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Abstract

Theileria annulata, an intracellular parasite of bovine lymphoid cells, induces substantial phenotypic alterations to its host
cell including continuous proliferation, cytoskeletal changes and resistance to apoptosis. While parasite induced modulation
of host cell signal transduction pathways and NFkB activation are established, there remains considerable speculation on
the complexities of the parasite directed control mechanisms that govern these radical changes to the host cell. Our
objectives in this study were to provide a comprehensive analysis of the global changes to host cell gene expression with
emphasis on those that result from direct intervention by the parasite. By using comparative microarray analysis of an
uninfected bovine cell line and its Theileria infected counterpart, in conjunction with use of the specific parasitacidal agent,
buparvaquone, we have identified a large number of host cell gene expression changes that result from parasite infection.
Our results indicate that the viable parasite can irreversibly modify the transformed phenotype of a bovine cell line. Fifty
percent of genes with altered expression failed to show a reversible response to parasite death, a possible contributing
factor to initiation of host cell apoptosis. The genes that did show an early predicted response to loss of parasite viability
highlighted a sub-group of genes that are likely to be under direct control by parasite infection. Network and pathway
analysis demonstrated that this sub-group is significantly enriched for genes involved in regulation of chromatin
modification and gene expression. The results provide evidence that the Theileria parasite has the regulatory capacity to
generate widespread change to host cell gene expression in a complex and largely irreversible manner.
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Introduction

Theileria annulata and the closely related species, T. parva are tick-

transmitted protozoan parasites of cattle. Both parasites cause

debilitating and often fatal disease syndromes, tropical theileriosis

in the case of T. annulata and East coast fever by T. parva. Following

introduction into the host animal by a feeding tick, sporozoites

rapidly invade and establish a membrane delineated, multi-

nucleate macroschizont within white blood cells, predominantly

those of the monocyte-macrophage lineage in the case of T.

annulata and T-cells for T. parva, reviewed in [1]. Infection of

leukocytes by either species induces numerous, conserved changes

to the host cell that promote cell division and generate a neoplastic

phenotype. Expansion of the parasitised lymphocyte population

results in development of multiple tumour-like foci throughout the

body of an infected animal [2]. Host cell division is dependent on

the viable parasite since treatment with the theileriacidal drug,

buparvaquone (BW720c) results in a cessation of proliferation

followed by apoptosis of the infected cell [3,4]. Establishment of

the infected cell phenotype is known to involve constitutive

activation of the pro-inflammatory transcription factor NFkB

(reviewed in [1]). This is a critical event, as it provides the

proliferating infected cell with anti-apoptotic properties [5]. NFkB

activation appears to be parasite dependent and is initiated by

sequestration of ‘IKK (IkB-kinase) signalosomes’ to the surface of

the macroschizont [6]. In addition to hijacking host IKK

signalosome function, there is evidence that the parasite-infected

cell modulates other signalling pathways. These include constitu-

tive activation of the AP1 transcription factor [7] by cJUN NH2-

terminal kinase signalling [8]; induction of TGF-b signalling which

also appears to be involved in regulation of metastatic potential

and hence virulence of T. annulata infected leukocytes [9] and

constitutive phosphoinositide 39-kinase (PI3-K) activity that

supports proliferation and possibly contributes to elevation of

AP1 and NFkB activity [10]. Activity of the transcription factor,

cMYC is also up-regulated [11]. Such perturbation of multiple

signalling events associated with the inflammatory response must
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have a profound influence on host cell phenotype and the

associated profile of gene expression.

Parasite proteins that are exported to the host cell nucleus may

also play a role in establishment of the infected host cell phenotype

Those identified are encoded either within the large SVSP (sub-

telomere-encoded variable secreted proteins) gene family [12] or

the distinct TashAT/TpHN families [13]. Evidence from ectopic

expression studies has shown that at least two TashAT factors

which bind to AT-rich DNA [14] can modify a bovine cell

phenotype [15,16], pointing to a role for these proteins in

modulation of the infected cell transcriptome. These studies

together with the extensive data on manipulation of cell signalling

pathways and leukocyte differentiation status [17,18] suggest that

Theileria parasites orchestrate a major reorganisation of leukocyte

gene expression networks and illustrate the complexity of parasite

governance over the host cell, reviewed in [1,19].

A comparative analysis of gene expression changes that occur in

disease resistant versus susceptible cattle breeds following T.

annulata sporozoite infection of primary cells was carried out by

[20] using a macrophage based cDNA array representing 5,026

bovine genes [21]. It was reported that significant modification of

the bovine transcriptome (.1,000 of the genes represented on the

array) occurred following parasite infection (Jensen et al, unpub-

lished data cited in [20]) and more recently, a microarray analysis

demonstrated that the Theileria parasite can substantially modulate

the outcome and gene expression profiles associated with an LPS-

induced inflammatory response [22]. However, a comprehensive

study to investigate the full extent to which the parasite can modify

a host cell gene expression profile has not been undertaken. It can

be predicted that such a study will identify a plethora of parasite-

induced alterations to the host cell transcriptome, but whether

these can be attributed to modulation of a few or many primary

host cell targets is an intriguing question.

This study has used an unbiased oligonucleotide microarray

platform designed using the entire bovine mRNA REFSEQ

database and the predicted coding sequences of the T. annulata

genome, to obtain a transcriptome representative of Theileria-

infected leukocytes. This was achieved by comparing array data

generated for a bovine lymphosarcoma-derived cell line, BL20

[23] and its T. annulata (Hissar stock) infected counterpart, TBL20.

BL20 is typical of an immortalised lymphoid cell line; sustained

cell division with concomitant failure to initiate apoptosis. It is

readily infected in vitro by T. annulata sporozoites resulting in

establishment of a uniform population of infected cells [24].

TBL20 cells have features that are characteristic of parasitised cell

lines derived from a natural infection, such as the presence of

macroschizont-associated IKK signalosomes [6,25] and the ability

to generate merozoites when cultured at 41uC [26]. Thus, the

BL20/TBL20 model is an ideal tool to investigate changes

induced by intracellular Theileria parasites, as it provides an

identical host background and does not rely on chemical means of

cell stimulation to provide a control population for array analysis.

Using these lines together with BW720c treatment to kill the

parasite, we aimed to identify changes to host cell gene expression

that are under control of the viable parasite. The results show that

Theileria infection modifies the malignant phenotype, as host cell

death is initiated following parasite elimination rather than

reversion to the original immortalised BL20 phenotype. Moreover,

the data predicts that this event is linked to a major irreversible

reconfiguration of host cell gene expression networks, resulting

from alterations to the activation status of a number of important

transcription factors and modulation of chromatin structure.

Detailed documentation of the modifications imposed by this

apicomplexan parasite that effectively tailor the host transcriptome

towards a phenotype necessary for survival, proliferation and

differentiation of the infected cell is provided.

Materials and Methods

Cell Lines and Culture
The uninfected control (BL20) was a bovine lymphosarcoma

cell line [23] and the T. annulata infected line (TBL20) was derived

previously from BL20 by in vitro infection with T. annulata (strain

Hissar) [24]. Cells were cultured in RPMI with 20% foetal calf

serum [27]. For RNA preparation, identical cultures of 2.56105

cells were set up in triplicate for each condition using fresh starter

cultures. BW720c was added as appropriate to 50 ng ml21 after

Figure 1. Comparative growth rates of BL20 and TBL20 cell
lines during BW720c treatment. Comparison of growth rates of
uninfected (BL20) and infected (TBL20) cell lines in the presence and
absence of BW720c at 50 ng ml21. Culturing was as described in
Methods section. All cultures were counted daily with three replicate
cultures used for each condition. Error bars represent standard
deviations from the mean for each time point. Solid lines, non-drug
treated cultures; dashed lines, BW720c treated; thin line, BL20 and thick
line, TBL20.
doi:10.1371/journal.pone.0066833.g001

Table 1. Overall gene expression changes for different
experimental conditions.

Observation Number of genes

Elevated in TBL20 1822

Reversed in BW720c (24h) 552

Reversed in BW720c (48h) 676

No change in BW720c 872

Repressed in TBL20 1257

Reversed in BW720c (24h) 399

Reversed in BW720c (48h) 487

No change in BW720c 678

No change in TBL20 vs BL20 (8048) but BW720c
response*

383

Summary of the total numbers of bovine genes in the dataset where expression
is altered by the presence of the Theileria parasite (TBL20 cells) compared to
uninfected BL20 cells and the overall response following BW720c treatment of
TBL20 cells to kill the parasite. Differentially expressed gene sets were derived
by Rank Product analysis (FDR ,5%). *This gene set included only genes for
which there was no evidence for differential expression by RP analysis.
doi:10.1371/journal.pone.0066833.t001

T annulata Reconfigures Host Cell Gene Expression
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4 hours. Cell numbers were estimated each day by Trypan Blue

exclusion and cultures fed, if required, by 2-fold dilution in fresh

medium to maintain cells in exponential growth over the time

course of the experiment. For analysis of comparative growth

rates, cultures were set up in triplicate and treated as above except

that the starting cell number was 1.56105 ml21 and cultures were

allowed to adapt overnight before addition of BW720c. Calcula-

tion of growth rate (cell number ml21) was determined by

extrapolation using the dilution factors.

RNA preparation for microarray analysis, Northern
Blotting and RT-PCR

Total RNA was prepared from 3 replicate cultures for each

condition. Cell pellets were re-suspended in Tri-Reagent (Sigma)

immediately after harvesting. Following extraction, the RNA was

further purified on RNAeasy columns (Qiagen) according to the

manufacturers’ protocol. For RT-PCR, a DNAse treatment step

was included.

Microarray hybridisation and analysis of data
The custom designed 60-mer oligonucleotide Bos taurus/T.

annulata microarray array platform (Roche NimbleGen Inc.,

Madison WI.) was described in detail in an earlier publication

[22]. Briefly, 19,777 bovine sequences from the mRNA RefSeq

database available at NCBI (http://www.ncbi.nlm.nih.gov/

RefSeq/) together with 3,769 T. annulata coding sequences

obtained from the T. annulata genome database at GeneDB

(www.genedb.org) were represented on the array. The T. annulata

probe set served as negative controls for bovine hybridisations and

positive controls were bovine genes already known from previous

studies to be elevated by Theileria infection such as members of the

matrix metalloproteinase family.

Conversion of RNA to cDNA, labelling of cDNA, microarray

hybridisation and RMA-normalisation of hybridisation data [28]

were carried out by Roche NimbleGen. The log2 hybridisation

values were analysed by the non-parametric Rank Product (RP)

method [29], which compares favourably with similar methods in

its robustness for detection of differentially expressed genes [30].

Only genes with a False Discover Rate (FDR) of less than 5% were

included in subsequent analysis of differentially expressed gene

sets. Genes sets classed as differentially expressed were subjected to

functional analysis using Ingenuity Pathway Analysis framework

V9 (IPA) (IngenuityH Systems, http://www.ingenuity.com) as well

as data obtained from the BioSystems database at NCBI (http://

www.ncbi.nlm.nih.gov/biosystems/). In some instances manual

curation of the data was undertaken. The datasets analysed in this

Figure 2. A. Caspase 3/7 activity in BW720c-treated uninfected BL20 and infected TBL20. Caspase 3/7 activity was assayed on samples of
104 cells taken from triplicate cultures for each cellular condition; BL 20 and TBL20, untreated and treated with BW720c for 24 and 48 h. Error bars
represent the standard deviation from the mean. B. Heat map illustration of the relative expression levels for parasite house-keeping
genes before and after exposure to BW720c for 24 and 48 h 106 parasite house-keeping genes were randomly selected based on their
annotation. The majority of parasite genes show considerably decreased levels by 24 h. Expression level range is 3.9 (blue, low) to 14.9 (red, high).
Values are log2. C. Western analysis demonstrated that expression of parasite proteins Tasp and TA10720 decreased during
exposure to BW720c Total protein cell extracts were prepared from untreated BL20 and TBL20 (2) and in TBL20 cells at 24 and 72 (+) hours after
addition of BW72c. Equal protein loadings were verified by Ponceau S staining. Parasite proteins, Tasp (schizont surface) and TA10720 (HSP90-related,
schizont organelle) are shown relative to constitutive bovine actin. Antibodies are as described in methods section.
doi:10.1371/journal.pone.0066833.g002
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publication have been deposited in NCBI’s Gene Expression

Omnibus and are accessible through GEO Series Accession No.

GSE44414 (http://www.ncbi.nlm.nih.gov/geo/query/acc.

cgi?token = txqrjgyaoyqukzg&acc = GSE44414).

Designation of expression levels of bovine genes
An estimate of baseline or background hybridisation was

determined by taking the mean of all the values obtained for

hybridisation of BL20 (uninfected) cDNA to 3,769 parasite genes

represented on the array. This derived a log2 value of 4.5 (range

3.59–9.04 log2), which we used to represent the background

hybridisation value for a putatively silent gene in uninfected BL20

cells. Mean expression values for bovine genes taken across

replicate hybridisations for each experimental condition below 4.5

(n = 1,283) were designated as being ‘not expressed’ (N) in BL20,

although we believe that this is probably a conservative estimate;

genes with mean values between 4.5 and 7 were classed as ‘low

expressed’ (L); 7.0 and 9.0, medium expression level (M); 9.0–12.0,

high expression (H); 12.0 and above as very high (VH). Due to the

nature of hybridisation kinetics for different probes we emphasise

that this classification system merely serves as a convenient

guideline for interpretation.

Validation of microarray gene expression changes by RT-
PCR

Microarray hybridisation values for host actin, b-tubulin and

GAPDH probe sets were very similar for BL20 and TBL20 and

did not change significantly during BW720c treatment, therefore

we used these as constitutive controls for semi-quantitative

(SQRT-PCR) and quantitative RT-PCR (QRT-PCR). SQRT-

PCR was carried out in one step using an Invitrogen One-Step

RT-PCR kit with 10–50 ng total RNA and analysed as described

in [22]. A control without reverse transcriptase was included for

every condition. QRT-PCR was carried out in two steps; firstly

cDNA was prepared from 2 mg total RNA using Agilent

Technologies AffinityScript QPCR cDNA Synthesis Kit with

oligo dT primers. QRT-PCR amplifications of cDNA stocks were

carried out in duplicate using a Stratagene Mx3005P QPCR

system and incorporating SybrGreen for detection. All procedures

were carried out according to the manufacturers’ protocols and

quantitative data analysed using MxPro QPCR software. Reaction

conditions and analysis are described in detail in a previous

publication [22]. Briefly, GAPDH was selected as the best overall

constitutive control gene for QRT-PCR from the 3 constitutive

genes that were assessed. Relative gene expression values for each

gene of interest were calculated by normalising to those of

GAPDH. Fold change was calculated for selected genes in

Table 2. Top-ranking genes elevated or repressed in TBL20 compared to BL20.

Symbol Entrez Gene Name ID FC BW720c response

XCL2 chemokine (C motif) ligand 2 319096 +741.9 212.3

LRRTM4 leucine rich repeat transmembrane neuronal 4 521137 +314.3

KIAA1598 No annotation 532603 +234.2 25.1

MMP9 matrix metallopeptidase 9 (gelatinase B, 92kDa gelatinase,
92kDa type IV collagenase)

282871 +192.4 21.9

MMP13 matrix metallopeptidase 13 (collagenase 3) 281914 +172.1 23.9

LDLR low density lipoprotein receptor 281276 +117.9

LITAF lipopolysaccharide-induced TNF factor 520564 +116.2

CLEC4D C-type lectin domain family 4, member D 616646 +114.8 +2.6

AHNAK AHNAK nucleoprotein 531336 +90.2

SERPINE1 serpin peptidase inhibitor, clade E (nexin, plasminogen
activator inhibitor type 1), member 1

281375 +83.9 23.7

IL2RB interleukin 2 receptor, beta 510185 +80.3

BCL2A1 BCL2-related protein A1 282151 +43.6

SORCS3 sortilin-related VPS10 domain containing receptor 3 531405 2530.7

F13A1 coagulation factor XIII, A1 polypeptide 617881 2289.9

PPP1R14C protein phosphatase 1, regulatory (inhibitor) subunit 14C 617148 2275.5

SLC11A1 solute carrier family 11 (proton-coupled divalent metal ion
transporters), member 1

282470 2238.1 +8.2

CPA4 carboxypeptidase A4 512903 2195.4 +6.6

NXF3 nuclear RNA export factor 3 523530 2166.6

ALPK2 alpha-kinase 2 510218 2154.9

CCR6 chemokine (C-C motif) receptor 6 519716 2110.6 +2.7

BLK B lymphoid tyrosine kinase 532587 2110.2 +4.5

PIGR polymeric immunoglobulin receptor 281401 285.2 +3.7

SLAMF1 signaling lymphocytic activation molecule family member 1 281489 284.4

TLR4 toll-like receptor 4 281536 270.6 +4.9

Top ranking genes with (A) elevated (+) or (B) repressed (2) expression in parasite infected TBL20 compared uninfected BL20 cells. Fold change (FC) and the direction of
any BW720c response (+, up; –, down; blank no change) are indicated. Differential expression was determined by RP analysis using a FDR cut-off of 5%.
doi:10.1371/journal.pone.0066833.t002
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parasite-infected and BW720c treated samples relative to control

BL20 as calibrator. Unique primers pairs used to amplify bovine

mRNAs (Table S1) were designed using Primer-Blast at NCBI

(http://www.ncbi.nlm.nih.gov/tools/primer-blast/index.cgi) and

assessed for secondary structure using M-Fold (http://mfold.rna.

albany.edu/). Where possible, they were designed to span or

include an intron to avoid amplification/detection of genomic

DNA and to have similar melting temperatures in the range 58–

61uC.

Preparation of protein extracts and Western Blotting
Total protein extracts were prepared from uninfected BL20,

infected TBL20 and TBL20 treated with BW720c cultured under

the same conditions as for preparation of RNA for microarray

analysis. 106 cells were lysed in 40ml 16 SDS-PAGE sample

cocktail buffer and SDS-PAGE gels run, transferred and blotted

using standard procedures as described previously in [14].

Approximately 2.56105 cells were loaded per track and equal

protein loadings confirmed by Ponceau S staining of the transfer

membrane. Due to the relative lack of available bovine-specific

antibody reagents, commercial antibodies chosen for testing were

generated against regions of high conservation across mammalian

species. Antibodies were used at the following dilutions; anti-

HDAC9 (Santa Cruz Biotechnology, Cat No sc-28732) 1/200

dilution; HDAC2 (Santa Cruz Biotechnology, sc-81599), 1/200;

NFkB2 (Santa Cruz Biotechnology, sc-298), 1/100; T. annulata

specific antibodies, anti-TA10720 (ER HSP90, J. Kinnaird,

unpublished), 1/100 and anti-Tasp [31] 1/5000, were generated

in this laboratory; antibodies against constitutively expressed

control host proteins b-tubulin (Sigma, T9028), 1/5000 and actin

(Sigma, A4700), 1/1000. Primary antibody was detected using the

appropriate secondary antibody conjugated to horseradish perox-

idase. Immunoblots were performed three times for HDAC9 and

twice for NFkB2. The cultures used to generate protein extracts

were completely independent of those used to generate mRNA.

Measurement of Caspase 3/7 Activity
Caspase 3/7 activity was estimated from logarithmically

growing cultures under the conditions and at the time points

indicated in the text. Activity from 104 viable cells was determined

using a luciferase-based assay (Promega) according to the

manufacturer’s protocol.

Results and Discussion

BW720c treatment of TBL20 is detrimental to host cell
proliferation, survival and parasite gene expression

The specific theileriacidal activity of BW720c is well established

both in vivo [32] and in vitro. This latter property has been utilised

in several studies including those by [18], [33] and [17] to predict

whether individual host genes/pathways are under direct influence

of the viable macroschizont. BW720c, a hydroxynaphthoquinone,

most probably acts as a ubiquinone analogue [34,35] to

specifically block parasite electron transport and exposure of

infected cells to the drug leads to rapid arrest and death of the

parasite, followed by cessation of host cell proliferation and

apoptosis within a few days [4]. However, given the T. annulata

infected line, TBL20, has arisen from the infection of a cell line

that already displays an immortalised phenotype, reversal of

proliferation status and induction of apoptosis may not occur on

treatment with BW720c. To test this premise, infected TBL20 cells

were cultured in the presence and absence of the drug and their

proliferation potential assessed relative to uninfected BL20. The

results clearly demonstrated that TBL20 cells proliferate at a faster

rate than their uninfected counterpart, BL20 (Figure 1). Moreover,

treatment of TBL20 with BW720c resulted in a significant

reduction in proliferation rate, detectable from about 30 h, with

complete arrest by ,48 h. In contrast, BL20 showed no detectable

effect of BW720c on the rate of division. A similar growth arrest

phenotype following BW720c treatment was recently described for

T. annulata infected cells derived from a different immortalised host

Figure 3. Main groups of gene expression profiles obtained over the BW720c time course. Profiles were derived from pairwise
comparisons, BL20 vs TBL20; TBL20 vs TBL20_BW720c_24 h; TBL20_BW720c_24 h vs TBL20_BW720c_48 h as defined using RP with 5% FDR. The total
number of differentially expressed genes in TBL20 compared to BL20 was 3,079. In addition to those genes exhibiting reversal in expression at 24 h, a
further 303 (10%) showed reversal in the parasite induced expression profile at 48 h. We cannot distinguish whether these represent delayed reversal
due to parasite death and hence associated with Group 2 or an apoptosis associated switch in expression of a gene that is non-responsive to parasite
death (Group 3). Within Group 4, 30% showed enhancement in original parasite induced expression at 48 h only. Predominant trend in direction of
expression in the group, solid line; alternative direction trend in the group, dashed line.
doi:10.1371/journal.pone.0066833.g003
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cell line [36], indicating that the result is not restricted to the BL20

host cell background. Estimation of caspase 3/7 activity, a marker

of progression towards apoptosis, showed a significant increase in

the TBL20 BW720c-treated culture that was not detected in

control (no drug) TBL20 cells or uninfected BL20 cells.

Interestingly, caspase 3/7 activity was detectable in TBL20 by

24 h exposure to the drug, indicating progression towards

apoptosis was initiated prior to this sampling point (Figure 2A).

Further support was provided by Western blot detection of

another early marker of apoptosis, the poly-ADP ribose polymer-

ase (PARP) cleavage product, in TBL20 cells during BW720c

treatment but not in BL20 cells (data not shown).

Confirmation that BW720c was detrimental to the macro-

schizont was achieved by morphology and at the RNA and

polypeptide level. Giemsa staining indicated an overall reduction

in size and nuclear content of the macroschizonts by 48 hours

(data not shown). To assess the outcome of BW720c treatment on

the parasite transcriptome, Rank Product analysis of the data

obtained from hybridisation of TBL20 cDNA to the parasite genes

represented on the Glasgow bovine/Theileria genome microarray

(see methods) was undertaken. Expression of the vast majority of

parasite genes was significantly reduced (3,282 out of 3,769 . 2-

fold) and is illustrated for 120 randomly selected housekeeping

genes by a heat map over the 48 h of BW720c treatment

(Figure 2B). Loss of parasite protein production was also indicated

as Western blot analysis over a 72 h BW720c time course using

antibodies specific for parasite proteins, Tasp and an HSP90-like

polypeptide expressed at the macroschizont stage, showed a clear

reduction in levels (Figure 2C). It can be concluded that a clear

outcome of killing the parasite in the infected TBL20 lymphosar-

coma line is a cessation of host cell division together with initiation

of cellular processes leading to cell death. Thus, it can be proposed

that infection with the parasite reconfigures the BL20 gene

expression network in such a way that upon removal of a parasite-

Table 3. Transcription regulators elevated or repressed in TBL20 compared to BL20.

Symbol Entrez Gene Name ID FC BW720c response

MEIS3 Meis homeobox 3 617311 +65.2 22.0

FOSL1 FOS-like antigen 1 531389 +37.3 25.0

SSBP4 single stranded DNA binding protein 4 508156 +14.3 21.7

JUND jun D proto-oncogene 517192 +12.3 22.5

NFKB2 nuclear factor of kappa light polypeptide gene enhancer in B-cells 2 (p49/p100) 526392 +9.4 22.8

FOXA3 forkhead box A3 503622 +6.4 21.6

CITED2 Cbp/p300-interacting transactivator, with Glu/Asp-rich carboxy-terminal domain, 2 521378 +5.9 22.9

HOXC13 homeobox C13 538716 +16.0 +2.2

HOXB8 homeobox B8 785855 +5.1 +2.3

LITAF lipopolysaccharide-induced TNF factor 520564 +116.2

TP73 tumor protein p73 515105 +98.7

ID3 inhibitor of DNA binding 3, dominant negative helix-loop-helix protein 538690 +58.1

FOSL2 FOS-like antigen 2 509889 +12.2

RUNX3 runt-related transcription factor 3 617389 +8.6

PAX9 540196 +5.1

LEF1 535399 260.5 +3.6

HDAC9 histone deacetylase 9 535415 236.8 +18.7

KANK1 KN motif and ankyrin repeat domains 1 534869 234.3 +2.5

HEYL hairy/enhancer-of-split related with YRPW motif-like 538609 226.5 +2.7

SPIB Spi-B transcription factor (Spi-1/PU.1 related) 784460 217.8 +2.3

KCNIP3 Kv channel interacting protein 3, calsenilin 513316 210.4 +2.9

PARP 14 poly (ADP-ribose) polymerase family, member 14 540789 24.9 +5.5

NFE2 nuclear factor (erythroid-derived 2), 45kDa 514006 278.8

POU6F2 POU class 6 homeobox 2 517861 227.8

ZNF423 zinc finger protein 423 508025 213.7

EBF1 early B-cell factor 1 537712 211.2

HTATIP2 HIV-1 Tat interactive protein 2, 30kDa 539276 211.0

GCM2 glial cells missing homolog 2 (Drosophila) 539454 210.8

ZNF211 zinc finger protein 211 789989 210.8

POU6F2 POU class 6 homeobox 2 537815 210.1

NEO1 neogenin homolog 1 (chicken) 535307 29.9

Transcription regulators identified in the Ingenuity Pathway Analysis Database (IPA) that were differentially expressed in TBL20 compared to BL20 (FDR 5%). The fold
change in TBL20 relative to BL20 is indicated; +, elevated in TBL20; –, repressed in TBL20. The fold change response in TBL20 treated with BW720c relative to TBL20 (FDR
5%) is indicated to the right. The top 15 ranking transcriptional regulations, both elevated and repressed, are shown grouped according to BW720c response.
doi:10.1371/journal.pone.0066833.t003
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dependent transforming signal(s), the host cell cannot revert to its

original immortalised phenotype and undergoes apoptosis in a

manner comparable to naturally infected T. annulata cell lines.

Overall changes in host cell gene expression associated
with parasite infection

A major aim of this study was to identify the capacity of Theileria

to manipulate the gene expression network of the bovine host cell

and identify differentially expressed genes that are most likely to be

directly controlled by a parasite mediated mechanism (expression

profile altered by BW720c treatment). To achieve this we

compared the transcriptome of the immortalised bovine cell line,

BL20, with that of TBL20; followed by profiling the transcrip-

tional changes induced by treatment of TBL20 cells with BW720c

at 24 and 48 hours. BL20 cultures were also BW720c treated and

analysed in parallel to exclude alterations in gene expression

caused by a direct effect of the drug on uninfected host cells. Thus,

the entire experimental dataset represented differentially expressed

genes (using a 5% FDR) from the following four pair-wise

comparisons: BL20 v TBL20, TBL20 v TBL20_24 h_BW720c,

TBL20 v TBL20_48 h_BW720c and TBL20_24 h_BW720c v

TBL20_48 h_BW720c.

RP analysis of the pair-wise comparison between BL20

(uninfected) and TBL20 (infected) generated a dataset of 3,079

differentially expressed genes with 1,822 elevated and 1,257

Figure 4. Semi-quantitative RT-PCR for selected bovine genes confirms the microarray expression data. Semi-quantitative RT-PCR
carried out for a range of bovine genes to confirm the differential expressions determined from the microarray hybridisation and analysis of BL20
compared to TBL20 and for TBL20 following BW720c treatment. Actin or GAPDH were used as constitutively expressed reference genes and all genes
tested showed similar profiles to hybridisation data from the array. The overall microarray profile is illustrated on the left of each panel; parasite
infection (PI); buparvaquone (BW720c); elevated in TBL20 (m); repressed in TBL20 (.). BL20 and TBL20 without BW720c (2) and during BW720c
treatment of TBL20 at 24 and 48 hour time points.
doi:10.1371/journal.pone.0066833.g004

Table 4. AP1 sub-units with altered expression in TBL20
compared to BL20.

Gene symbol FC in TBL20 vs BL20 Max BW720c response

JUNB +2.0 23.2

JUND +12.3 22.5

JUN +1.7 +4.7

FOS +4.0 21.5

FOSL1 +37.3 25.0

FOSL2 +12.2

FOSB 22.5 * +4.9

ATF6 +2.5 21.7

ATF7IP 22.6 ** +2.6

MAF +3.8

MAFF +2.7 23.2

MAFK 21.8

Various components of the AP1 transcription factor complex that were elevated
(+) in TBL20 or repressed (2) in TBL20 compared to BL20. The BW720c response
is indicated to the right. The FDR generated by RP for FOSB* and ATF7IP** in
TBL20 compared to BL20 were above our normal threshold of 5% but were
included in this table as both showed a strong reversible BW720c response.
doi:10.1371/journal.pone.0066833.t004
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repressed in TBL20 compared to BL20. As expected, this number

of alterations was considerably higher than the previous study

investigating modulation of an LPS response associated with T.

annulata infected leukocytes (1214 genes [22]), a large number of

which showed no significant difference in expression between

TBL20 and BL20 (748 genes). Thus, the current study represents a

more comprehensive analysis of host cell gene expression changes

associated with the infected leukocyte. After 48 h exposure to

BW720c, RP analysis indicated that 37% of elevated genes and

39% of repressed genes in TBL20 showed statistically significant

reversal (Table 1). A number of previously reported bovine genes

whose expression is altered at RNA or protein level by T. annulata

or T. parva infection were also identified in our study and serve to

validate the array analysis (Table S2).

Of the genes showing elevated expression in parasite-infected

TBL20 cells, the most highly up-regulated encodes the chemokine

XCL2, a member of a large gene family, many of which exhibit

alteration associated with the Theileria-infected cell. Members of

the matrix metalloproteinase family (MMPs) are also found to be

highly up-regulated, e.g. MMP9 which was previously identified as

up-regulated in parasite infected TBL20 [7] and shown to be

linked to metastasis of Theileria infected cells [37], was elevated 192

fold. Expression of MMP13, 14 and 25 were also greatly elevated

in the BL20-TBL20 model. Thus our study provides a more

comprehensive profile of MMP expression that is likely to

contribute to the metastatic potential of the Theileria infected cell,

although variable expression of family members across different

infected cell lines is likely to operate [38]. 1,257 genes showed

significant repression by Theileria infection. For example, the gene

encoding SORCS3, a member of the family of Vps10p domain

transmembrane receptors, displayed the greatest down-regulation.

SORCS3 may have a role in mediation of endocytosis [39]. Genes

encoding NFX3, a nuclear hormone receptor 3 (repressed by 166

fold) and BLK, encoding B-lymphoid tyrosine kinase (repressed

110 fold), also displayed a high level of repressed expression. This

small selection of genes showing markedly elevated or repressed

expression along with their response to BW720c is summarised in

Table 2 and the top-ranking genes in each case are listed in

Tables S3A and S3B. It should be noted that if a gene was also

present in the LPS-modulated dataset described by Durrani et al.,

the fold change will be different because in that study, the LPS

response in BL20 was taken into account.

Genes that are up-regulated by Theileria infection might include

those induced from a basal level i.e. a transcriptionally silent locus,

in BL20. Each gene in the BL20 dataset was classified according to

its level of hybridisation (see methods) and this resulted in 1,283

genes being categorised as potentially silent. No genes in this group

showed statistically significant repression by parasite infection,

supporting their prediction as silent loci. Conversely, 46 genes in

the group displayed elevated expression levels associated with

TBL20, with fold changes from 1.3 to 300 (5% FDR, Table S4A)

and 33 of these genes showed altered expression on exposure to

Figure 5. Differentially expressed genes in parasite infection and after BW720c treatment are enriched for fundamental molecular
functions. A comparative analysis for enrichment in cellular molecular functions was carried out for each dataset. Fundamental cellular molecular
functions contained within the IPA database and above the threshold for significance (-log(p value), p = 0.05) were selected for comparison. Black
bars, enrichment inTBL20 compared to BL20; mid-grey, TBL20 at 24 h BW720c compared to TBL20 control; light-grey bars, TBL20 at 48 h BW720c
compared to TBL20 control.
doi:10.1371/journal.pone.0066833.g005
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BW720c. Therefore, a high proportion of genes in this class

exhibit modulation in BW720c (67%). This data illustrates that

Theileria can induce expression of loci that were previously

transcriptionally silent and may represent a set of genes whose

expression is of importance to the Theileria infected cell. Those of

interest include genes encoding: KIAA1598 (up 234-fold), recently

identified in a protein array screen as a candidate for interaction

with NEMO [40] a central component of the NFkB activation

pathway; CD28 (up 52.1-fold) with a role in stimulation of the

transcription factor FOX3P, mediated by NFkB [41]; BCL2A1

(up 43.6-fold) which has anti-apoptotic properties [42] and

NANOG a homeobox transcription factor (see below).

In addition to the large group of genes exhibiting differential

expression in parasite-infected cells, an effect of BW720c

treatment on host genes classified as unaltered between BL20

and TBL20 was detected. This group was within a large gene set

that contained all those judged as highly unlikely to be

differentially expressed in the output from the RP analysis. 383

genes from this set showed statistically significant alterations upon

treatment with BW720c that was specific to parasite-infected cells.

The top ranking changes in this group are shown in Table S4B.

Examples include genes encoding a poly-ADP-ribose polymerase,

PARP9 (up 4-fold), transcription factor SP7 (up 17-fold) and

Vanin 1 (VNN1, up 24-fold), a stress/inflammatory response

regulator [43]. This dataset indicates that the parasite also

modifies host gene expression to an extent that is not apparent

until parasite viability is lost and in general, suggests that in

TBL20, the host gene expression network is substantially altered in

a non-reversible manner.

BW720c treatment alters host cell gene expression in a
non-reversible manner

Following infection of the leukocyte it is possible that the

parasite induces the expression of a key set of host genes that in

turn lead to the activation/repression of pathways that are

essential for survival/growth of the infected cell. Such genes

might be predicted to be under direct control of infection and

show an early response to loss of parasite viability relative to more

delayed events that arise as a consequence of treatment (e.g.

induction of cell death). To attempt to identify such genes and

determine if TBL20 cells are characterised by a network of altered

host cell gene expression that cannot be reversed on parasite

death, expression patterns representing the response to BW720c

treatment at 24 hours (early) and 48 hours (late) were derived.

Figure 6. Enrichment in canonical pathways. Enriched Canonical Pathways for comparisons, BL20 vs TBL20; TBL20 vs TBL20_24 h_BW720c;
TBL20 vs TBL20_48 h_BW720c were selected from the top 12 defined in each comparison. Top chart, BL20 compared to TBL20; middle chart, TBL20 at
24 h BW720c compared to TBL20 control; bottom chart, TBL20 at 48 h BW720c compared to TBL20. The significance of the enrichment is indicted in
each case (-log(p value).
doi:10.1371/journal.pone.0066833.g006
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Genes differentially expressed between TBL20 and BL20 were

broadly sorted into 4 main groups based on their response profile

over sequential time points of BW720c treatment (Figure 3).

Group 1. no change in the parasite induced expression profile

following BW720c treatment; this was the predominant group as it

represented greater than 50% of the differentially expressed

TBL20 dataset.

Group 2. reversal to a statistically significant degree following

BW720c exposure for 24 h: this gene set was the next largest with

31% of differentially expressed genes showing this profile at 24 h.

However, only a minority (18% of group 2) maintained this trend

by 48 h. Thus for the majority of genes in group 2 the trend to

revert towards expression values displayed by uninfected BL20

cells was not maintained between 24 and 48 h and these largely

exhibited no further change between 24 and 48 h (76%).

Furthermore, only a further 12% of genes altered by parasite

infection initiated reversal at the 48 h time point. These results

clearly indicate that the reversal process fails to complete, implying

that it is overridden by a secondary change to factors controlling

expression of these genes.

Group 3. genes that display a change between the 24 and

48 h time points in the initial direction of the expression pattern

associated with BW720c treatment: 3% of the differentially

expressed gene set displayed this pattern which may indicate, like

group 2, a switch in gene regulation associated with initiation of

secondary events in response to drug treatment, such as cell cycle

arrest and cell death.

Group 4. enhancement of parasite-induced expression (ele-

vation and repression) following BW720c exposure at 24 h and, in

some cases, at 48 h. This pattern may represent a very early

response to loss of parasite regulation. A similar profile has been

described in other studies and was associated with repression of

high level expression of genes induced by cellular activation,

macrophage differentiation or the inflammatory response, that

may be detrimental to the parasite infected cell [15,17]. Taken

together, the data indicated that only approximately 6% of

differentially expressed genes in TBL20 cells show a sustained

trend associated with reversion to the BL20 phenotype although

.30% show evidence of immediate susceptibility to parasite

death.

The microarray expression profiles of a range genes were

selected for validation by SQRT-PCR and by QRT-PCR and

these results are presented in Figure 4 and Figure S1. In general,

there was good correlation with the microarray data and RT-PCR

validations for specific genes are referred to as appropriate in the

text.

To control for non-parasite specific effects of BW720c,

uninfected BL20 cells were also treated with BW720c and RNA

from 24 and 48 h time points analysed by microarray. Modulated

expression of 563 genes at 24 h and a further 1121 by 48 h was

detected (5% FDR) following exposure to the drug. Compared to

the BW720c response in TBL20, very few showed large changes in

expression (data not shown). Relatively few drug response genes

were common to the infected and uninfected datasets (74 and 164

at 24 h and 48 h respectively) and they tended not to exhibit

expression changes of similar magnitude e.g. genes encoding the G

protein-coupled receptor, CX3CR1 and chemokine, CXCL10.

These expression differences were confirmed by semi-quantitative

RT-PCR (Figure S2). Thus the vast majority of changes to gene

expression detected upon BW720c treatment of TBL20 (98% at

24 h and 95% at 48 h treatment) are associated with the response

of the infected cell.

In conclusion, infection-associated changes to gene expression

respond in a variable non-reversible manner following the loss of

parasite viability. The obvious lack of uniformity in the

transcriptional response of functionally important genes following

BW720c inhibition of parasite viability would permit a drastic

cellular imbalance to emerge and could lead to death of a

previously immortal cell.

Pathway analysis of BW720c responsive and non-
responsive infection-associated changes to host cell
gene expression

Changes to gene expression identified as an early (24 h)

response to BW720c are most likely to highlight targets regulated

by a parasite-dependent mechanism. To investigate whether this

early response could be associated with any particular molecular

function, pathway analysis performed for this dataset was

compared to those of the complete infection-associated (IA)

dataset and the BW720c dataset from the later (48 h) time point.

This comparative analysis for enrichment in various Molecular

Functions revealed a wide range of significant categories in all

three datasets. A selection of the top-scoring functions is shown in

Figure 5. Functions such as ‘Cellular Development’, ‘Growth and

Proliferation’, ‘Cell Movement’, ‘Cell Death’, ‘Cell-To-Cell

Signalling’, ‘Cell Morphology’ that scored highly in TBL20

compared to BL20 were also highly significant in BW720c treated

TBL20. None of these categories, however, showed greater

significance for the early (24 h) time point relative to the other

two datasets. In contrast, genes encoding factors placed in the

‘Gene Expression’ category showed evidence of a more significant

enrichment in the 24 h dataset, relative to the other two. This

result was not observed in the study of Durrani et al. and suggests a

marked alteration to expression of genes that function in

regulation of gene expression following the initial loss of parasite

viability at 24 h. A similar but less pronounced trend was also

obtained for ‘Cell Cycle’ and ‘Cellular Assembly and Organisa-

tion’ two categories that can easily be linked to known parasite-

associated alterations of host cell phenotype. For several functional

categories (‘Amino Acid Metabolism’, ‘Nucleic Acid Metabolism’

and ‘Protein Synthesis’) significant enrichment of differentially

expressed genes was only obtained for the BW720c 48 h gene set.

Figure 7. Microarray expression profiles of HDAC9 and NFkB2
genes are also reflected at protein level. Western analysis of total
protein cell extracts from uninfected (BL20) and infected (TBL20) cells
treated with BW720c for 0 (2), 24, 48 and 72 (+) hours. Equal protein
loadings were verified by Ponceau S staining. Host HDAC9, HDAC2 and
NFkB2 are shown relative to constitutive tubulin and actin. Antibodies
are as described in Methods section.
doi:10.1371/journal.pone.0066833.g007
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The most straightforward interpretation of this result is that

enrichment of genes in these categories is a strong indicator of a

radical alteration to cellular metabolism that results from death of

the parasite.

Analysis for enrichment in ‘Canonical Pathways’ indicated that

pathways associated with Inflammatory disease and ‘NFkB’

activation by viruses’, Cancer and IL3, TREM1, JAK1/JAK3

signalling were amongst the most highly significant in TBL20

compared to BL20 (Figure 6). The pathways ‘TREM1 Signalling’

and ‘Role of Macrophages in Rheumatoid Arthritis’ also appeared

as highly significant in the TBL20 at 24 h BW720c dataset. These

results were in broad agreement with pathway enrichment

performed in the previous LPS study [22]. In general, signalling

pathways predominated amongst those showing enrichment at

24 h BW720c and included enrichment in genes encoding

molecules associated with ‘Apoptosis Signalling’, which was also

evident at 48 h. The 48 h time point contrasted strongly with the

TBL20 and TBL24 h BW720c datasets, as here the predominant

enrichments were in pathways associated with basic cellular

metabolism: ‘Purine and Pyrimidine Metabolism’, ‘Protein

Ubiquitination’, and ‘Oxidative Phosphorylation’, indicating

initiation of degradative cellular processes concerned with

apoptosis. The data indicates that upon loss of parasite viability,

alteration of signalling events are likely to occur prior to the

initiation of pathways that result in cellular death and destruction.

While infection-associated genes that show an altered response

upon BW720c treatment are more likely to be directly controlled

by the viable parasite, it is clear from the analysis that a large

number of differentially expressed genes were not altered following

BW720c treatment. 697 were mapped in the pathway analysis

framework and assigned to functional categories that can be linked

to the transformed phenotype of the infected cell. The majority

(n = 267, 38%), were classed as enzymes, but 91 (13%) were

classified as transcriptional regulators; other defined functional

classes were kinases, 9%; G-protein/transmembrane receptors,

9%; peptidase/phosphatase, 8% and transporters/ion channels,

17%. Only 3% were classed as cytokines/growth factors. Amongst

non-functionally designated genes that do not exhibit any degree

of reversal are the highly elevated BCL2A1 (43-fold, Figure S1),

which is known to have important anti-apoptotic functions by

inhibiting activation of the intrinsic mitochondrial cell death

pathway (reviewed in [44]). Examples of other non-reversible

genes that could be linked to the infected cell phenotype include

the CDK inhibitors. There are two main groups of CDK

inhibitors, the INK4 gene family and the CIP/KIP family. The

INK4 family competitively inhibits the formation of active G1

phase CDK4/6-cyclin D complexes [45] and 3 of the 4 members

exhibit repression in TBL20: CDKN2D (p19INK4d, 5-fold),

CDKN2C (p18 INK4c, 3.1-fold), CDKN2A (p16INK4a, 2.9-fold)

(Table S5). In TBL20, two members of the CIP/KIP family, p57

KIP2 (CDKN1C), and p27KIP1 (CDKN1B) are each repressed

,3.5-fold. The CIP/KIP family of CDK inhibitors bind to a wide

range of cyclin-CDK complexes to modulate activity towards

substrates involved in cell cycle and in interconnected functions

such as apoptosis (reviewed in [46]). In addition, this family also

binds to/inhibits a range of other proteins, particularly those that

regulate cytoskeletal dynamics, e.g. p27 with RhoA-GTPase, p57

with LIMK1 and p21 with Rho kinase ROCK1, reviewed in [47].

Notably, several T. annulata infected cell lines including TBL20

exhibit considerable change to cytoskeletal architecture compared

to uninfected BL20 [25]. As none of the repressed CDK inhibitors

exhibit significant reversal on BW720c treatment, it seems

probable that in Theileria infection differential expression of the

family of CDK inhibitors arises as a secondary event, possibly as a

result of the activity(s) of transcription factors such as cMYC and

FOXO3. cMyc is constitutively active in Theileria infected cells

[11] and FOXO3 gene expression exhibits minor up-regulation in

our array analysis. In addition, positive cell cycle regulators

CDK14 and CDK3 also show altered (elevated) expression

associated with infected TBL20 that did not reverse upon

BW720c treatment. CDK14 has a possible role in the G1-S

transition point. CDK3 is involved in the initiation of S phase, is

known to phosphorylate retinoblastoma protein (pRb) and the

transcription factor ATF1 [48]. Therefore, the balance between

these positive and negative regulators of cell cycle progression is

considerably altered in TBL20 and even though modulation of

expression cannot be linked to the viable parasite, it is likely to

contribute to the infected cell phenotype, the faster cell division

rate for example. Within the dataset of genes not reversed by

BW720c, there are many other similar examples of a potential

association with the infected cell phenotype. A failure to reverse

expression of such genes upon loss of parasite viability is likely to

contribute to the failure to revert to the BL20 phenotype.

Pathway analysis predicts altered production and
perception of cytokines, chemokines and inflammatory
mediators in TBL20

Both the TBL20 infection-associated and the BW720c 24 hr

datasets showed significant enrichment for pathways associated

with the inflammatory/immune response. Given the potential

importance of these responses to survival of the infected leukocyte,

genes encoding molecules that function to regulate the inflamma-

tory/immune response were analysed in further detail. 52

cytokines/chemokines and growth factors were differentially

expressed between BL20 and TBL20 (Table S6A). Approximately

equal numbers were repressed (range: 3 to 60-fold) and elevated

(range: 1.6 to 742-fold). Those highly repressed include IL15 (60-

fold), TNSF11 (22-fold), CD70 (13-fold) and IL24 (6-fold). Five of

this repressed group of 26 were reversed by BW720c treatment

and three were enhanced. In addition, we found a 4-fold down-

regulation of FASLG gene expression but a 3.5-fold up-regulation

of the FAS receptor gene. Expression of FasLG and FAS have

previously been reported in T. parva infected T-cells where the

normally pro-apoptotic influence of FASL ligation is suppressed

[33]. Elevated cytokines include TNFSF13B (20-fold) and IL7

(3.7-fold). Chemokine and chemokine receptor gene expression in

the infected cell show considerable alteration. In general,

expression of chemokine genes tend to be highly elevated (6 out

7 identified) e.g. XCL2 (742-fold elevated) and CCL1 (30-fold

elevated) and all were highly responsive to reversal on exposure of

TBL20 to BW720c. Overall, amongst differentially expressed

Figure 8. A. Transcriptional control defined for the RAG1/2 locus showing points of regulation in Theileria infected cells Prediction of
expression level was as defined in the methods section; (VH), very high; (H), high. – to the left of the gene symbol, no predicted change in TBL20
compared to BL20. – to the right of the gene symbol, no change in BW720c. m., elevated or repressed in TBL20 (to the left) or BW720c (to the right)
of the gene symbol. B. Modulation of an established BL20 transcription factor network by parasite infection Components of the MYB
transcription factor network within different cellular compartments that show altered expression in TBL20 compared to BL20. Green, repressed
expression in TBL20; red, elevated expression in TBL20.
doi:10.1371/journal.pone.0066833.g008
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Figure 9. CLOCK, SCREB and XBP1 transcriptional regulators, predicted to have altered activities in TBL20 that are reversed in the
presence of BW720c, have target genes in common. Illustration of the target gene network from our analysis where differential expression
may result from activation or inhibition of 3 transcription regulators, CLOCK, SCREB and XBP1, each with activation status predicted to be altered by
parasite infection and reversed by BW720c in our analysis (see text). Red means up-regulated in TBL20 compared to BL20 (range 1.7–117 fold); green
is down-regulated in TBL20 (range 1.7–110 fold); grey, no differential expression.
doi:10.1371/journal.pone.0066833.g009
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cytokine genes, 60% of those elevated by parasite infection but

only 23% of repressed, were reversed on BW720c treatment.

Modulation in expression of genes encoding polypeptides

predicted to be located to the cell surface appears extensive. In

the large families of G-protein-coupled receptors/transmembrane

receptors/associated membrane localised kinases (167 genes), 74

are elevated and 93 repressed in TBL20 vs BL20. Included in

this group are genes encoding the family of Toll receptors

involved in perception of inflammatory stimulation. The gene for

TLR4, the receptor for bacterial lipopolysaccharide is highly

down-regulated, as to a lesser extent are genes encoding TLRs 1,

6, 8, 9 and 10 (range 3–70 fold) (Table 2 and Table S6B). All

except TLR8 expression exhibit BW720c-induced reversal. In

contrast to repression of Toll family receptor genes, expression of

genes for the IL2 receptors IL2RA and B are both considerably

elevated 25 and 80-fold respectively. The gene encoding the IL2

cytokine itself, however, is not differentially expressed and the

level is predicted to be low, a scenario that is precisely as

described for several T. parva infected cell lines, reviewed in [1].

Unsurprisingly, some of these modulations show similarity to

those obtained in the previous LPS study [22] e.g. repression of

IL15 and TLR4 and elevation in expression of XCL2, CCL1

and IL2RB were also detected in parasite-infected cells compared

to LPS-stimulated BL20. Thus, these results indicate that

multiple signalling pathways involved in perception of extracel-

lular ligands are extensively modified in Theileria infected cells, as

is expression of genes encoding molecules that signal to cells of

the immune response. Moreover, it would appear that the

Theileria infected cell has the capacity to reduce or enhance the

ability to perceive a range of specific signaling ligands and it can

be predicted that this may provide an advantage to the

establishment and survival of the infected cell.

Major reorganisation of transcriptional regulation is
predicted to occur in Theileria infected leukocytes

The enrichment identified in the pathway analysis for the

category ‘Gene Expression’ provided evidence that expression of

molecules performing this function are likely to be under direct

control of the parasite. Moreover, a high proportion of the

functionally annotated differentially expressed gene set was classed

as ‘transcriptional regulator’ (13%) and within ‘Gene Expression’

the sub-category ‘Transcription of RNA’ was of greatest signifi-

cance (p = 1.34610215). We chose to investigate modulation of

transcriptional regulators in greater depth because changes in the

expression/activity of each one may result in multiple downstream

effects on expression of their target genes and could, therefore,

play a major role in orchestration of the gene expression network

that characterises the infected TBL20 cell line. 177 transcription

regulators were differentially expressed in TBL20 compared to

BL20 (Table S7A). 68% (121) were elevated and 32% (56) were

repressed. 40% of the elevated genes had statistically significant

reversal in expression at 24 h while 31% showed reversal at 48 h.

25% of the repressed gene set showed elevated expression after

24 h BW720c treatment and 39% at 48 h. These results clearly

indicate a bias towards up-regulation of host cell transcriptional

regulators by parasite infection with a considerable number

sensitive to loss of parasite viability. Interestingly, 8% of

transcriptional regulators elevated in TBL20 exhibited enhanced

expression in BW720c, including PAX6, TP63 and PARP12.

The most highly up-regulated transcription factors in TBL20

included MEIS3, FOSL1 (a subunit of AP1 with Jun), SSBP4,

JUND, NFkB2, FOXA3 and CITED2, all of which showed

reversal of the elevated expression with BW720c treatment

(Table 3). Several others including FOSL2, TP73, LITAF and

RUNX3, showed no alteration in expression following BW720c.

Levels of HOXC13 and HOXB8, also elevated in TBL20, were

enhanced by BW720c, Amongst those showing the greatest fold-

change in the group with reduced expression in TBL20 were

NEF2, LEF1 (lymphoid enhancer 1), HDAC9 (histone deacetylase

9) and KANK1 (Table 3). Repression of LEF1, HDAC9 and

KANK1 expression was significantly reversed following 24 h

exposure to BW720c suggesting that the viable parasite actively

represses expression of pre-existing key transcription factors that

might be detrimental to its growth and survival. Expression

profiles of MEIS3, JUND, TP73 and LEF1 were validated by RT-

PCR (Figure 4 and Figure S1).

Below we consider some of the notable changes to transcrip-

tional regulators and the predicted consequences of these

alterations in more detail.

Homeodomain/HOX Family Proteins
141 genes encoding homeodomain-containing transcription

regulators were represented on the microarray. This large family

typically has important roles in pattern formation during

development and in tissue regeneration and differentiation. 16 of

these (11%) exhibit differential expression (5% FDR) between

BL20 and TBL20. 4 members of the HOX family, are

differentially expressed in TBL20; HOXC13 (15.9-fold) and

HOXB8 (5.1-fold) are considerably up-regulated in TBL20 and

show sensitivity (further elevation) to BW720c treatment (Table 3,

Table S7A). Two, HOXC4 and HOXC9, are down-regulated by

5-fold and 3.6-fold respectively (Table S7A) but show no

significant change on BW720c treatment. HOX transcription

factors function as co-ordinators of developmental progression and

in differentiation of tissues such as hematopoietic stem cells, where

differential regulation is often associated with neoplasia [49].

Known co-activators/repressors are the TALE group of homeo-

domain proteins that include MEIS and PBX (reviewed in [50])

and SMAD. MEIS3 is up-regulated 65-fold by parasite infection

and reversed with BW720c (confirmed by RT-PCR). A known

direct target of MEIS3 is the 3-phosphoinositide-dependent

protein kinase 1 (PDK1) involved in PI3-K-AKT signalling,

engendering an anti-apoptotic role for MEIS3 [51]. Defined HOX

targets are functionally wide ranging (reviewed in [52]) and

include the CDK inhibitor p21, OPN (osteopontin), and bFGF

(basic fibroblast growth factor). A function for HOXC13 in

recognition/assembly of DNA replication origins has recently

been described [53]. Other homeodomain family members that

are differentially regulated include members of the POU and ZNF

families. Therefore it is clear that Theileria infection imposes

considerable adjustment to the BL20 homeotic gene expression

profile.

Regulation of homeodomain gene expression and target genes

of homeodomain transcription factors almost certainly involves

chromatin remodelling, reviewed in [54]. There are also reports

that transcription of HOX family members are subject to auto-

regulation [49]. It is conceivable that these mechanisms and the

known role of homeobox proteins to determine cellular fate,

contribute to both reversible and irreversible alterations to host

gene expression associated with T. annulata infection. For example,

while our results indicate considerable change in the homeotic

gene family expression profile, only a low number (n = 3) are

directly responsive to parasite death. In addition, as might be

expected of this fluid family, some, while not greatly altered by

parasite infection, are elevated on BW720c treatment; PAX6 (up

5.3-fold), POU6F1 (up 3-fold) (Table S7A) and PBX1 (up 2-fold).

Such altered expression on parasite death could clearly influence

the inability to revert to a BL20 phenotype.
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Expression of NANOG, also a homeobox transcription factor

and predicted to be silent in BL20 (see Table S4A) was elevated by

2.3-fold in TBL20 and was responsive to BW720c. NANOG is

associated with maintenance of cellular pluripotency, reduced

levels being correlated with differentiation [55] and even minor

changes in concentration can strongly influence differentiation

status [56]. Thus, elevation of NANOG gene expression,

particularly from a basal level, together with its sensitivity to

BW720c, provides evidence that Theileria infection may re-define

pre-existing chromatin structure possibly to effect alteration in

differentiation status.

Chromatin Structure Modifiers
Modification of histones is known to play a crucial role in

determining chromatin structure and whether a gene is

transcriptionally active or silent. We observed differential

expression in three histone modifying enzymes. By far the most

striking change was in histone deacetylase 9 (HDAC9) expression

levels: 36-fold down-regulation with reversal on BW720c

treatment (Table 3 and Table S7A). The microarray expression

profile for HDAC9 was validated by Western blot analysis using

an antibody specific for HDAC9. This confirmed that the

95 kDa polypeptide detected in uninfected BL20 was present at

much reduced levels in parasite-infected TBL20 (Figure 7). An

increase in the level of the polypeptide was observed following

48 h of BW720c treatment of TBL20 cells, exactly mirroring the

RNA microarray profile. HDAC9 protein expression profile was

compared with that of another histone deacetylase, HDAC2,

predicted to be constitutively expressed from the microarray data

and confirmed to be constitutive across the protein time course.

In addition, we did not detect HDAC9 protein in two other T.

annulata infected cell lines derived from in vivo infection of

primary cells (data not shown).

Several members of PARP family, also modifiers of DNA

binding proteins including histones and members of the HOX

family [57], are differentially expressed in TBL20, examples are

PARP11 and 14, repressed by 3.0 and 4.9-fold respectively and

both reversed by BW720c. In contrast, expression of PARP12

was elevated 2.8-fold and elevation was enhanced 12-fold

following BW720c treatment. Taken together these observations

indicate that a general modulation of host cell chromatin

structure is promoted by Theileria infection of the leukocyte.

However, the strikingly large decrease in the level of one histone

modifying enzyme, HDAC9, implies that HDAC9 may have a

specific function that is incompatible with parasite survival, at

least in the context of BL20 cells. While HDACs are normally

associated with chromatin remodelling, there is increasing

evidence that class IIa HDACs in particular, may have highly

specific functions as essential co-repressors in regulation of

specific gene targets. For example, a unique role for HDAC7 in

repression of the gene encoding the cell cycle inhibitor RPRM

has recently been identified that is not due to its deacetylase

properties [58].

Transcription factors constitutively activated by the
Theileria infected leukocyte

It is well documented that infection of leukocytes by Theileria

parasites results in constitutive activation of AP1, cMYC and

NFkB. We predicted, therefore, that for these transcription factors

the array data would show alteration to expression of genes

involved in activation signalling or manipulation of the conse-

quences of the activation event. JUN and FOS family members

which heterodimerise to form the AP1 complex along with other

components, exhibit considerable differential gene expression

between BL20 and TBL20 and several are sensitive to BW720c

treatment. JUN, JUNB and JUND are all elevated (Table 4) in

TBL20 compared to BL20 (range 2–12 fold) and JUNB and

JUND are both reversed with BW720c treatment. In contrast,

JUN RNA shows a 5-fold enhanced elevation at 48 h BW720c, a

likely indicator of the known role of AP1 in apoptosis (reviewed in

[59]). Both up- and down-regulation are observed for FOS

isoforms; FOS, FOSL1 and FOSL2 are elevated (range 4–37 fold)

but FOSB is repressed. All show reversal with BW720c exposure

except FOSL2. Earlier studies have indicated that while activity is

increased, the AP1 composition is highly plastic in different

Theileria infections [60] and is likely to impact on the expression

profile of recognised target genes.

cMYC RNA and protein have been shown to be induced in a T.

parva infected B cell line compared to primary B-cells and an anti-

apoptotic role for cMYC protein in Theileria infected cells has been

proposed [11]. In the BL20-TBL20 model, levels of MYC mRNA

were not altered by parasite infection or influenced by BW720c,

but were predicted to be very highly expressed, as was its partner

in the active heterodimer, MAX. Interestingly, the highly

expressed cMYC binding protein, MYCBP, did show slightly

elevated expression in TBL20 (1.5-fold) that was reversed

immediately by BW720c (1.6-fold at 24 h, rising to 2.1-fold at

48 h). The MYCBP gene encodes a protein that is a positive

regulator of MYC. It binds to the N-terminal region of MYC and

promotes E box-dependent transcription by MYC [61]. These

results suggest cMYC activity or the spectrum of target genes may

be manipulated in the infected cell by altered expression of binding

partners.

Activation of NFkB is a central event in the establishment of the

Theileria infected leukocyte [6], but it is not fully known whether

the expression level of important components of this transcription

factor complex is altered in the infected cell. Our study reveals a

9.3-fold up-regulation in NFkB2 mRNA (p100/p52) in TBL20

which showed reversal on BW720c treatment; and expression of

RELB, which is typically the partner of NFkB2 in the active

heterodimer, was up-regulated by 3.4-fold and responsive to

BW720c. NFkB1 (p105/p50) was up-regulated by 2.1-fold but

RELA (p65), the canonical partner of NFkB1 showed no

differential expression between BL20 and TBL20. Up-regulation

of NFkB2 and the decrease with BW720c was confirmed by

SQRT-PCR (Figure 4), and was also established at the protein

level by Western blotting (Figure 7). Interestingly, we could not

detect proteolytic cleavage of precursor p100 to the active

component, p52. This is most likely due to processing of small

amounts, as is the case for most cell types [62]. An elevated level of

NFkB2 mRNA and protein was also indicated for an in vivo

derived infected cell line (data not shown). Alternatively, p100 may

act predominantly as an inhibitory mechanism by forming high

molecular weight complexes that bind pre-formed NFkB dimers

thus serving as a molecular ‘‘buffer’’ to regulate availability of

active NFkB for transcription [63]. BW720c sensitive nuclear

localisation of NFkB2 was defined for T. parva infected cells in a

study by [64], but they did not detect NFkB2 in complex with

DNA. These results highlight the existence of transcriptional

control mechanisms for components of the NFkB signalling

pathway that are influenced by the presence of a live parasite and

which are additional to the mechanism(s) that directly induce

constitutive activation. The results imply alteration in the bias of

sub-unit composition of the DNA binding complex, possibly

reflecting alterations in substrate specificity to promote survival of

the infected cell.
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The macroschizont-infected leukocyte manipulates the
existing network of BL20 transcription regulators

To examine how extensively the presence of the Theileria

parasite might influence the complex transcription factor network

of immortalised BL20 cells, we grouped all transcriptional

regulators in BL20 that were predicted to be highly or very highly

expressed and examined how expression of this group was

modulated by presence of the parasite. We found 688 genes

designated as transcriptional regulators that were predicted to be

highly expressed in BL20 (Table S8). Although 119 exhibited

statistically significant differential expression in TBL20, only 7

transcription factor encoding genes were elevated more than 4-fold

while 21 were down-regulated more than 4-fold, with 6 of these

displaying .20-fold repression. Expression of 4 of these, HEYL,

LEF1, HDAC9 (discussed earlier) and KANK1 was significantly

reversed following exposure to BW720c suggesting that the viable

parasite actively represses pre-existing expression of key transcrip-

tion factor genes that might be detrimental to its growth and

survival.

Thus, the majority of transcription factor genes predicted to be

highly expressed in BL20 cells do not appear to be modulated in

the context of TBL20. Examples of these are MYB family

members, RELA and members of the E2F and SMARC families.

How might activity of transcription factors such as these be

manipulated in the infected cell? To investigate how this could

occur for the transcription factor MYB, whose expression is

generally associated with myeloid cell lineages, we utilised the well-

characterised transcriptional regulation defined for the RAG1/2

locus [65]. RAG1 and 2 are involved in regulation of recombi-

nation at the V(D)J Ig locus to generate immunoglobulin variation

and both genes are highly repressed in TBL20. Transcriptional

regulation of RAG1 and 2 occurs in a complex, defined hierarchy

composed of minimally 14 transcriptional regulators, including

MYB, and from our dataset it can be predicted that repression at

the RAG1/2 locus could involve up to 5 transcription regulators

that are modulated in TBL20 cells (Figure 8A), namely NFkB,

LEF1, GATA3, PAX5 and EBF1, although only LEF1 and NFkB

exhibited reversal of differential expression in the presence of

BW720c. Therefore, while expression of MYB may be unaltered

in TBL20 relative to BL20, a profound effect on expression of its

target genes could occur via modulation of co-factors that operate

in MYB functional networks. The possible consequences of such

complex infection-associated manipulation of transcriptional

regulation in pathways involved in myeloid cell lineage is

illustrated in Figure 8B where TBL20 cells show modulated

expression in a wide range of transcriptional regulators and their

target genes. Several of these alterations have been validated by

RT-PCR; MYBL2 and RAG2 (Figure 4), LEF1 and EBF1

(Figure S1).

Prediction of transcription regulator activation status
Transformation of the Theileria-infected leukocyte is known to

involve constitutive activation of host cell transcription factors,

such as AP1 and NFkB. To obtain further information on the

importance of these and other transcription factors modulated in

infected TBL20 cells, a prediction of transcription regulator

activation status was obtained for each dataset; infected cells

compared to uninfected BL20 and BW720c-treated infected cells

compared to non-treated. The analysis utilises data sourced from

experimentally defined and predicted transcription factor target

genes. Prediction of activation or inhibition relies on the

proportion of target genes for any one transcription factor

differentially expressed in a direction consistent with either

activation or inhibition. The analysis predicted a wide range of

transcription factors to be active or inhibited under all exper-

imental conditions but also indicated that relatively few showed

reversion of the infected cell activation or inhibition status when

the parasite was killed (Table 5 and Tables S9A–C). Thus, the

activity status of 7 transcription regulators in parasite-infected cells

was predicted to be reversed during BW720c treatment (Table 5).

SREBF1/2 (sterol regulatory element binding factor) and XBP1

(X-box binding protein) were all strongly predicted to be activated

in TBL20 and inhibited in the presence of BW720c. XBP1 is now

understood to be part of the unfolded protein stress response in the

endoplasmic reticulum [66], and targets of XBP1 include several

other transcription regulators including SREBF1.The majority of

SREBF1/2 targets genes encode proteins located in the cytoplasm

or cell surface and include SERPINE1 whose array expression

profile (elevated 83-fold in TBL20 and repressed 4-fold in BW720c

at 24 h) was confirmed by QRT-PCR (Figure S1).

CLOCK (Circadian Locomotor Output Kaput), is a transcrip-

tion factor involved in regulation of circadian rhythm and is now

understood to be important in control of metabolic homeostasis

[67]. Activity is predicted to be inhibited in Theileria infected cells

and activated in the presence of BW720c. Differential expression

of CLOCK targets include ICAM1 (elevated in TBL20 and other

infected cell lines, reversed 2-fold at 24 h BW720c) and MAP2K6

(elevated 2-fold in TBL20 and reversed in BW720c). Both these

profiles were validated by RT-PCR (Figure 4 and Figure S1).

SMARCB1 encoding BAF47, a component of mammalian

SWI/SNF complexes which function in chromatin remodelling

(reviewed in [68]), was the only transcription regulator predicted

to be activated consistently at 24 and 48 h BW720c time points.

Expression profiles of SMARCB1 targets that have been

confirmed by RT-PCR include HES1, MYBL2 and MYOM1

(Figure 4 and Figure S1). Differential expression of the transcrip-

tion factor, HES1 (hairy and enhancer of split in Drosophila), a

target of the NOTCH signalling pathway and an important

regulator of cellular status [69], is significant. HES1 is repressed 3-

fold by parasite infection but shows an immediate and over-

compensating elevation during the BW720c time course (12-fold

by 48 h). Thus HES1 is likely to represent a key regulator of

apoptosis in our model system. In addition to a role in apoptosis,

HES1 has functions in proliferation and quiescence [70] and may

provide a link between these closely integrated cellular processes.

A second subunit of the SWI/SNF complex SMARCA4,

encoding BRG1, was also predicted to be inhibited in TBL20 and

re-activated at 48 h BW720c. The function of SWI/SNF

complexes in regulation of gene expression is believed to involve

modification of nucleosome conformation to generate a chromatin

structure that is more accessible for transcription. These predic-

tions, together with differential expression of several genes

encoding enzymes involved in modulation of chromatin structure,

HDAC9 and PARP family members for example (see above),

support the hypothesis that manipulation of the host cell by the

Theileria parasite involves substantial modifications to host cell

chromatin structure.

Compared to the 24 h BW720c time point, at 48 h substantially

more transcriptional regulators were predicted to be activated/

inhibited (Tables S9B and C), with 19/29 of the most significant

(z-score ,-2 or.2) for activation. These include the cyclin

dependent kinase inhibitor CDKN2A and p53. Activation of

CDKN2A is likely to result in inhibition of the kinase, CDK4 [71]

and hence to reflect the phenotype of division arrest that occurs

during BW720c treatment. Moreover, the predictions on tran-

scription factor activation status after 48 h in BW720c strongly

indicate progression towards apoptosis. Minimally these include

the predicted inhibition of NRF2 activity [72], activation of p53,
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(reviewed in [73]) and inhibition of several members of the E2F

family transcription factors which have varied roles in promoting

cell cycle progression and in apoptosis (reviewed in [74]).

In support of our predictive analysis, the NFkB complex, well

established by experiment to be activated in Theileria infected cells,

was scored as active in TBL20. Inhibition of NFkB activity was

predicted at 24 h BW720c but interestingly this was restricted to

the RELA component where relatively few targets are identified.

Expression profiles of target genes MMP13 and ICAM1 have been

confirmed by RT-PCR (Figure 4 and Figure S1). Therefore, the

analysis highlights alterations to selected NFkB complex compo-

nents very early in the response to the loss of parasite viability.

General activity of the NFkB complex was strongly predicted to be

retained following BW720c treatment and may function in

pathways leading to cell death. This prediction is also illustrated

by separate analysis of expression changes in known NFkB target

genes (data not shown) where only a proportion show reversal in

expression following BW720c exposure. Previous studies have

demonstrated that while EMSA for NFkB showed markedly

reduced levels of one specific mobility shift complex upon BW720c

treatment, a second complex was still clearly detectable at 48 hr

[6]. Components of the AP1 complex were also predicted to be

active in TBL20 and following BW720c treatment. Thus, overall

this analysis clearly predicts that following the loss of parasite

viability the activation status of host cell transcription factors does

not reverse to the profile displayed by the uninfected BL20 cell

line.

Summary Discussion
This study has shown that the presence of the macroschizont of

Theileria annulata can dramatically alter the transcriptome of an

immortalised host cell line, with over 3,000 host cell gene

expression changes associated with the presence of a viable

parasite. Moreover, by exposing Theileria-infected TBL20 cells to

BW720c, it was found that the host cell undergoes cell death and

does not revert to a proliferating BL20 cell, indicating that the

parasite can irreversibly alter the immortalised phenotype. This

was mirrored by the failure to reverse infection-associated changes

to gene expression in multiple cellular processes. The majority

showed no response to BW720c treatment, a result also obtained

in our previous analysis of the more limited LPS-modulated gene

set [22]. We believe that this profile is most likely due to the

generation of irreversible alterations to host gene expression that

occur during establishment of the proliferating infected cell.

However we cannot discount that some of these changes may be

due to epigenetic events that occur during growth of infected cell

lines in vitro. Further work is required to distinguish between these

possibilities. Moreover, it is also evident that infection-associated

gene expression changes that display a BW720c response do not

always reverse: some genes showed an enhanced infection-

associated profile on parasite death, while other genes not showing

differential expression between infected and uninfected cells were

modulated when the parasite was killed. The remainder, in the

main, showed a transient alteration that either stalled or displayed

a directional change in response after 24 h of drug treatment.

These changes could be explained by a major reorganisation of

factors controlling the host cell gene expression network that is

initiated following loss of parasite viability, leading to a switch in

favour of progression towards a cell death programme over

division.

Pathway analysis for genes that showed an early (24 h) response

to loss of parasite viability highlighted those within the category

‘gene expression’. This included a significant number of predicted

transcription factors and proteins that modify chromatin archi-

tecture. In support of these findings, a recent study has revealed

that the chromatin modifying histone methyl transferase, SYMD3

is up-regulated in Theileria infected cells and associated with

generation of expression changes at the MMP9 promoter [36].

Our analysis also highlighted factors that operate to determine cell

fate and revealed that the activation status of transcription factors

such as NFkB and AP1, known to be involved in generating the

transformed infected cell phenotype, did not show an expected

reversal on parasite death but rather prediction of qualitative

changes to subunit composition. These results imply that parasite

infection may target regulators of the host cell gene expression

network as a primary mechanism to alter host cell phenotype.

Altered expression of factors (HOX, LMO2, RUNX and SMAD)

and networks (MYB) involved in regulation of haematopoetic cell

fate decisions [75] is clearly evident, supporting previous work

indicating that parasite-mediated transformation is associated with

a de-differentiated myeloid type cell [17]. It is accepted that

transcription factors and modulation of chromatin status operate

to produce stable changes to cellular phenotype [54,75]. Thus, it is

possible that modulation of these events in the Theileria infected cell

contribute to the reconfiguration of the bovine cell regulatory

network and promote an irreversible change to the resulting

phenotype. Moreover, for janus type transcriptional regulators

such NFkB, retention of activity on BW720c treatment but loss of

cofactors that selectively modulate target gene expression, could

switch a pro-survival function to that of pro-death.

An interesting question is whether the plethora of infection-

associated changes can be attributed to a few or many primary

events. While our study cannot answer this question with clarity it

does highlight the complexity of changes that can potentially result

from modulation of a small number of key regulators. For

example, analysis utilising a relatively small number of known

bovine NFkB target genes indicated that 17 out of the 95 that are

modulated in the infected cell encode transcription regulators and

manipulation of just three transcription factors, CLOCK,

SREB1/2 and XBP1, which were predicted to display altered

activity in the infected cell, has potentially widespread conse-

quences (Figure 9). Moreover, it is becoming clear that the target

range of some transcription factors is likely to be much larger than

was previously understood; a recent estimate for NFkB suggests

more than 3,000 binding sites on mammalian DNA [76], ,10,000

are indicated for the myeloid lineage specific transcription

regulator [77] and a minimum estimate of 600 for MYC [78].

Target ranges of this magnitude, in combination with modulation

of chromatin architecture, stimulation from exogenous cytokines/

chemokines, modulation of the NFkB activation response by a

Theileria-dependent mechanism [22] and export of parasite-derived

proteins with DNA-binding properties to the host cell nucleus [14]

are likely to result in major reconfiguration of the host cell

transcriptome. Such a model is not dissimilar from events

proposed for related apicomplexan parasites. A global microarray

analysis following infection of human fibroblasts with Toxoplasma

gondii revealed a comparable number of changes to host cell gene

expression [79] and evidence for T. gondii-mediated modulation of

host cell transcription factor activation and manipulation of

chromatin structure has been reported [80–82]. These studies

reveal the extent to which intracellular apicomplexan parasites can

re-organise the gene expression network of their host cells. In

addition, it is intriguing to speculate whether apicomplexan

parasite models could contribute to our understanding of the

changes to mammalian cell transcriptomes that are associated with

disease such as inflammatory disorders and neoplasia.
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