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Abstract: Pharmacomagnetography involves the simultaneous assessment of solid dosage forms
(SDFs) in the human gastrointestinal (GI) tract and the drug plasmatic concentration, using a bio-
magnetic technique and pharmacokinetics analysis. This multi-instrumental approach helps the
evaluation, as GI variables can interfere with the drug delivery processes. This study aimed to
employ pharmacomagnetography to evaluate the influence of omeprazole on the drug release and
absorption of metronidazole administered orally in magnetic-coated tablets. Magnetic-coated tablets,
coated with Eudragit® E-100 (E100) and containing 100 mg of metronidazole, were produced. For
the in vivo experiments, 12 volunteers participated in the two phases of the study (placebo and
omeprazole) on different days to assess the bioavailability of metronidazole. The results indicated a
shift as the pH of the solution increased and a delay in the dissolution of metronidazole, showing
that the pH increase interferes with the release processes of tablets coated with E100. Our study
reinforced the advantages of pharmacomagnetography as a tool to perform a multi-instrumental
correlation analysis of the disintegration process and the bioavailability of drugs.

Keywords: AC biosusceptometry; Eudragit® E-100; pharmacomagnetography; proton pump in-
hibitor

1. Introduction

The oral route is the simplest, most convenient, patient compliant, and safest drug
administration mode [1,2]. Generally, a drug administered orally is in a solid dosage
form (SDF), such as gastric soluble tablets. SDFs have the primary objective of providing
immediate drug release or promoting release in specific locations to be absorbed in the
gastrointestinal (GI) tract [3].

However, drug delivery systems must overcome highly variable physiological and
physicochemical conditions throughout the GI tract, including the luminal pH [4–6]. Sev-
eral factors can modify the gastric environment’s pH, especially those related to drug
co-administration, such as proton pump inhibitors (PPIs) [7–9]. PPIs (such as omeprazole)
inhibit gastric acid secretion in the parietal cells of the stomach. Consequently, PPIs in-
crease the intragastric pH > 4, and they can directly interfere with the absorption of drugs
taken simultaneously with this type of medication. Studies show that co-administration of
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drugs with omeprazole modifies their pharmacokinetic parameters, such as absorption,
bioavailability, distribution, and metabolism [10–15].

In addition to directly affecting absorption and bioavailability, the change in pH can
also change the performance of pH-dependent coating strategies. A common strategy
to achieve specificity of pH-dependent drug delivery systems is coating SDFs with poly-
mers with a pH-dependent solubility, such as Eudragit® E-100 (E100) [16–18]. E100 is
a cationic polyelectrolyte based on dimethylaminoethyl methacrylate and other neutral
methacrylic acid esters. Due to E100’s pH-dependence characteristics, this polymer can be
used to release the drug in the gastric environment immediately and perform several other
interesting applications.

Although in vitro tests performed during the development of formulations are quite
effective, in vivo tests are essential to evaluate the behavior of pharmaceutical forms
in the human GI tract. It is of paramount importance to implement methods capable
of characterizing pharmaceutical forms in vivo. Biomagnetic methods are non-invasive
and have been implemented as a viable and promising pharmaceutical research tool,
allowing correlations between monitoring the pharmaceutical forms along the GI tract
and pharmacokinetic parameters [19,20]. Alternate Current Biosusceptometry (ACB) is
a biomagnetic technique employed as an alternative method in pharmaceutical research
to evaluate the behavior of solid dosage forms in vitro, monitoring their journey in the
different segments of the GI tract in vivo. It is also an auxiliary tool for SDFs quality
control [18,20,21].

Recently, ACB was proposed in association with pharmacokinetics in an approach
called pharmacomagnetography. Pharmacomagnetography consists of relating magnetic
monitoring of the pharmaceutical form with the pharmacokinetic parameters and bioavail-
ability of the drug. A previous study showed a successful approach using the ACB system
to evaluate the GI transit and pharmacokinetics profile of magnetic enteric-coated tablets
and assess the drug delivery and bioavailability [22].

In this context, this study aimed to use this approach to assess the influence of gastric
pH changes caused by treatment with PPI on the process of releasing a model drug
administered orally in tablets coated with E100.

2. Materials and Methods
2.1. Materials

All the materials used in this study were of analytical grade. Manganese ferrite
(MnFe2O4; diameter of 50 < φ < 75 µm) was purchased from Ferroxcube, El Paso, TX, USA.
Metronidazole, isopropyl alcohol (IPA), acetonitrile, acetone, polyethylene glycol 6000,
magnesium stearate, and talc were purchased from Sigma-Aldrich, Santo Andre, Brazil.
Microcrystalline cellulose (Microcel®) and sodium starch glycolate (Explosol®) were kindly
supplied by Blanver, Taboão da Serra, Brazil. Colloidal silica (Aerosil®) was purchased
from Evonik, São Paulo, Brazil. E100 (Degussa, Rohm Pharma Polymers) was provided by
Almapal Tecnologia Validada, Cotia, Brazil.

2.2. pH-Dependent Magnetic Coated Tablets

pH-dependent magnetic coated tablets were manufactured to be used in this study,
since this formulation was not intended for commercial purposes. The magnetic tablets
were obtained by direct compression in a single-punch die set machine (Marconi MA098/C,
Piracicaba, Brazil), using a 12 mm diameter matrix. The tablets were prepared using 500 mg
of manganese ferrite microparticles, 100 mg of metronidazole as a model drug, 300 mg of
microcrystalline cellulose, 10 mg of magnesium stearate, 50 mg of Aerosil®, and 40 mg
of Explosol®. All the excipients and the drug were mixed and manually compressed at a
pressure of 30 kN. The tablets were coated by the spray-drying method in a bench-coating
machine (LEMAQ, São Paulo, Brazil), with a solution containing Eudragit® E-100 as a
pH-dependent coating, maintaining the stability of the tablet and the release of the drug
immediately in gastric media. The coating solution was prepared as follows: E100 (50%,
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w/w) was dispersed in isopropyl alcohol (25%, w/w) and acetone (25%, w/w). This solution
was mixed until all of the polymers were dissolved. Polyethylene glycol 6000 33% (12.2%,
w/w), as a plasticizer, and talc (37.8%, w/w), as a lubricant, were dispersed in isopropyl
alcohol (25%, w/w) and acetone (25%, w/w) and mixed for 10 min. After this procedure,
the polyethylene glycol 33% and talc solution were added to the solution containing the
E100 and mixed until it became a homogeneous solution. In the end, this solution was
filtered through a 0.5 mm filter and subsequently applied to the tablets to obtain a 6%
weight gain. The coating process was carried out at an inlet temperature of 35 ± 5 ◦C,
while the outlet temperature was 30 ± 4 ◦C. The spray rate of the coating solution was
15 mL/min, and the atomization pressure was 1.5 bar. When the tablets reached a gain of
6% (w/w) of the initial weight, they were placed in an oven at a temperature of 40 ◦C for 24
h for drying and maturation of the applied polymer. In the present study, magnetic-coated
tablet formulations were tested according to the outline in the US Pharmacopeia. Therefore,
the average weight, hardness, and friability were assessed for all tablet formulations. The
disintegration and dissolution tests are provided in the manuscript.

The average weight was calculated by weighing the tablet batches individually. We
used a 10−4 g resolution analytical balance. This test was carried out to check the uniformity
of the tablets in each formulation, in which the acceptable criteria variation limit was ±5%.

The hardness test was performed using a durometer Dr. Schleuniger model 6D
(Pharmatron, Westborough, Ma, EUA). The test results were obtained and represented by
six assessments for each tablet, in agreement with U.S. Pharmacopeia (USP), which sets
the minimum acceptable hardness in the 4 to 10 kilopounds (Kp) range.

Regarding friability, the test allowed the determination of the resistance of the tablets
to abrasion when subjected to the mechanical action of specific equipment. The friability of
the tablets was determined using an automated system, Friabilometer EF-2 (Nova Ética,
São Paulo, Brazil), at 25 rpm for four minutes. After this, they were weighed, and the
weight loss (%) was calculated according to the USP specifications, in which the friability
must not exceed 1.5% of tablet weight. The percentage of weight loss was calculated with
the Equation (1):

Friability (%) =
initial weight − final weight

initial weight
× 100 (1)

2.3. Alternate Current Biosusceptometry

AC Biosusceptometry is a biomagnetic technique based on using induction coils to
magnetize and detect the magnetization of magnetic materials. This study employed two
ACB setups: single and multichannel systems. The single-channel ACB (SC-ACB) has one
pair of induction and detection coils (φ = 2.9 cm), and the multichannel ACB (MC-ACB)
system has one pair of induction coils (φ = 11 cm) and seven pairs of detection coils (φ =
3.5 cm). The induction coils of the SC-ACB are supplied with 500 mA and the MC-ACB
with 150 mA, both with AC voltage at 10 kHz, and the signal is acquired at a rate of
20 Hz in a LabView environment. The ACB system presents a high temporal resolution,
which depends only on the acquisition frequency and the A/D board capability. Here, the
temporal resolution obtained by both ACB setups was 50 ms.

Regarding the spatial resolution, the obtained SC-ACB and MC-ACB spatial resolu-
tions in these experiments were in the order of millimeters and centimeters, respectively.
In in vivo situations, in which the ACB detection surface was positioned at around 4 cm
until the gastric projection, the spatial resolution decreased, and the SC-ACB and MC-ACB
were 2 cm and 4 cm, respectively. The SC-ACB had a sensitivity limit of about mg per cm3

and the MC-ACB of about g per cm3.
Due to its versatility, the SC-ACB was employed to evaluate the performance of

the tablets’ transit and determine the value of the Gastric Retention Time (GRT, the time
interval between ingestion and elimination of the stomach) of the coated magnetic tablets
by manually scanning a given region of interest [21]. MC-ACB is suitable for simultaneous
signal acquisition in seven different points of space. This modality was used to obtain
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magnetic images in real-time [20,23] and evaluate the disintegration process of the coated
magnetic tablets. Figure 1 presents the two ACB systems and their operation principles.
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Figure 1. Functional diagram of the ACB setup and its principle of operation. (A) Schematic representation of the SC-ACB
and (B) Schematic representation of MC-ACB with multiple detection coils.

2.4. In Vitro Studies
2.4.1. USP 2 Dissolution Procedure

The dissolution studies of the coated magnetic tablets were carried out in a USP
dissolution test apparatus 2 (paddle method, 50 rpm, 37 ± 0.5 ◦C). A simulated gastric
fluid with different pH values was used as a dissolution medium. The media volume
was 900 mL. An exact sample volume (1 mL) was withdrawn and replaced with a fresh
dissolution medium at times: 0.5, 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 45, 60, 75, 90, 105, and
120 min. The time intervals were projected to evaluate the initial metronidazole release at
all pH values. All samples were filtered through a cellulose acetate membrane of 0.22 µm.

All tests were performed in sextuplicate, and samples were analyzed with a UV-
spectrophotometer-Ultrospec 2000Spectrophotometer (Pharmacia Biotech, Uppsala, Swe-
den) at 277 nm (pH 1.2 and pH 2.0) or 318 nm (pH 3.0 and pH 4.5).

Metronidazole concentrations were calculated using calibration profiles based on
absorbance versus concentration curves, which were previously standardized. The lag time
Tlag (in min) was calculated as the time point at which metronidazole was first detected in
the dissolution medium.

The dissolution efficiency (DE) was calculated as the percentage ratio between the area
under the dissolution curve up to time t (AUC 0−t) and the area of the rectangle described
by 100% dissolution at the same time point (At), and it was defined as follows [24] in
Equation (2):

DE =
AUC0−t

At
(2)

We established a validation protocol for the metronidazole characterization and quan-
tification by UV-spectrophotometer. This validation was based on assessing a series of
validation parameters, such as the Limit of detection (LOD), Limit of quantification (LOQ),
sensitivity, accuracy, and linearity. For the UV-spectrophotometer and our metronidazole
reference used, we found a LOD of 0.070453 µg/µL and a LOQ of 0.234843 µg/µL. The
results demonstrated the development and validation for our UV-spectrophotometer quan-
tification of metronidazole under the International Harmonization Conference (ICH, 2005)
and the National Agency of Sanitary Vigilance (ANVISA, 2003) guidelines. According to
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the results, the method is linear, specific, and it can accurately measure the drug in the
selected range with low uncertainty.

2.4.2. Multichannel ACB System Measurements (MC-ACB)

Using a squared glass vessel with the same dissolution mediums as used for the
USP 2 dissolution procedure, we designed an experiment to investigate the suitability of
the MC-ACB system, to assess the pH dependence of the tablets’ E100 coat dissolution
through magnetic signal reconstructed images. The glass vessel was positioned in front
of the MC-ACB system at an axial distance of 3 cm, and then, the coated magnetic tablets
were introduced into the solution, and signals were acquired for 30 min. This phase
was performed in sextuplicate. As demonstrated in our previous studies, the area in the
magnetic images obtained from the signals was evaluated to determine the disintegration
process [18,25]. The magnetic image reconstruction and analysis are further described in
the ‘magnetic data analysis’ section.

2.5. In Vivo Study Protocol

Twelve healthy volunteers (six males, six females, aged between 20 and 27 years, body
weight between 50 and 80 kg, and BMI < 22 kg/m2) were enrolled in this study. General
exclusion criteria included pregnancy, smoking, abdominal surgery, diabetes, other chronic
endocrine disorders affecting GI motility, and treatment with prokinetics, anticholinergics,
opiates, or macrolide drugs. Participants remained moderately active during the study day
and received standardized meals at 2 h, 4 h, and 6 h post-dose [22].

This was a single-center, randomized, double-blind, comparative study to evalu-
ate the pharmacokinetic and magnetic behavior of coated magnetic tablets containing
metronidazole before (placebo) and after omeprazole administration. There was a 7-day
period separating both treatments for the same subject. Before the experiment, the vol-
unteers received either 40 mg of placebo or 40 mg of immediate-release omeprazole at
night. After fasting overnight, 30 minutes before the beginning of the experiment, all
volunteers received another dosage of the same tablet as previously administered. The sub-
jects swallowed the E100-coated magnetic tablets with 200 mL of water, and the magnetic
signals were recorded for 30 min through the MC-ACB. The volunteers were standing, and
the system was positioned on the volunteers’ abdomens, in the region corresponding to
the gastric projection according to external anatomical references [25]. After continuous
recording with the MC-ACB system, mapping from the abdominal surface was performed
every 30 min using the SC-ACB system to locate the coated magnetic tablet and determine
the GRT.

Blood samples were obtained at 30 (pre-dose), 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 45, 60,
90, 120, 150, 180, 210, 240, and 300 min after tablet administration to assess the absorption
profile of metronidazole. The samples were immediately centrifuged, and the serum was
stored at −80 ◦C until analysis.

This study was approved according to the protocol approved by the Ethics in Research
of the Medical School, State University of São Paulo (UNESP). It was conducted under the
Declaration of Helsinki and its revisions. All volunteers gave written informed consent
before the study. (Certificate of Presentation for Ethical Appreciation: 41563015.3.0000.5411,
Committee’s technical opinion number: 986486, Data of Approval: 4 May 2015).

2.6. Pharmacokinetic Analysis

The metronidazole quantification in serum samples was performed using ultra-
high-performance liquid chromatography (UHPLC) through an Acquity H Class system
equipped with a UV-vis (λ = 277 nm) Acquity UPLC Photodiode Array (Waters®, Milford,
CT, USA). The metronidazole extraction was performed with a previously established
protocol [26]. Briefly, 2 mL of acetonitrile was added to 500 µL of serum and mixed for
2 min. Samples were then centrifuged at 4500 rpm at 4 ◦C for 10 min, and the supernatant
was transferred to a 15 mL tube, subsequently frozen at −80 ◦C, and lyophilized overnight.
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The lyophilized samples were reconstituted on the following day in 200 µL of a solution
of water/methanol (90:10, v/v), and then centrifuged for 10 min at 4 ◦C and 14,000 rpm.
The sample measurements were conducted in the reverse-phase using an Acquity UPLC®

BEH C18 column (1.7 µm, 2.1 × 50 mm, Waters®, Milford, CT, USA), with an automatic
injector, maintained at 25 ± 1 ◦C. The mobile phase was eluted in an isocratic way in a flow
of 0.5 mL/min and composed of water/acetonitrile (90:10, v/v).

The following pharmacokinetic parameters were obtained: Tlag, defined as the time
at which the first detection of metronidazole in plasma occured; Cmax, defined as the
maximum plasma concentration of metronidazole; Tmax, defined as the time taken to reach
Cmax; and AUC0−300, defined as the area under the plasma concentration curve versus
time, from time t = 0 to t = 300 min.

2.7. Magnetic Data Analysis

The magnetic signals recorded by the MC-ACB system were obtained as a time series
matrix, and magnetic images were reconstructed by fitting the data of each sensor to
the system transfer function. Image processing for quantification included the spline
method interpolation, background subtraction, brightness and contrast adjustment, and
segmentation. The segmentation quantified the number of pixels in the determined region
of interest (ROI) [25].

The coated magnetic tablets’ in vitro and in vivo disintegration processes were char-
acterized by a magnetic marker (MM) transition to a magnetic tracer (MT). In the magnetic
images, the MM is represented as a delineated point, while the spreading of the magnetic
material characterizes the MT, thus increasing the imaging area. The onset of the disinte-
gration process was calculated as the meantime disintegration (T50), which represented a
50% increase of pixels in the imaging area [27]. In the case that the imaging area variation
was less than 50% during the 30 min of magnetic signal acquisition, T50 was defined as not
available, since a magnetic measurement was performed within this 30-min interval. It is
worth mentioning that the interval time of T50 was determined according to the protocol
adopted using MC-ACB [21,28].

The SC-ACB mapping was performed to verify if the tablets were in the stomach,
through signal intensity to quantify the GRT [21]. An SC-ACB scan could also be used to
assess the behavior of magnetic coating tablets to determine gastric emptying.

2.8. Statistical Analysis

The magnetic signals were analyzed in MatLab (Mathworks, Natick, MA, USA) and
Origin (Version 2016, OriginLab Corporation, Northampton, MA, USA), and the data
are presented as the mean ± standard deviation. The disintegration process and drug
dissolution test of the coated magnetic tablets obtained in vitro at different pH mediums
were compared by one-way analysis of variance (ANOVA) followed by Tukey’s multiple
comparison test. In vivo, magnetic and pharmacokinetic parameters between both treat-
ments were compared using the paired Student t-test. Values of p < 0.05 were considered to
be statistically significant. All data analysis and statistics were performed with GraphPad
Prism (GraphPad Software, La Jolla, CA, USA).

3. Results
3.1. Tablet Quality Control Assays

The tablet quality control assays recommended by USP allowed the evaluation of the
physical characteristics regarding the uniformity and properties of mechanical resistance,
besides the average weight of non-coated tablets. The average mass (1.004 ± 0.003 g), the
average diameter (12.12 ± 0.01 mm), and average height (6.08 ± 0.04 mm) adhered to the
maximum variation of 5% allowed. The friability and hardness test results were 0.18% and
6.43 ± 0.74, respectively. Both results met the USP recommendations.
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3.2. In Vitro Studies

A representative plot of the metronidazole release percentage in time for different
values of pH dissolution media is shown in Figure 2. Even though 100 mg of metronidazole
release was observed for all pH mediums during the evaluation, a positive shift (in time)
was observed as the pH increased. Based on individual dissolution profiles, Tlag and DE
were calculated, and the results are expressed in Table 1. The pH 3.0 dissolution media
resulted in an increased Tlag in comparison to pH 1.2, whereas the pH 4.5 dissolution
medium delayed the Tlag in comparison to all other pH dissolution media. The DE values
showed no statistically significant difference among the different pH dissolution media.
These results were expected due to the pH dependence of the E100 coating.
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Figure 2. Metronidazole’s in vitro release profile versus time for distinct pH mediums. (n = 6).

Table 1. Lag time (Tlag) and dissolution efficiency (DE) for coated magnetic tablets in different pH
dissolution mediums (n = 6).

pH 1.2 pH 2.0 pH 3.0 pH 4.5

Tlag (min) 0.58 ± 0.20 1.16 ± 0.40 1.33 ± 0.52 a 3.16 ± 0.40 a,b,c

DE (%) 90.93 ± 8.11 94.21 ± 4.55 92.21 ± 2.51 92.50 ± 5.08
a p < 0.05 in comparison to pH 1.2.; b p < 0.05 in comparison to pH 2.0.; c p < 0.05 in comparison to pH 3.0.

A representative plot of the imaging area (pixels) versus time for distinct pH mediums
obtained by MC-ACB images is shown in Figure 3. As observed in Figure 1, an increase in
the pH value resulted in a positive shift in the time for image area growth. Table 2 presents
the quantification of onset disintegration (T50) for each pH. The pH 2.0 medium delayed
the onset of disintegration in comparison to pH 1.2. The pH 3.0 medium resulted in a
delayed T50 in comparison to pH 1.2 and 2.0, whereas t50 values for pH 4.5 were delayed in
comparison to pH 1.2, 2.0, and 3.0. All coated magnetic tablets were disintegrated entirely
during the measurement time, regardless of the pH value. The Tlag and T50 values obtained
in the USP 2 dissolution procedure and MC-ACB images showed a Pearson’s correlation
coefficient of 0.83, representing good linearity between the methods [29]. With this, the
MC-ACB imaging method showed effectiveness in assessing the influence of medium
pH in the coat dissolution in vitro process and suggests the suitability of using magnetic
images to analyze the disintegration process for in vivo measurements.
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Figure 3. Image area of the coated magnetic tablet versus time for distinct pH mediums employing
the MC-ACB (n = 6).

Table 2. The onset of the disintegration process (t50) for distinct pH mediums (n = 6).

pH 1.2 pH 2.0 pH 3.0 pH 4.5

t50 (min) 2.19 ± 0.10 3.03 ± 0.18 a 4.01 ± 0.15 a,b 9.54 ± 1.42 a,b,c

a p < 0.05 in comparison to pH 1.2.; b p < 0.05 in comparison to pH 2.0.; c p < 0.05 in comparison to pH 3.0.

In vitro studies may be considered an alternative to in vivo pharmacokinetic studies.
In vitro dissolution tests can be an essential tool for the pharmaceutical development of
solid oral dosage forms, either generic or new drugs. Depending on the characteristics
of the intended product and the performance in vitro, the results may be required for
waiving the regulatory requirement for in vivo Bioavailability (BA) and Bioequivalence
(BE) studies [30]. Although in vivo studies are vital in drug development, the predictive
dissolution methodology eliminates unnecessary steps involving volunteers’ exposure in
clinical studies, reducing financial expenses [31].

The ACB system’s assessment through the acquisition of magnetic signals of tablets
is a valuable methodology to characterize the tablets’ performance in vitro and in vivo
in the GI tract. Thus, this approach is interesting for in vitro investigations, and it could
consolidate future studies aiming to obtain biowaivers for new and generic drugs. It is
worth noting that the ACB system is an alternative tool, like other methodologies, that
can carry out a non-invasive analysis to assess the performances of drug formulations.
Although the ACB does not provide insights into the drugs’ molecular state and chemical
stability, the association with spectroscopy methods, such as Raman spectroscopy and
near-infrared spectroscopy (NIR), may be very interesting.

The methodologies have been applied to the advanced characterization of drug deliv-
ery systems, allowing quality assessment of tablets by non-destructive assay.

In addition, nuclear magnetic resonance (NMR) has presented itself as a suitable
technique for obtaining information for developing controlled-release systems due to its
nondestructive and noninvasive aspects.

3.3. In Vivo study Protocols

Table 3 shows the pharmacokinetics and quantified parameters of the magnetic images
of each volunteer. After administering the placebo, the E100 coating of the magnetic tablets
was successfully dissolved in all volunteers during the MC-ACB measurement (30 min); the
expected fasting gastric pH was approximately pH 2.0 [32]. In contrast, the results obtained
after omeprazole administration showed that in 75% of volunteers (2, 3, 4, 5, 6, 8, 9, 10, and
11), the coated magnetic tablets remained intact for 30 min in gastric fluid, as a result of the
increased pH. In 56% of cases (volunteers 2, 3, 5, 8, and 11), no metronidazole was detected
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in their plasma samples during the 300 (5 h) min of measurements. In the other 44% of cases
(volunteers 4, 6, 9, and 10), metronidazole was detected in their plasma samples after the
end of the MC-ACB signal acquisition (i.e., 30 min after administration). For these cases, the
T50 was considered as not available. Although the results indicated an increasing trend in
several volunteers, the mean of the Tlag was not significantly different between the control
and omeprazole groups, mainly due to the variation between individuals. For example,
there was no release of metronidazole in five volunteers, which prevented a comparative
group analysis. Furthermore, the individual values in Table 3 show that Tmax and Cmax
did not present differences. Regarding Cmax, the results were in agreement with the
fact that metronidazole does not undergo inactivation under pH variations [33]. On the
other hand, the administration of omeprazole induced a significantly lower metronidazole
bioavailability response, which was significantly lower at intervals of AUC0−60min (p =
0.001) and AUC0−300min (p = 0.05). As the AUC indicated significant differences in the
extent to which the drug becomes available in the bloodstream, the effect of omeprazole
once co-administered with E100-coated tablets was evident in most subjects.

The assessment of GRT values by SC-ACB mapping of the tablets, combined with the
pharmacokinetic parameters, showed that pharmacomagnetography analysis is crucial for
obtaining a complete understanding of the drug release process, and it cannot be assessed
with a one method evaluation.

For example, in volunteer 6, the coated magnetic tablet remained intact in the stomach
for 120 min (GRT data), and the Tlag obtained was 150 min in the omeprazole treatment. In
this case, we can be sure that the coated tablet did not dissolve in the stomach, based on
the magnetic data collected. Therefore, pharmacomagnetography analysis may state that
the coating was dissolved or that the tablet was not in the stomach.

In the omeprazole treatment of volunteer 6, the metronidazole was probably released
in the small intestine due to peristaltic movements inducing fissures in the tablet’s coating.
As metronidazole has high solubility and intestinal permeability, the absorption could have
occurred at the same release site, which a previous study endorsed.

Table 3 shows that inter-individual biological variability data interfered with our
analysis. We obtained profiles in which the administration of omeprazole did not provide
any effect on pH increase. In volunteer 7, for example, Tlag and T50 indicated values in
line with the Control Phase parameters, likely due to the non-increased pH following
omeprazole. On the other hand, we observed cases in which the magnetic tablet was
directly emptied, neither released in the stomach, nor absorbed at any site of the TGI.
The parameters of volunteers 2 and 3 suggest these situations; most of the parameters
TlagTmax, Cmax, AUC0−60, and AUC0−300 presented no value. Thus, we concluded from
the GRT data (40 min) that the magnetic tablet was quickly emptied. [34]. Katz et al.
(2001) [35] reported a large inter-subject variation of intragastric pH after administration
of omeprazole 20 mg, which is the crucial factor of pH-dependent coating performance.
Even though no intragastric pH measurements were performed in this work, the data
strongly suggest that, in the cases in which no metronidazole was found in the plasma
after administration of omeprazole, the intragastric pH was likely above 5, which is the
upper limit for E100 solubility.
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Table 3. Comparison of pharmacokinetic parameters before (control) and after omeprazole administration to healthy volunteers. Data are expressed as the mean ± SD and median. NA=
not available * p < 0.05 vs. control; ** p< 0.001.

Control Omeprazole

Subject Tlag (min) Tmax (min) Cmax (µg/m) AUC0–60
(µg min/mL)

AUC0–300
(µg min/mL) T50 (min) GRT (min) Tlag (min) Tmax (min) Cmax

(µg/mL)
AUC0–60

(µg min/mL)
AUC0–300

(µg min/mL)
T50

(min) GRT (min)

1 18.00 90.00 1.99 38.76 500.91 7.00 35.00 12.00 120.00 7.64 32.99 527.69 10.00 45.00
2 15.00 150.00 1.69 37.28 420.08 10.00 40.00 NA 0 0 0 0 NA 35.00
3 18.00 120.00 2.49 59.759 556.34 7.00 45.00 NA 0 0 0 0 NA 40.00
4 18.00 150.00 2.42 18.90 534.65 8.00 40.00 45.00 180.00 1.83 18.86 512.21 NA 35.00
5 30.00 90.00 2.57 55.35 531.90 23.00 45.00 NA 0 0 0 0 NA 75.00
6 15.00 90.00 2.80 83.36 506.36 12.00 105.00 150.00 240.00 2.68 5.31 305.61 NA 120.00
7 15.00 120.00 3.10 62.49 718.44 10.00 120.00 21.00 120.00 5.42 54.39 773.49 10.00 120.00
8 24.00 120.00 1.55 27.72 345.15 18.00 60.00 NA 0 0 0 0 NA 40.00
9 24.00 90.00 1.91 26.52 545.47 15.00 40.00 45.00 150.00 3.09 21.09 507.09 NA 35.00

10 18.00 120.00 2.20 40.62 484.92 12.00 45.00 45.00 90.00 2.46 14.09 452.09 NA 35.00
11 18.00 120.00 1.80 27.86 353.96 8.00 35.00 NA 0 0 0 0 NA 50.00
12 18.00 120.00 1.52 36.68 363.83 10.00 45.00 15.00 90.00 9.55 35.58 441.03 10.00 35.00

Mean 19.25 115.00 2.17 42.76 488.50 11.67 54.58 27.75 82.5 1.333 15.19 293.3 - 55.42
SD 4.51 21.53 0.51 18.55 106.20 4.85 28.00 42.79 83.03 1.25 18.02 279 - 32.22

Median 18.00 120.00 2.09 38.02 503.60 10.00 45.00 13.5 90.00 1.86 9.7 373.3 - 40.00
IQ 15.75-22.5 90-120 1.718-2.55 27.76–57.03 377.9–543 40–56.25 0–45 0–142.5 0–2.173 0–30.02 ** 0–510.9 * 35–98.75
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According to the Biopharmaceutical Classification System (BCS), metronidazole is
a class I drug, presenting high solubility and high intestinal permeability, which may
show in plasma after some time, even with incorrect release sites. The pharmacokinetics
of metronidazole are also stable after intravenous or oral administration of omeprazole;
even if the pH of the dissolution medium increases, the drug’s solubility rate does not
decrease [33,36]. Future studies may address the effects of omeprazole administration
concomitantly with BCS class II or IV drugs, which will present a low intestinal permeability.
Even considering that many drugs have low permeability regardless of PPIs, it is important
to properly evaluate the potential interaction and clinical relevance of co-administration
with gastric pH-elevating agents since it is common for cancer patients to use these agents,
for example. Therefore, studies aiming to assess anticancer availability impacts are essential
for determining less potent PPIs or medical strategies to use concomitant PPIs with any
drug [37,38]. Pharmacomagnetography analysis in these cases (BCS class II and IV drugs)
would be interesting in order to assess the location of drug absorption. Regarding BCS
class II drugs, there have been broad investigations of the Hedgehog (Hh) pathway [39,40],
which have yielded US FDA approval of a few Hh inhibitors (Hh-I) as promising alternative
treatments for basal cell carcinomas [41]. Sonidegib, an example of a Hh-I, is classified
as a BCS class II drug and has pH-dependent aqueous solubility, with lower solubility
at higher pH levels. Several studies have been performed to assess the influence of PPIs
on this inhibitor. In some of these, when coadministered with esomeprazole, the (S)-
isomer of omeprazole, the AUC and the Cmax of Sonidegib was decreased by 32 to 38%,
respectively [42]. Another study highlighted the challenge for scientists aiming to offer
new cancer therapies that are not susceptible to acid-reducing agents (ARAs), including
PPIs [43].

Infection of the stomach caused by Helicobacter pylori infections is responsible for
most peptic ulcers and chronic gastritis and is usually treated with triple therapies, which
consist of omeprazole and amoxicillin with either clarithromycin or metronidazole, if the
patient is allergic to penicillin and derivates [44]. Both clarithromycin and metronidazole
have a bitter taste [45,46]; therefore, coating formulations, such as E100, may be used
for taste masking [47–49]. The results presented here highlight the importance of avoid-
ing a pH-dependent coating in cases when omeprazole is administered concomitantly.
Moreover, PPIs are widely prescribed for all gastric pH control cases, even when their
benefit is considered low or even potentially harmful with adverse outcomes, particularly
for patients taking an antiviral. Figure 4 shows examples of the magnetic images and
pharmacokinetic analysis of the coated magnetic tablet administered (volunteer 3) after
the placebo. Immediately after the administration (Figure 4A, t = 0 min), the tablet was
observed as a well-defined circular region point, since the coating was initially intact. At
the end of the measurement (Figure 4B, t = 30 min), the coating was successfully dissolved,
which was shown by the spreading of the magnetic material increasing the image area. The
area of the magnetic image and serum metronidazole concentration are shown in Figure 4E.
Since the drug is released after coat dissolution, the increase of the metronidazole plasmatic
concentration after area variation in the magnetic image suggests that ACB was able to
assess the coat dissolution and tablet disintegration in vivo.

Magnetic images and pharmacokinetic analysis after administration of omeprazole
for the same volunteer (3) are shown in Figure 5. As expected, initially (Figure 5A, t =
0 min), the coating of the tablet was intact. However, even at t = 30 min after adminis-
tration (Figure 5D), the coating remained intact with omeprazole administration. Neither
the magnetic area nor the metronidazole concentration showed an increase during the
measurement time, suggesting that the coated magnetic tablet remained intact for this
volunteer. As one may observe from Table 3, volunteer 3’s data shows that no metronida-
zole was detected in the plasma during the 300 min measurements after the omeprazole
administration.
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Figure 4. Pharmacomagnetography monitoring of the coated magnetic tablet after administration of
the placebo. (A) Magnetic images at t = 0 min, (B) t= 10 min, (C) t= 20 min, and (D) t = 30 min after
coated magnetic tablet administration. (E) Quantification of the magnetic area and metronidazole
concentration, the dotted lines indicate the time points in which A, B, C, and D were captured.

Our pharmacomagnetography data indicate the influence on metronidazole’s bioavail-
ability of omeprazole concomitant administration, provoking an irregular drug absorption.
We observed three different situations regarding the effects of omeprazole administration
through our data of the omeprazole administration phase.

Likely due to the intra-individual biological variation, the omeprazole did not increase
the pH elevation, which is endorsed by the pharmacokinetic parameters being very similar
to the Control Phase of volunteers 1, 7, and 12. Other volunteers, such as 4, 6, 9, and
10, presented a delayed-release and lower bioavailability, represented by Tlag and the
AUC parameters, respectively. However, due to the delayed-release (more than 30 min of
monitoring by MC-ACB), the T50 was not quantified (not available).

On the other hand, the pharmacokinetic parameters of volunteers 2, 3, 5, 8, and
11 imply that the magnetic-coated tablets were entirely emptied, with no release and
consequently no absorption (even in the small intestine). The pharmacomagnetography
analysis employing the MC-ACB system presented several advantages compared to other
biomagnetic techniques used for this purpose. The main techniques use a superconducting
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quantum interference device (SQUID), which requires a magnetically shielded room to
perform measurements. This restriction makes the technique more expensive and less
portable and restricts its biomedical applications. In this context, other methods have been
applied to evaluate, in vivo, the behavior of an oral solid dosage form in the gastrointestinal
tract. These visualization methods include γ-scintigraphy, X-ray imaging, and magnetic
resonance imaging. However, as with the SQUID, the drawbacks of these techniques
include large radiation exposure, demand for a shielded room, high cost associated with
maintenance, and specifically for MRI, and the protocol of real-time imaging acquisition
is affected by the long acquisition time (at least 20 s), in which any motion on the gastric
projection must be avoided to obtain a high-resolution image.
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Figure 5. Pharmacomagnetography monitoring of the coated magnetic tablet after administration of
omeprazole. (A) Magnetic images at t = 0 min, (B) t = 10 min, (C) t = 20 min, and (D) t = 30 min after
coated magnetic tablet administration. (E) Quantification of the magnetic area and metronidazole
concentration, the dotted lines indicate the time points in which A, B, C, and D were captured.

The MC-ACB system does not require electromagnetic shields, and for this reason,
it is portable, versatile, and less expensive to implement [19,50]. However, in our study,
the ACB system had a few drawbacks, such as the time limit of MC-ACB measurements
(the volunteer must remain in an upright position for a long time after an overnight
fast), spatial resolution, and the distance dependence of the signal, which restricts its
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application to volunteers with a low body mass index. Nevertheless, ACB is feasible for
laboratory conditions, since it is portable and easily transportable between facilities to
perform measurements [22].

4. Conclusions

The ACB system and the standard pharmacokinetics method allowed tablet movement
characterization and delineated the release sites in the gastrointestinal tract. The ACB
was suitable for determining the onset of the tablet’s disintegration process. In the case of
elevated gastric pH associated with the use of omeprazole, the evidence suggests that the
bioavailability of metronidazole is influenced by its release in the wrong place when the
tablet coating is ph-dependent.

Our study reinforced the advantages of pharmacomagnetography as an attractive tool
to perform a multi-instrumental correlation analysis of the disintegration process and the
bioavailability of a drug. The association with pharmacokinetic parameters enables the
tablet’s location at which the drug is released to be determined.

Based on our results, concomitant PPI administration with other drugs requires
extensive investigation, which the ACB system may carry out through in vitro and in vivo
analysis. In this way, our study showed the influence of omeprazole on tablets coated
with E100.
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