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Abstract
Inflammation and immunity play a causal role in the pathogenesis of pulmonary 
vascular remodelling and pulmonary arterial hypertension (PAH). However, the 
pathways and mechanisms by which inflammation and immunity contribute to pul-
monary vascular remodelling remain unknown. RNA sequencing was used to analyse 
the transcriptome in control and rats injected with monocrotaline (MCT) for vari-
ous weeks. Using the transcriptional profiling of MCT-induced PAH coupled with 
bioinformatics analysis, we clustered the differentially expressed genes (DEGs) and 
chose the increased expression patterns associated with inflammatory and immune 
response. We found the enrichment of Toll-like receptor (TLR) and Nod-like receptor 
(NLR) pathways and identified NF-κB-mediated inflammatory and immune profiling 
in MCT-induced PAH. Pathway-based data integration and visualization showed the 
dysregulated TLR and NLR pathways, including increased expression of TLR2 and 
NLRP3, and their downstream molecules. Further analysis revealed that the activa-
tion of TLR and NLR pathways was associated with up-regulation of damage-asso-
ciated molecular patterns (DAMPs) and RIPK3-mediated necroptosis was involved 
in the generation of DAMPs in MCT-induced PAH. Collectively, we identify RIPK3-
mediated necroptosis and its triggered TLR and NLR pathways in the progression of 
pulmonary vascular remodelling, thus providing novel insights into the mechanisms 
underlying inflammation and immunity in the pathogenesis of PAH.
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1  | INTRODUC TION

Pulmonary arterial hypertension (PAH) is a devastating disease char-
acterized by perivascular infiltration of inflammatory cells and pulmo-
nary vascular remodelling, ultimately resulting in the right heart failure 
and premature death. Patient survival of advanced PAH remains poor,1 
and the pathogenic mechanisms contributed to the progression of pul-
monary vascular remodelling in PAH are not well understood.

It is widely accepted that inflammation and immunity are linked 
to pulmonary vascular remodelling in PAH.2 The infiltration of in-
flammatory cells, such as mast cells, macrophages, dendritic cells 
and lymphocytes, was identified in the PAH lung, and an array of 
inflammatory mediators, including TNFα, IL-1β, IL-6, IL-8, IL-12, 
MCP-1 and RANTES, was abnormally elevated in peripheral blood.2 
In addition, inflammatory infiltration was positively correlated with 
pulmonary arterial remodelling parameters.3 Although it is well es-
tablished inflammation and immunity are involved in pulmonary vas-
cular remodelling and pulmonary hypertension, the pathways and 
mechanisms by which inflammation and immunity contributed to 
pulmonary vascular remodelling remain unknown.

The monocrotaline (MCT) model of PAH was widely used for 
over 50 years.4 After administration of MCT, significant changes 
in pulmonary artery pressure, pulmonary arterioles remodelling 
and right ventricular hypertrophy occur.5 MCT was thought to in-
duce a syndrome, composed of acute lung injury, necrotizing pul-
monary arteritis in about one third of the animals and pulmonary 
hypertension, etc.6 The development of MCT-induced PAH was 
associated with dysregulated inflammation/immunity, because 
inflammatory cells, mainly neutrophils, macrophages, dendritic 
cells and lymphocytes infiltrated the lung, mainly in perivascular 
areas.4 Consistently, our previous study has showed an elevated 
marker of macrophage infiltration. In addition to inflammatory cell 
infiltration, the inflammatory mediators, such as TNFα and IL-6, 
were elevated, with concomitantly increased pulmonary arterial 
remodelling parameters WT% and WA% in the progression of 
MCT-induced PAH.7

The transcriptomic change during the PAH progression was in-
vestigated by using microarray.8 Recently, high-throughput RNA 
sequencing (RNA-seq) has emerged as a more powerful alternative 
to microarray.9 We have performed RNA-seq analysis of rat lungs 
isolated from control and monocrotaline (MCT)-treated rats that 
had been treated with MCT for a variety of weeks, and this study 
showed that inflammatory and immune response was occurred 
at the early time-point of PAH development and dysregulated in-
flammation/immunity were involved in the onset and progression 
of PAH.10

The changes of inflammation and immunity and pulmonary vas-
cular remodelling that occur during the PAH progression largely re-
sult from the changes in the transcriptome. Therefore, in the current 
study, we use the RNA-seq data set and bioinformatics approach to 
carry out a further analysis of the transcriptome in MCT-induced 
PAH, aiming to have a deeper understanding of inflammatory and 
immune mechanisms in pulmonary vascular remodelling.

2  | MATERIAL S AND METHODS

2.1 | Animal and treatment

All procedures have been conducted in accordance with the ARRIVE 
guidelines and were approved by the Laboratory Animal Welfare and 
Ethics Committee of Fujian Medical University (Approval No. 2017-070, 
Fuzhou, China). Sprague-Dawley rats (4 - 5 weeks male and female rats, 
200-250g) were purchased from Shanghai SLACCAS Laboratory Animal 
Co., Ltd. (Certificate No. SCXK 2012-0002). The rats were raised and 
housed in the animal room and received food and water ad libitum. PAH 
model in rats was induced by a single intraperitoneal injection of 40 mg/
kg MCT (Sigma-Aldrich) as described previously.7 A total of 17 rats were 
used in this study: 12 rats were randomly assigned into 4 groups and 
treated with MCT (n = 3, each group) and five remaining rats served as 
control and treated with saline. Before killing, an effort was made to di-
minish suffering by intraperitoneal injection of 30 mg/kg sodium pento-
barbital. The MCT-treated rats were killed at the end of weeks 1, 2, 3 and 
4, and control rats were killed at week 0, and as with the corresponding 
MCT-treated rats, at the end of weeks 1, 2, 3 and 4. Rat lungs were im-
mediately isolated and frozen in liquid nitrogen and then stored at −80°C.

2.2 | RNA extraction, cDNA library preparation and 
RNA-seq

Total RNA was isolated from 50 mg lung tissues using 1 mL TRIzol 
reagent (Life Technology) following the manufacturer's instructions. 
RNA integrity and quality were assessed by gel electrophoresis, 
and its concentration and purity were determined by the Thermo 
Scientific NanoDropTM instruments. Total RNA with high quality was 
used for cDNA library preparation. Library preparation and RNA-seq 
were performed on an Illumina HiSeq 2000 platform by Genergy 
Biotechnology (Shanghai) Co., Ltd. The generated raw sequences were 
processed through a series of steps: (a) removing the low quality reads 
and adapter sequences, (b) quality control using the FastQC software, 
(c) mapping the clean reads to rat reference genome using STAR soft-
ware, (d) assembling transcripts using the software of StringTie and 
Cufflinks-Cuffmerge, (e) calculation of transcripts abundance using 
FPKM, and (f) identification of DEGs using DESeq2 software.

2.3 | Bioinformatics analysis

Bioinformatic analysis tools, including DAVID,11 KOBAS,12 Venny 2.1, 
GeneMANIA,13 Enrichr,14 Pathview,15 and Morpheus, were used in 
this study. Briefly, Hierarchical clustering analysis and heatmap crea-
tion were performed by Morpheus (https://softw are.broad insti tute.
org/morph eus/). Gene Ontology (GO) enrichment analysis of clusters 
was performed by using DAVID (https://david.ncifc rf.gov/). KOBAS 
(http://kobas.cbi.pku.edu.cn/) was used for KEGG pathway enrich-
ment analysis on the selected clusters. The overlapped inflammatory 
and immune genes in cluster 1 and cluster 3 of GO and KEGG pathway 

https://software.broadinstitute.org/morpheus/
https://software.broadinstitute.org/morpheus/
https://david.ncifcrf.gov/
http://kobas.cbi.pku.edu.cn/
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analysis were determined by Venny 2.1 (https://bioin fogp.cnb.csic.es/
tools/ venny/ index.html). The genes annotated in pathways of TLR, 
NLR and necroptosis could be retrieved in KEGG PATHWAY Database 
(https://www.kegg.jp/kegg/pathw ay.html) by using the keywords of 
TLR, NLR and necroptosis pathway. GeneMANIA (http://bioin forma 
tics.sdsta te.edu/idep/) was used for analysis of the interaction among 
the overlapped genes. The modified Pathview (https://pathv iew.uncc.
edu/home) was used for data integration and visualization of gene 
expression change in TLR, NLR and necroptosis pathways. Pathview 
analysis of gene expression change was modified by showing P-values 
change instead of showing expression value ratio change. The enrich-
ment of highly represented transcription factors was conducted by 
Enrichr (http://amp.pharm.mssm.edu/Enric hr/). The significant en-
richment terms were determined by combined score, owing to the 
combination of P-value and z-score.

2.4 | Real-time PCR analysis

Total RNA was isolated from lung tissues of control and rats injected 
with MCT for 4 weeks. First-strand cDNA was synthesized by using the 
Transcriptor First Strand cDNA Synthesis Kit, according to the manu-
facturer's protocol. Real-time PCR was performed in accordance with 
the manufacturer's instructions, as previously described.16 The forward 
and reverse primers were synthesized by Sangon Biotechnology Co., 
Ltd. The rat origin primers were used for real-time PCR analysis and 
listed as follows: forward—5’-GTA GAC CTT AGA CGC GTA GG-3’, and 
reverse—5’-TAG GTG CTG AAG TGG CG TC-3’, for RIPK1; forward—5’- 
GAG CGC GAC GCT AAT CGA G-3’, and reverse—5’- CCT TTT CGC GCC 
AAG CAA TC-3’, for XIAP; forward—5’- CAT TTT GTG GAC CCC AAG 
GC-3’, and reverse—5’- GGC CCA TCT CAC TCA ACA GT-3’, for CFLAR; 
forward—5’- GGA GCG CAG GAT AGA CCA AGG-3’, and reverse—5’- 
CAC TGG TCA TAG ATG AGC TGG C-3’, for MLKL; forward—5’- GTG 
ACC CTG AAG GAC AGT GG-3’, and reverse—5’- TTG ATC AGG TGA 
GTC GTG CC-3’, for TNFAIP3 (A20); forward—5’- ACT CTC AGC CGT 
AGA CGT TG-3’, and reverse—5’- GAG AGA TCG ATG ACG CAC CA-
3’, for RIPK3; and forward—5’- TGC ACC ACC AAC TGC TTA GC -3’, 
and reverse—5’- GGC ATG GAC TGT GGT CAT GAG-3’, for GAPDH. 
Quantification of gene mRNA expression was performed using Roche 
Real-time PCR systems. The relative quantification was performed by 
the comparative 2−ΔΔCT method and expressed as fold changes.

2.5 | Statistical analysis

Morpheus software and R package software were used for RNA-
seq data set analysis. The DEGs between control and MCT treat-
ment were identified by DESeq2 package in R using a threshold of 
fold-change ≥2 and P ≤ .05. Data were shown as mean ± SEM, and 
comparison of two conditions in Pathview was performed by using 
Morpheus software. More details of the statistical analysis were 
provided in the figure legends.

3  | RESULTS

3.1 | Identification of pathways related to 
inflammation and immunity

Our previous study has showed the elevated markers of macrophage 
infiltration and inflammatory mediators, such as TNFα and IL-6, with 
concomitantly increased pulmonary arterial remodelling parameters 
WT% and WA% in the progression of MCT-induced PAH.7 RNA-
seq analysis of rat lungs isolated from control and MCT-treated rats 
identified a total of 23 200 transcripts, of which 280, 1342, 908 and 
3155 were differentially expressed at the end of weeks 1, 2, 3 and 
4, respectively.10 Further hierarchical clustering analysis of the dif-
ferentially expressed genes (DEGs) revealed 10 clusters of expres-
sion pattern. Cluster 1, cluster 3 and cluster 4 showed an increased 
pattern. In contrast, cluster 2, cluster 5 and cluster 10 showed the 
opposite pattern (Figure 1). GO enrichment analysis of all the 10 
clusters using DAVID showed that only cluster 1 and cluster 3 whose 
expression pattern resembled the changes of pulmonary arterial re-
modelling parameters, WT% and WA%, were associated with inflam-
matory and immune response (Figure 2A; Figure S1). KEGG pathway 
enrichment of cluster 1 and cluster 3 using KOBAS revealed 28 sig-
nificantly enriched pathway terms in cluster 1 and 10 significantly 
enriched pathway terms in cluster 3. The majority of the pathway 
terms were linked to inflammation and immunity, including Nod-like 
receptor (NLR) signalling pathway, Toll-like receptor (TLR) signal-
ling pathway and NF-κB pathway in cluster 1, as well as cytokine-
cytokine receptor interaction and chemokine signalling pathway in 
cluster 3 (Figure 2B).

3.2 | Identification of inflammatory and 
immune profiling

Further analysis of enriched inflammatory and immune genes in 
cluster 1 and cluster 3 using Venny 2.1 showed that a total of 70 
and 41 genes were linked to inflammation and immunity, of which 23 
and 15 were overlapped (Figure 3A). Hierarchical clustering of the 
overlapped genes using Morpheus showed most of the genes were 
increased in a time-dependent manner (Figure 3B). GO enrichment 
analysis using DAVID showed that the overlapped genes were as-
sociated with chemokine and cytokine activity (Figure 3C). Analysis 
of the interaction among overlapped genes using GeneMANIA re-
vealed that the majority of genes were co-expressed and shared 
C-C/C-X-C chemokine domain (Figure 3D). Enrichment analysis using 
Enrichr revealed that Rela, the p65 subunit of NF-kB, was the most 
significantly enriched transcription factor in the overlapped genes 
(Figure 3E). Collectively, the overlapped genes were co-expressed, 
associated with chemokine and cytokine activity and predominantly 
regulated by NF-κB pathway, thus maybe representing the inflam-
matory and immune profiling that lead to pulmonary vascular re-
moulding in MCT-induced PAH.

https://bioinfogp.cnb.csic.es/tools/venny/index.html
https://bioinfogp.cnb.csic.es/tools/venny/index.html
https://www.kegg.jp/kegg/pathway.html
http://bioinformatics.sdstate.edu/idep/
http://bioinformatics.sdstate.edu/idep/
https://pathview.uncc.edu/home
https://pathview.uncc.edu/home
http://amp.pharm.mssm.edu/Enrichr/
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3.3 | The change of TLR and NLR pathways in MCT-
induced PAH

Due to having enrichment of TLR and NLR pathways in cluster 1 
by KEGG pathway enrichment analysis, we then characterized the 
changes of TLR and NLR pathways in response to MCT treatment. 
The TLRs are specific families of pattern recognition receptors ca-
pable of detecting microbes and generating innate immunity. Upon 
recognizing specific structures of microorganisms, TLRs activate 

NF-κB pathway, resulting in the alteration of effector mechanisms, 
including up-regulation of TNFα, IL-1β, IL-6 and IL-12.17 In addition to 
showing up-regulation of previously well-known effector genes in 
PAH, such as TNFα, IL-6 and IL-12,2,18 pathway-based data integra-
tion and visualization using the Pathview and hierarchical clustering 
analysis of DEGs using Morpheus also revealed up-regulation of less 
well-appreciated genes in TLR pathways, such as up-regulated genes 
including TLR2, MyD88, CD14, LBP and TAB1, as well as down-regu-
lated genes including TAB2, NFKBIA (IκBα) and TRAF6 (Figure 4A,B).

F I G U R E  1   Clustering analysis of differentially expressed genes (DEGs). A total of 23 200 transcripts and 280, 1342, 908 and 3155 DEGs 
were identified at the end of weeks 1, 2, 3 and 4 after monocrotaline treatment. Hierarchical clustering of these DEGs generated 10 clusters 
of expression pattern (distance metric, Pearson correlation; linkage rule, average linkage)
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The NLRs were the inflammasomes consisted of an inflam-
masome sensor such as NLRP3 and AIM2, caspase-1 and often an 
adaptor protein ASC. Upon inflammasomes assembly and subse-
quent caspase-1 activation, their effector mechanisms were then 
triggered, including release of activated IL-1β and IL-18 and initia-
tion of gasdermin D (GSDMD)–mediated pyroptosis.19 In addition 
to showing up-regulation of previously reported inflammasome 
components and their effector molecules including NLRP3, ASC, 
IL-1β and IL-18,20 further analysis of NLR signalling pathways using 
Pathview and Morpheus also showed less well-characterized genes, 
such as elevated GSDMD, CTSB, p22phox and TRX1 (TXN1), and 
reduced AIM2, p202 and TXNIP in MCT-induced PAH (Figure S2; 
Figure 4C).

Visualization of global pathway change using Pathview showed 
that the gene expression changes in TLR and NLR pathways were 
not always synergistic. As an example, the reduced expression of 
IκBα, TRAF6 and TAB2 was identified in TLR pathway (Figure 4B). 
The reduced IκBα, a NF-κB inhibitor, was associated with activation 
of NF-κB pathway. However, the reduced TRAF6 and TAB2 expres-
sion may restrict activation of NF-κB pathway. It was likely that the 
presence of negative feedback mechanisms prevented the overac-
tivated or prolonged TLR and NLR pathways in the progression of 
MCT-induced PAH.

3.4 | The activation of TLR and NLR pathways 
by DAMPs

It is well established that TLRs and NLRs could be activated by en-
dogenous molecules termed damage-associated molecular patterns 
(DAMPs), and a series of DAMPs and related receptors have been 
identified by previous studies (Tables S1 and S2). In our RNA-seq 
data set, some of the intracellular and extracellular DAMPs were 
found to be differentially expressed. To characterize these dif-
ferentially expressed DAMPs in the progression of MCT-induced 
PAH, we applied heatmap to exhibit the DEGs of intracellular and 
extracellular DAMPs, their receptors and proteolytic enzymes re-
sponsible for DAMP exposure. Hierarchical clustering of the differ-
entially expressed intracellular DAMPs using Morpheus showed the 
dysregulated expression of intracellular DAMPs, including elevated 
expression of galectins (LGALS1 and LGALS1), thioredoxin (TXN 
and TXN2), S100 proteins (S100A3, S100A4, S100A8 and S100A9 
et al), cyclophilin A (PPIA), peroxiredoxin 1(PRDX1) and heat shock 
proteins (HSPB1, HSPD1 and HSP90B1) in MCT-induced PAH 
(Figure 5A). In addition, hierarchical clustering analysis of dif-
ferentially expressed extracellular matrixes (ECMs) also revealed 
up-regulation of extracellular DAMPs, including elastin (ELN), bi-
glycan (BGN), collagen components (COL1A1, COL1A2, COL3A1 

F I G U R E  2   Functional enrichment of differentially expressed genes (DEGs) in response to monocrotaline treatment. A, Gene Ontology 
(biological process) analysis of the DEGs identified in cluster 1 and cluster 3, biological process terms with only P-value of <.02 and <.01 
were showed in cluster 1 and cluster 3, respectively; B, KEGG pathway analysis of the DEGs identified in cluster 1 and cluster 3. KEGG 
pathway terms with the P of <.05 were showed in cluster 1 and cluster 3
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and COL18A1), fibronectin (FN1) and laminin (LAMA1) (Figure 5B). 
Notably, the enzymes capable of degrading such ECMs were also 
elevated, including matrix metalloproteinases (MMP2, MMP7, 
MMP12, MMP19 and MMP23), cathepsins (CTSB, CTSS and CTSD 
etc), a disintegrin and metalloproteinases (ADAM32) and a disinteg-
rin and metalloproteinase with thrombospondin motifs (ADAMTS4 
and ADAMTS8) (Figure 5B).

3.5 | The exposure of DAMPs by necroptosis

Receptor interacting protein kinase-3 (RIPK3)–mediated necrop-
tosis, a regulated necrosis, is recognized to involve in exposure or 

generation of DAMPs and then elicits inflammation.21,22 RIPK3-
mediated necroptosis could be triggered by TNFα signalling,23 en-
hanced by increased activity of RIPK3 and MLKL, as well as by loss 
of its negative regulators, including RIPK1,24,25 XIAP,26 A2027 and 
catalytic activity of CFLAR/CASP8 complex.28 To determine the 
role of necroptosis in PAH, we investigated the change of necropto-
sis pathway in response to MCT treatment. Analysis of necroptosis 
signalling pathway using Pathview and Morpheus showed increased 
expression of RIPK3 and MLKL, as well as reduced its negative regu-
lators including RIPK1, XIAP, A20, CASP8 and CFLAR (Figure 6A-C). 
Validation of the RNA-seq data by real-time PCR confirmed the in-
creased expression of RIPK3 and MLKL, as well as reduced expres-
sion of RIPK1, XIAP and CFLAR after MCT treatment for 4 weeks. 

F I G U R E  3   Inflammatory and immune profiling in monocrotaline-induced pulmonary arterial hypertension. A, Venn diagram showing 
differentially expressed genes (DEGs) that were overlapped in Gene Ontology (GO) and KEGG enrichment analysis, the overlapped genes 
was determined by using Venny 2.1 software (https://bioin fogp.cnb.csic.es/tools/ venny/). B, Hierarchical clustering of the overlapped 
DEGs by using Morpheus software (https://softw are.broad insti tute.org/morph eus/). C, Summary table for overrepresented GO molecular 
function terms in the overlapped DEGs. D, The network among the overlapped DEGs. E, The enrichment of highly represented transcription 
factors in overlapped DEGs by using ChEA 2016 database in Enrichr. The significantly enrichment terms were determined by combined 
score, and the top 5 transcription factors were showed
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As a result, these results may suggest that RIPK3-mediated necrop-
tosis was enhanced in MCT-induced PAH. Additionally, the elevated 
expression of TNFα receptor TNFRSF1A and downstream molecules 
TRADD, TRAF2, RBCK1 and SHARPIN inferred the potential role of 
TNFα signalling pathway for the necroptosis elicitation (Figure 6A,B).

4  | DISCUSSION

In the present study, RNA-seq and bioinformatics methods were 
used to identify the pathways related to inflammation and im-
munity in pulmonary vascular remodelling in PAH. We found 

F I G U R E  4   The change of Toll-like receptor (TLR) and Nod-like receptor (NLR) pathways in response to monocrotaline (MCT) treatment. 
A, The integration and visualization of gene expression change in TLR pathways using modified Pathview. Each coloured box represents the 
comparison of MCT treatment 1 wk with control, MCT treatment 2 wk with control, MCT treatment 3 wk with control and MCT treatment 
4 wk with control. Colour represents P-value for each comparison of MCT treatments with control by using Morpheus software (unpaired 
t test); genes with relatively increased and reduced expression were shown in red and green, respectively, while white represents P ≥ .2 or 
not detected. B, C, Heatmap showing differentially expressed genes annotated in TLR and NLR pathways of KEGG database, rows in the 
heatmap represent gene expression levels, and columns represent each sample
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dysregulated TLR, NLR and necroptosis pathways and a series of 
elevated DAMPs, as well as an inflammatory and immune profiling 
that could lead to pulmonary vascular remodelling in MCT-induced 
PAH.

It was well established that IL-1β, IL-6 and TNF-α were associ-
ated with pulmonary vascular remodelling in PAH.2 Consistently, the 
expression of IL-1β, IL-6 and TNF-α, the NF-κB target genes, was in-
creased and moreover, an inflammatory and immune profiling was 
identified in the present study. This profiling was predominantly reg-
ulated by the transcription factor, Rela. Rela is also known as the p65 
subunit of NF-kB. Interestingly, Rela has been demonstrated to be 
the specific member of the NF-kB family linked to pulmonary vas-
cular remodelling.29 Of this inflammatory and immune profiling, it 
is noteworthy that several inflammatory factors including CCL2,30 
SELP,31 SPP1,32 IL17,33 IL1B,2 IL12A,2 ADA34 and PF435 have already 
been demonstrated to be associated with pulmonary vascular re-
modelling/pulmonary hypertension.

The innate immune system is an evolutionally conserved host de-
fence mechanism against pathogens and innate immune responses 
are initiated by pattern recognition receptors.36 The TLR family is 
the well-characterized pattern recognition receptors in terms of 
recognition of microbial fragments and activation of downstream 
NF-kB pathway.17 Pathogen recognition by TLRs is linked to a cas-
cade of events, including rapid activation of innate immune response 
by inducing production of proinflammatory cytokines, such as IL-1β, 
IL-6, IL12 and TNF-α, as well as up-regulation of costimulatory mol-
ecules CD40, CD80 and CD86. Given the up-regulation of TLR2 and 
downstream molecules and in combination of identification of NF-κB 
pathway, it could be speculated that activation of TLR2 initiated a 
cascade, resulting in the activation of downstream NF-κB pathway 
in PAH. This speculation could be supported by the studies showing 
that TLR2 and its gene polymorphism were robustly associated with 
the increased levels of inflammatory mediators and development of 
PAH in patients with systemic sclerosis.37,38

F I G U R E  5   The expression change of damage-associated molecular patterns (DAMPs) in response to monocrotaline (MCT) treatment. A, 
Heatmap of differentially expressed intracellular DAMPs induced by MCT. B, Heatmap of differentially expressed extracellular DAMPs and 
their proteolytic enzymes induced by MCT. CTW, control; MCTW1, MCT treatment for 1 wk; MCTW2, MCT treatment for 2 wk; MCTW3, 
MCT treatment for 3 wk and MCTW4, MCT treatment for 4 wk
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F I G U R E  6   The change of necroptosis pathways in response to monocrotaline (MCT) treatment. A, The integration and visualization of 
gene expression change in necroptosis pathways using modified Pathview. Each coloured box represents the comparison of MCT treatment 
1 wk with control, MCT treatment 2 wk with control, MCT treatment 3 wk with control and MCT treatment 4 wk with control. Colour 
represents P-value for each comparison of MCT treatments with control by using Morpheus software (unpaired t test); genes with relatively 
increased and reduced expression were shown in red and green, respectively, while white represents P ≥ .2 or not detected. B, Heatmap 
showing differentially expressed genes (DEGs) annotated in necroptosis pathways of KEGG database, rows in the heatmap represent gene 
expression levels, and columns represent each sample. C, Validation of the expression of critical DEGs annotated in necroptosis pathway 
by real-time PCR. Total RNA was extracted from the lung tissues of control and rats injected with MCT for 4 wk. Results are shown as 
mean ± SEM, (unpaired t test, n = 3-6) The data are presented with box plot histograms and are analyzed by unpaired t test (n=3-6), *P < .05 
vs control, **P < .01 vs control. Ctrl, control; MCTW4, MCT treatment for 4 wk
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TLR4 may also be of relevance, due to up-regulation of its core-
ceptor CD14 and LBP and downstream molecules. Furthermore, 
it was reported that genetic deletion of TLR4 attenuated chronic 
hypoxia-induced pulmonary hypertension.18 TLR4/NF-κB pathway 
has been involved in the inflammatory response related to other 
cardiovascular diseases, such as acute myocardial infarction and tar-
geting this pathway was suggested to offer an effective therapeu-
tic approach to preserve function of ischaemic heart in patients.39 
Given the similar role of TLRs (TLR2 and TLR4)/NF-κB pathway in 
the development of MCT-induced PAH, inhibiting of TLRs/NF-κB 
pathway may also provide potential clinical implications in patients 
with PAH, including attenuated inflammatory/immune response and 
pulmonary vascular remodelling.

The expression of IL-1β, IL-18, GSDMD and NLRP3 was elevated 
in NLR pathway, which was consistent with previously reported acti-
vation of NLRP3 inflammasome in PAH.20 Lysosomal destabilization 
and CTSB release were capable of activating NLRP3 inflammasome 

following DAMP phagocytosis.40 The up-regulation of CTSB sug-
gested lysosomal destabilization after DAMP phagocytosis was one 
of the mechanisms that result in the activation of NLRP3 inflam-
masome in PAH.

Increased deposition of ECMs in pulmonary arterioles contrib-
utes to the progression of PAH, and both inhibition of synthesis and 
genetic deletion of ECMs reduce pulmonary arterial remodelling.41,42 
The elevated expression of ECMs, including elastin, biglycan, colla-
gens, fibronectin and laminin, was identified in the present study. 
However, the proteolytic enzymes capable of degrading such ECMs 
were also elevated, including MMPs (MMP19, MMP2 and MMP7), 
ADAMTSs (ADAMTS4 and ADAMTS8) and cathepsins (CTSS, CTSB 
and CTSD).

It was assumed that up-regulation of proteolytic enzymes would 
result in the degradation of the ECMs and consequently, increased 
release of ECM fragments into the peripheral circulation. Consistent 
with this notion, circulating degradation products of ECMs including 

F I G U R E  7   Proposed model outlining 
a role of Toll-like receptor (TLR) and 
Nod-like receptor (NLR) pathways and 
necroptosis in pulmonary vascular 
remodelling. RIPK3-mediated necroptosis 
triggered the exposure of intracellular and 
extracellular damage-associated molecular 
patterns and subsequent activation of TLR 
and NLR pathways. The activated TLR and 
NLR pathways were responsible for up-
regulation of inflammatory and immune 
profiling. The up-regulated inflammatory 
mediators lead to inflammatory cell 
infiltration and pulmonary vascular 
remodelling in pulmonary arterial 
hypertension
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collagens (type XVIII collagen, type I collagen and type III procolla-
gen),43,44 hyaluronan45 and elastin46 were elevated in the peripheral 
blood and moreover correlated with the disease severity and poor 
prognosis. It was supposed that increase in proteolytic enzyme ac-
tivity would lead to the reduction in ECMs and pulmonary vascular 
remodelling. However, increased activity of proteolytic enzymes, 
which facilitates the reduction in ECMs, resulted in aggravation of 
pulmonary vascular remodelling,45,47-49 and inhibition of proteolytic 
enzymes prevented pulmonary vascular remodelling.50-52 One possi-
ble explanation for these findings was that the degradation products 
of ECMs, such as collagens, elastin and hyaluronan, were just the 
so-called extracellular DAMPs and served as the ligands for activa-
tion of TLRs and NLRP3 inflammasome. Collectively, these findings 
may suggest a link between degradation products of ECMs and dys-
regulated inflammation and immunity in pulmonary vascular remod-
elling of PAH. In addition to extracellular DAMPs, a large number 
of intracellular DAMPs were identified as differential expression 
in response to MCT in the present study. Of these intracellular 
DAMPs, galectins (LGALS1 and LGALS3),53,54 thioredoxin (TXN and 
TXN2),55,56 cyclophilin A,57 HSPs (HSP90B1 and HSPA4)58 and S100 
proteins (S100A3 and S100A4)48,59 have already been demonstrated 
to mediate pulmonary vascular remodelling, although they were not 
known as intracellular DAMPs in the PAH field.

It is noteworthy that in normal physiological conditions, intracel-
lular and extracellular DAMPs are segregated and cannot activate 
TLR and NLR pathways. Once cell necrosis, intracellular DAMPs 
would be passively released. By contrast, extracellular DAMPs are 
generated from the degradation products of ECMs by proteolytic 
enzymes.60 Necroptosis is a regulated form of necrosis, which is as-
sociated with generation or exposure of DAMPs.21,22 Necroptosis 
was originally defined as being dependent on the kinase RIPK1; 
subsequently, RIPK3 was also established to be required for necro-
ptosis.23 But now, RIPK1 is known to inhibit necroptosis as a neg-
ative regulator.24,25 In this study, the reduced expression pattern 
of RIPK1 was observed, which was completely opposite to the 
expression pattern of RIPK3 in MCT-induced PAH. Apart from the 
RIPK1, XIAP26 and CFLAR/CASP8 complex28 were also known as 
the negative regulators of necroptosis. In the present study, the ex-
pression of XIAP and CFLAR was down-regulated in the progression 
of MCT-induced PAH. As a result, the up-regulation of RIPK3 and 
MLKL and down-regulation of its negative regulators may indicate 
enhanced RIPK3-mediated necroptosis in the development of MCT-
induced PAH. Additionally, the elevated expression of TNFα recep-
tor TNFRSF1A and downstream molecules TRADD, TRAF2, RBCK1 
and SHARPIN indicated the potential role of TNFα signalling path-
way in the initiation of necroptosis.

To our knowledge, this is the first time to reveal a role of RIPK3-
mediated necroptosis in the pathogenesis of PAH through bio-
informatics analysis. Thus, it is likely that PAH also belongs to the 
necroptosis diseases. Accordingly, a model illustrating the role of 
necroptosis and its triggered TLR and NLR pathways in PAH is pro-
posed in Figure 7. This study has some limitations. Firstly, only lung 

tissues were chosen for gene expression analysis rather than spe-
cific cell types. Secondly, the biological replicates in MCT treatment 
groups may be limited. Finally, this study was based on transcrip-
tomic data, the protein levels, for instance IκBα, IL1β, IL18 and TLR2, 
and the phosphorylation states of RIPK3 and MLKL proteins were 
not examined. Consequently, further studies in the future may be 
needed to verify the role of necroptosis in PAH.

In summary, we identify dysregulated TLR and NLR pathways in 
the progression of pulmonary vascular remodelling. RIPK3-mediated 
necroptosis may be associated with exposure of DAMPs and con-
sequent activation of TLR and NLR pathways. Thus, these results 
provide novel insights into the mechanisms underlying immunity and 
inflammation in PAH.
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