, p = 0.003) with step time for the BKPU 
group greater than controls.

Known Time and Unknown Perturbation Direction. For MoS, the three-way interaction 
step*limb*group was significant ((F(2,34) = 5.345, p = 0.010). The main effect of limb was significant (F(1, 
17) = 6.700, p = 0.019), with the impaired/non-dominant limb MoS greater than the sound/dominant limb 
(Fig. 3C). The interaction effect of step*limb was also significant across groups (F(2,34) = 5.607, p = 0.008), with 
differences between steps greater for the impaired/non-dominant limb compared to the sound/dominant limb. 
Specifically, the impaired/non-dominant limb exhibited the largest increase in MoS of the steps just prior to 
perturbation (n-1/2) compared to second set of prior steps (n-3/4) and baseline. Upon further inspection, this 
effect was primarily due to the BKPUs as the interaction effect of step*limb was only significant for this group 
(F(2,10) = 11.612, p = 0.002). The main effect of group was not significant (F(1,17) = 1.539, p = 0.232). For step 
width, no main or interactions effects were significant (p ≥ 0.055) (Fig. 4C).

For step length, the main effect of limb was significant (F(1,17) = 13.093, p = 0.002), with step lengths greater 
for the impaired/non-dominant limb compared to the sound/dominant limb (Fig. 5C). Additionally, the inter-
action effect of limb*group was significant (F(1,17) = 17.683, p = 0.001) with differences greater for the BKPU 
group than controls. The main effect of group was also significant (F(1,17) = 14.503, p = 0.001) with step length 
for the controls greater than the BKPU group.

For step time, the main effect of limb was significant (F(1,17) = 6.491, p = 0.021) with step times for the 
impaired/non-dominant limb greater than the sound/dominant limb (Fig. 6C). However, the interaction effect 
of limb*group was not significant (p = 0.055). The main effect of group was also significant (F(1,17) = 10.298, 
p = 0.005) with step time for the BKPU group greater than controls.

Limb and Support Phase at the Perturbation Instant. The main effect of a priori knowledge on the 
last limb to contact the ground prior to the perturbation was not significant for either group (p ≥ 0.345) (Fig. 7A 
and B). The main effect of condition on support phase at the instant of perturbation was significant for only the 
control group (p = 0.023), but post hoc comparisons were not significant (p ≥ 0.059) (Fig. 7C and D).

Discussion
This study explored the effects of a priori knowledge (timing and direction) of an impending lateral perturba-
tion on the proactive locomotor strategies of BKPUs and compared these strategies to non-impaired control 
participants.

In support of our first primary hypothesis (H1), our findings suggest that without knowledge of the pertur-
bation timing, BKPUs and controls do not modify their MoS irrespective of a priori information of the pertur-
bation direction. Although the MoS across groups and limbs was smaller for perturbations toward the impaired/
non-dominant limb, none of these conditions were different than Baseline. Worth noting is that across groups and 
conditions, a persistent asymmetry in MoS exists with bias toward greater MoS on the impaired or non-dominant 
limb. In anticipation of unknown time perturbations, BKPU participants did make small increases in step 
width and decreases in step time. Although small, these proactive modifications should theoretically enhance 
frontal-plane stability5,33,38 and are consistent with previous research findings that individuals with below-knee 

Figure 7. Frequency (percentage) of limb with initial contact just prior to (A) Unknown Time and (B) Known 
Time perturbation, and frequency of support phase (single or double) at time of (C) Unknown Time and (D) 
Known Time perturbation for each condition. Error bars denote 95% CI. BKPU and Control notation refer to 
the support phase of BKPUs and able-bodied controls, respectively.
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amputation make only minimal proactive gait adaptations in response to repeated mediolateral perturbations22. 
However, the absence of clear proactive adaptations is inconsistent with findings that non-impaired populations 
make proactive modifications in preparation for destabilizing events that will occur at an unknown time39–41, and 
that BKPUs increase step width while walking with continuous perturbations20,23, or over unstable terrain19,24. 
The strategy to minimally make proactive adaptions to further increase frontal-plane stability, as observed in 
this study, may be driven by the associated costs of changing gait for an indefinite time period to prepare for 
a discrete perturbation. For example, adapting wider steps will increase the metabolic cost of transport5, limit 
maneuverability25, and could potentially create discomfort due to moments applied at the distal end of the socket 
that ultimately generate unfavorable pressures applied to the residuum42–44. Furthermore, the discrete nature of 
the perturbation in this study contrasts the continuous disturbances employed in the other referenced BKPU 
studies19,20,23,24 and may partially explain this inconsistency in results.

Our second primary hypothesis (H2) that both participant groups would make time-dependent proactive 
gait adaptations preceding known time perturbations, and the accompanying secondary hypothesis (H2b) that 
these adaptations for BKPUs would be specific to perturbation direction knowledge were partially supported. 
Although both groups consistently exhibited greater MoS on the impaired or non-dominant limb during the 
Known Time conditions, controls demonstrated no evident proactive gait adaptations while BKPUs appeared 
to increase impaired limb MoS during the step just prior to perturbation when the perturbation direction was 
unknown or known to be directed towards the impaired limb (Fig. 3). At least for the condition of known per-
turbation to the impaired limb, the increase in MoS may be partially due to the observed quickening of steps33 
(Fig. 6). Increasing MoS should result in a proportional increase in the lateral impulse required to move the 
XCoM beyond the base-of-support45. In theory, perturbations that do not result in the XCoM moving outside 
the base-of-support should passively self-stabilize, without requiring a corrective step45. As such, increasing 
lateral MoS of the impaired limb may serve to reduce the active control required to recover from the pertur-
bation. Selecting proactive strategies that reduce the requirement to actively respond to perturbations could 
be desirable considering BKPU’s lost physiological (sensory and active joint) mechanisms9,10,14,33 that prohibit 
rapid stance-limb ankle torque center-of-pressure corrections and delay obstacle avoidance response times12. 
In addition, reducing the probability that a cross-over corrective step will be required is desirable as this action 
introduces a risk of the limbs colliding46,47. Interestingly, increasing MoS during the steps immediately prior to 
perturbation was not clearly observed in control participants or in BKPUs when the perturbation was known to 
be directed toward the sound limb. It is possible that a greater perturbation magnitude is required to generate 
sufficient risk to elicit proactive gait modification for discrete predictable perturbations directed toward an intact 
limb. It is important to recognize that while the step*limb interaction effect on MoS for BKPUs was significant for 
the condition of Known Time and Unknown Direction, only the three-way interaction was significant for the per-
turbation direction toward the impaired/non-dominant limb and the specific BKPU adaptation was confirmed 
through observation of trends. Therefore, this promising result in BKPU behavior and its clinical importance 
warrants further exploration.

Although not significant, BKPUs had a noticeable trend to vary the frequency of both support phase (single or 
double) and the last limb to contact the ground (impaired or sound) prior to the instance of perturbation (Fig. 7). 
Across both the Known and Unknown Time conditions, with knowledge that the perturbation would be directed 
toward the sound limb BKPUs were two times more likely to be on their sound limb than their impaired limb and 
three times more likely to be in single limb support than double support at the instant of perturbation. This bias is 
likely created by the observed asymmetries in step length and time (Figs 2C,D, 5 and 6). Consequently, it may be 
that the observed change when the perturbation direction was either unknown or known to be directed toward 
the impaired limb was intentional to increase the probability of having both limbs in contact with the ground at 
the instant of perturbation. Such an action would theoretically enhance frontal-plane stability by making both 
legs available to re-center BCoM position48,49, but given the non-significance of these results, this supposition 
warrants further investigation.

Several limitations should be considered when interpreting these results. First, the statistical power of this 
study was limited by the small sample size of BKPUs, but this study served as a means for identifying potentially 
important factors of BKPU locomotor stability for further investigation. Additionally, the convenience sample 
of BKPUs represents a group of relatively high-functioning, experienced prosthesis users. Future work should 
consider inclusion of a wider range of mobility levels to enhance external validity of such findings. Higher func-
tioning prosthesis users were important for this study given the nature of the protocol as participants needed to be 
comfortable with the experimental tasks. Also, we did not vary perturbation magnitudes. Changing the intensity 
of the perturbation may change anticipatory behaviors due to a real or perceived increase in fall risk. The selected 
perturbation magnitude was sufficient to noticeably destabilize all participants while allowing them to success-
fully recover and return to steady-state locomotion. Finally, although testing blocks were randomized to account 
for order bias, there still remained a risk of learning effects within each testing block. Although test blocks were 
limited to six trials to minimize both fatigue and learning effects, the results should interpreted accordingly.

The clinical implications of these findings suggest that BKPUs implement specific proactive motor strategies 
when there is likelihood of a perturbation towards the impaired limb. Importantly, it appears that these pre-
paratory changes are dependent on the a priori knowledge of the perturbation. Specifically, when a lateral per-
turbation can be anticipated but the exact timing cannot be predicted BKPUs make only small increases in step 
width and decreases in step time without noticeable changes in MoS. In contrast when the perturbation timing 
is known, BKPUs selected time-dependent proactive behaviors (e.g., increasing MoS just before perturbation 
instance). The implications of this finding is that contextual information of the environment is important to 
BKPUs for selecting proactive mechanisms to enhance frontal-plane stability and deemphasize the requirements 
to appropriately react to perturbations. The practical risk for not implementing clear proactive strategies unless 
perturbation timing is known is that BKPUs may not be optimally positioned for recovering from perturbations 
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during ambulation. Although implementing proactive strategies for an indefinite period of time may be costly 
and hence avoided, the decision to select gait patterns that optimize for multiple factors including stability may 
explain the high prevalence of falls in this group. Future work should therefore focus on understanding the con-
sequences of selecting these proactive strategies to perturbation recovery to better understand the mechanisms 
by which BKPUs fall and/or recover from perturbations. A greater understanding of stability control mechanisms 
could inform device and therapeutic interventions (i.e., training paradigms) for enhancing frontal-plane stability 
to ultimately improve ambulation safety13,50. Theoretically, quantifying how individual prosthesis users (or groups 
categorized by motor capacity) integrate sensory information and environmental cues to prepare for locomotor 
stability threats will assist with designing personalized rehabilitation interventions.

Conclusions
The results from this study partially support our hypotheses. We observed that BKPUs and able-bodied controls 
minimally adapted proactive strategies to further enhance frontal-plane stability in anticipation of discrete per-
turbations occurring at an unpredictable time. When the timing of perturbation was predictable, BKPUs made 
proactive gait adjustments that were specific to a priori knowledge of the perturbation direction, i.e., increasing 
lateral MoS. In contrast, control participants did not demonstrate proactive gait adaptations in anticipation of 
known time perturbations. Additionally, the data suggest that BKPUs select slower walking speeds with shorter 
and slower steps independent of condition when compared to control participants. These general strategies that 
are present every step may be potential methods to enhance continuous frontal-plane stability.
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