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Abstract. The biomedical literature has extensively docu-
mented the functional roles of genetic polymorphisms in concert 
with well-characterized somatic mutations in the etiology and 
progression of major metastatic diseases afflicting human 
populations. Mitochondrial heteroplasmy exists as a dynami-
cally determined co-expression of inherited polymorphisms 
and somatic mutations in varying ratios within individual 
mitochondrial DNA genomes with repetitive patterns of tissue 
specificity. Mechanistically, carcinogenic cellular processes 
include profound alterations of normative mitochondrial func-
tion, notably dependence on aerobic and anaerobic glycolysis, 
and aberrant production and release of lactate, according to a 
classic theory. Within the translational context of human health 
and disease, the present review discusses the necessity of estab-
lishing critical foci designed to probe multiple biological roles 
of mitochondrial heteroplasmy in cancer biology.
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1. Introduction

Extensive biomedical literature has documented the functional 
roles of heritable genetic polymorphisms in concert with 
accumulated somatic mutations and epigenetic factors in the 

etiology and progression of major metastatic (1,2), autoim-
mune (3,4) and neurodegenerative (2,5,6) disorders. By contrast, 
a considerably smaller subset of heritable polymorphisms in the 
haploid mitochondrial DNA (mtDNA) genome is functionally 
linked to the phenotypic manifestation of severe genetic disor-
ders originating from markedly compromised mitochondrial 
function (7-10). Notably, a relatively recent body of literature 
has demonstrated interactive effects of heritable mtDNA poly-
morphisms on the altered expression of select nuclear genes 
that are associated with several human disease states (11-13). 
Conversely, specific allele imbalances within the nuclear mito-
chondrial genome are associated with altered translocation of 
key mitochondrial proteins involved in normative bioenergetics 
and are negatively linked to cancer progression (14,15).

2. Biological significance of mitochondrial heteroplasmy

Mitochondrial heteroplasmy may be defined as a dynami-
cally determined co-expression of wild-type (WT)-inherited 
polymorphisms and somatic mutations in varying ratios 
within individual mtDNA genomes distributed throughout the 
intraorganelle compartments of individual cells. Within the 
translational context of human health and disease, the necessity 
of establishing critical foci designed to probe multiple biological 
roles of mitochondrial heteroplasmy has become apparent. 
Human mtDNA exists as a 16.6-kilobase circular genome 
that contains 13 protein-encoding sequences corresponding 
to subunits ND1-6, including ND4 and ND4L, of respiratory 
complex I, catalytic subunits cytochrome c oxidase subunit I-III 
(CO1-3) of respiratory complex IV, subunits adenosine triphos-
phate 6 (ATP6) and ATP8 of F1F0 ATPase, and cytochrome B 
of respiratory complex III. The remaining genes encode 
22 tRNAs and 12, and 16S rRNAs (16). As the number of 
mitochondrial genomes normalized against each diploid nuclear 
genome varies according to cell type and total mtDNA copy 
number, estimated values of 100-10,000 have been reported 
in the biomedical literature (8,16,17). The complex sequence 
heterogeneity within mixed intra-mitochondrial populations 
of several thousand individual heteroplasmic mtDNA genomes 
within individual cells dictates that empirical sorting of putative 
biological activities of distinct patterns of mtDNA heteroplasmy, 
according to molecular biological, biochemical, physiological 
and bioinformatic criteria will be technically difficult (18‑20).

Notably, a previous study monitored the intra-mitochon-
drial organization of heterologous heteroplasmic mtDNA 
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genomes into DNA-protein complexes termed nucleoids (21). 
Heterologous mtDNAs were stably maintained in distinct 
nucleoid populations, whereas trans-complementation of hetero-
plasmic nucleoids was apparently achieved by the diffusion of 
mtDNA-derived transcripts within the mitochondrial matrix. 
Although the investigators speculated on a putative restorative 
mechanism of trans-complementation to operationally increase 
homoplasmic WT mtDNA and mitochondrial bioenergetics, 
other studies have demonstrated distinct and repeatable patterns 
of mtDNA heteroplasmy that varied across different cell types 
from the same individual (22,23) and were stably maintained 
in individual daughter cells over multiple cell divisions (19). 
An ostensibly straightforward interpretation of these obser-
vations indicates highly regulated normative expression of 
heteroplasmic mtDNA genomes within the intra-mitochondrial 
compartment in individual human cell types that complements 
normative mitochondrial function. Mechanistically, tissue- and 
cell‑specific patterns of heteroplasmic mtDNA appear to be 
maintained via intra-mitochondrial trans-complementation of 
heteroplasmic nucleoids and mtDNA-derived transcripts (21), 
as well as the intercellular exchange of mtDNA (19). It also 
becomes apparent that the polycistronic nature of heteroplasmic 
mtDNA-encoded transcripts introduces an additional level of 
complexity by which to evaluate putative facilitative roles of 
preserved patterns of mtDNA heteroplasmy on homeostatic 
metabolic processes (16).

Validation of the potential existential role of cell‑specific 
patterns of mtDNA heteroplasmy on normative mitochon-
drial functions is also provided by a preclinical Drosophila 
genetic model employing a temperature sensitive-lethal 
mtDNA mutation in functional linkage to the CO1 locus (24). 
Notably, the viability of homoplasmic flies at restrictive 
temperatures was fully maintained by expressing an alterna-
tive CO1 oxidase, which specifically conferred restorative 
mtDNA heteroplasmy that was associated with fully viable 
and tissue‑specific phenotypes. Conversely, using a genetic 
replacement paradigm to induce tissue‑specific mutant CO1 
homoplasmy in heteroplasmic flies, it was observed that 
restoration of mtDNA homoplasmy in the eye resulted in 
severe neurodegeneration at restrictive temperatures. Of note, 
utilizing the same temperature sensitive-lethal mtDNA model 
of CO1 dysfunction, the frequency of the mutant allele in 
heteroplasmic flies was significantly decreased in the germline 
and over multiple generations (25). A critical analysis of these 
two studies concludes that selection against potentially delete-
rious mtDNA heteroplasmic mutations during the process 
of oogenesis may be in marked contrast to developmentally 
determined, cell‑specific patterns of mtDNA heteroplasmy 
generated during various stages of tissue differentiation.

3. Mitochondrial heteroplasmy and cancer

The mechanistic staging of carcinogenic cellular processes 
includes profound alterations of normative mitochondrial 
function (26-29), notably dependence on aerobic and anaerobic 
glycolysis, aberrant production and release of lactate, and meta-
bolic downregulation of mitochondrial oxidative processes 
according to the classic theory promoted by Warburg et al (30). 
The primacy of cancer as a mitochondrial metabolic disease 
has been proposed (31-33), in marked contrast to widely 

espoused theories supporting the causative role of multiple 
somatic mutations in the etiology and persistence of numerous 
types of cancer. In light of the relatively high somatic muta-
tional rates of mtDNA, the multi-modal coding mechanisms 
provided by cell‑specific patterns of mtDNA heteroplasmy 
may reflect the evolutionary linkages of mitochondria to 
primordial protobacterial precursors and trillions of enteric 
bacteria contained within the human microbiome (20,34-36). 
As a corollary, cellular processes that regulate physiologically 
compatible patterns of heteroplasmic mtDNA may undergo 
state-dependent dysregulation resulting in an altered metaboli-
cally compromised phenotype characteristic of cancer cells 
and other pathophysiologically altered cell types (22,37). A 
relevant previous study has linked allele‑specific expression 
of nuclear DNA with mtDNA heteroplasmy with functional 
impairment in bioenergetics and an apparent positive selection 
for reduced mitochondrial function (38). The overall results 
and conclusions of the study provide supportive evidence 
for positive selection processes driving higher order cellular 
pattern recognition of heteroplasmic mtDNA genomes in 
ordered stages of tumor progression (18,22,23,39).

Recently, a critical review has outlined a binary regulatory 
system responsible for selective expression of genes contained 
within mitochondrial and chloroplast genomes (40). The evolu-
tionarily conserved mtDNA genome represents a self-contained 
genetic system that encodes existentially required catalytic and 
regulatory subunits of respiratory complexes I, III and IV, and 
two subunits of F1F0 ATPase. The unifying principle responsible 
for reciprocal regulation of intraorganelle energy production is 
critically linked to maintenance of redox potential by electron 
transport through respiratory complexes. Accordingly, the 
functional transformation of cell‑specific mitochondria into 
high‑efficiency bio‑engines appears to be dependent on the 
veracity of ongoing gene expression within restricted meta-
bolic or physiological demands. The critical regulatory roles of 
cell‑specific patterns of mtDNA heteroplasmy are fundamental 
to the maintenance of requisite metabolic capacity during the 
normal aging processes (18-20,39). These contentions are also 
supported by a recent study that has underlined the critical 
importance of functional mitochondria in the maintenance 
of differentiation and reprogramming of induced pluripotent 
stem cells (iPSCs) (41). Notably, a transition from somatic 
mitochondrial oxidative metabolism to glycolytic metabo-
lism, highly reminiscent of cancer cells, was observed to be 
required for successful reprogramming of iPSCs. Accordingly, 
somatic mitochondria and associated oxidative bioenergetics 
are extensively remodeled with the induction of an iPSC-like 
phenotype, and the transition from oxidative to glycolytic meta-
bolic processes appears to be strongly regulated by hypoxia, 
specifically by hypoxia‑inducible factor 1α (HIF1α) signaling 
pathways (42,43). Early induction of HIF1α target genes may be 
required for iPSC derivation via the activation of a glycolytic 
program that is highly reminiscent of undifferentiated cancer 
cells.

4. Conclusions

We hypothesize that the biological significance of mtDNA 
heteroplasmy is reflected by the ability of cellular mitochon-
dria to modulate effectively state-dependent changes in energy 
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requirements by concerted transcriptional and translational 
mechanisms (19,44,45). An apparent perturbation of homeo-
static regulation of intra-mitochondrial patterns of mtDNA 
heteroplasmy may be amplified during the initiation and 
progression of pathophysiological processes associated with 
major human disease states (17,19,23,46,47). Furthermore, bidi-
rectional communication between cytosolic and mitochondrial 
signaling pathways provide co-ordinate regulation of nuclear 
DNA- and mtDNA-derived gene expression within a constantly 
changing physiological environment designed to promote 
molecular switching of cellular metabolic machinery from 
meeting anabolic to catabolic demands (48). As technological 
transplantation of functionally viable mitochondria comes 
with the anticipation of the significant restoration of normative 
cellular function, understanding and mapping of cell‑specific 
mosaic patterns of heteroplasmic mtDNA expression appears 
to represent a prime prerequisite for future translational studies.
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