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Abstract

RNA polymerase II synthesizes a diverse set of transcripts including both protein-coding and non-coding RNAs. One major
difference between these two classes of transcripts is the mechanism of termination. Messenger RNA transcripts terminate
downstream of the coding region in a process that is coupled to cleavage and polyadenylation reactions. Non-coding
transcripts like Saccharomyces cerevisiae snoRNAs terminate in a process that requires the RNA–binding proteins Nrd1,
Nab3, and Sen1. We report here the transcriptome-wide distribution of these termination factors. These data sets derived
from in vivo protein–RNA cross-linking provide high-resolution definition of non-poly(A) terminators, identify novel genes
regulated by attenuation of nascent transcripts close to the promoter, and demonstrate the widespread occurrence of
Nrd1-bound 39 antisense transcripts on genes that are poorly expressed. In addition, we show that Sen1 does not cross-link
efficiently to many expected non-coding RNAs but does cross-link to the 39 end of most pre–mRNA transcripts, suggesting
an extensive role in mRNA 39 end formation and/or termination.
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Introduction

Early in each transcription cycle RNA polymerase II (Pol II) can

follow one of two paths; terminate early through the Nrd1-Nab3-

Sen1 pathway or continue on to form longer, potentially coding

transcripts [1,2]. Yeast Nrd1, Nab3 and Sen1 are part of a

complex [3] that interacts both with the phosphorylated Pol II C-

terminal domain (CTD) [4–6], and with specific sequences in the

nascent transcript [7,8]. If this set of protein-protein and protein-

RNA contacts is sufficient, the Nrd1-Nab3-Sen1 complex directs

Pol II termination and couples this to processing of the nascent

transcript by TRAMP and the nuclear exosome [9,10]. In

addition to directing termination of snoRNAs and cryptic unstable

transcripts (CUTs) the Nrd1-Nab3-Sen1 pathway directs prema-

ture termination of several pre-mRNA transcripts including

NRD1, IMD2, URA2, URA8, and ADE12 [11–15]. The mechanism

by which the Nrd1-Nab3-Sen1 complex leads to Pol II

termination is unknown but involves recognition of specific

terminator sequences by Nrd1 and Nab3 [7,8,16] and the putative

helicase activity of Sen1 [16,17].

In this study we have used a recently developed in vivo cross-

linking approach [18] to derive high-resolution transcriptome-

wide maps of binding sites for Nrd1, Nab3, Sen1, and the Pol II

subunit Rpb2. This approach yields a more precise picture of

known Nrd1 and Nab3 binding sites on snoRNA, CUT and

mRNA targets and reveals a set of previously unknown Nrd1

binding sites both on the 59 ends of mRNAs and on 39 antisense

transcripts. Surprisingly, Sen1 does not cross-link at many of these

Nrd1-Nab3 binding sites. Instead, we observe Sen1 cross-linking

on mRNA transcripts, particularly at the 39 end suggesting a

potential role for Sen1 in mRNA 39 end formation through the

cleavage and polyadenylation pathway.

Results

The Photoactivatable-Ribonucleoside-Enhanced Crosslinking

and Immunoprecipitation (PAR-CLIP) technique [18] was adapted

to yeast (Materials and Methods). Briefly, cells are grown in the

presence of 4-thiouracil which is incorporated into RNA. UV irra-

diation at 365 nm results in high-efficiency covalent cross-linking of

RNA to protein [18]. We then purify the tagged protein under

denaturing conditions [19], prepare cDNA libraries to the cova-

lently attached RNAs and sequence the libraries. As previously

reported, reverse transcription of the cross-linked 4-thiouracil leads

to a characteristic T to C transition in the cDNA sequence [18].

Among all single-base changes observed in the sequences we
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derived from our initial Nrd1 and Nab3 cross-linking experiments

approximately 90% were T to C transitions; about 10-fold greater

than the number expected for random errors. Data analysis was

limited to sequences containing a single base change from the

reference sequence thus pinpointing the site of cross-linking in these

sequences.

In all, we report sequence data for five libraries (Table S1)

including data for Nrd1, Nab3, Sen1 and the RNA Pol II subunit

Rpb2. Similar datasets have recently been reported by the

Tollervey lab [20] who crosslinked Nrd1, Nab3 and Trf4 using

an alternative UV cross-linking procedure (CRAC) [21]. The

Nrd1 and Nab3 cross-linking datasets obtained by PAR-CLIP and

CRAC are very similar. In both cases the majority of cross-links

occur on Pol II transcripts with snoRNA transcripts the most

abundant. Pol III transcripts are also cross-linked to Nrd1 and

Nab3 and Wlotzka et al. provide evidence for a role for Nrd1 in

processing pre-tRNAs [20]. A minor amount of Nrd1, Nab3 and

Sen1 cross-links to ribosomal RNA and we have not pursued

this further. Our cross-linking of Nrd1, Nab3, Sen1 and Rpb2

to snoRNA, snRNA, and tRNA will be discussed in another

publication [22].

To validate the PAR-CLIP procedure in yeast we identified

Nrd1 and Nab3 binding sites downstream of the SNR13 gene

(Figure S1) with a peak of cross-linking within a region containing

termination elements identified through genetic analysis [7,8]. In

addition, Figure S1 shows multiple Nrd1 and Nab3 binding sites in

the upstream region of the Nrd1 gene, an observation consistent

with our previous work showing that multiple mutations were

required to inactivate autoregulation of Nrd1 expression [11].

While we cannot say with certainty whether the extent of cross-

linking is exhaustive, we observe cross-linking at all previously

observed Nrd1 and Nab3 binding sites including those on

snoRNAs, snRNAs, attenuated mRNA transcripts and CUTs.

RNA binding is not required for Nrd1 chromatin
association

Previous studies have shown that Nrd1 and Nab3 are present on

chromatin and localized to genes that are regulated by Nrd1 and

Nab3 [4,6,9,11,23]. Because the Nrd1 complex interacts both with

the nascent transcript and with Pol II, it is not clear which

interaction is primarily responsible for chromatin binding. We

have analyzed Nrd1 and Nab3 interactions with both chromatin

and RNA. Figure 1 shows a comparison of ChIP-chip of Nrd1

compared to Nrd1 and Nab3 PAR-CLIP. Two tracks displaying

Pol II subunits Rpb2 and Rpb3 are shown for reference, as they

are both part of the catalytic core and thus are expected to co-

localize. All five data sets were obtained from cells growing in log

phase. Nrd1 and Pol II co-localize by ChIP at both the RPS5 and

SNR3 genes (Figure 1). Nab3 ChIPs similarly to Nrd1 (not shown).

In contrast, Nrd1 and Nab3 cross-link to RNA in a subset of the

major Nrd1 ChIP peaks. For example, in Figure 1 we observe

efficient cross-linking of Nrd1 and Nab3 to SNR3 transcripts but

not to RPS5 transcripts. Genomewide, the Nab3 RNA cross-

linking pattern is nearly identical to Nrd1 (Wilcoxon rank sum

p,1028). Similar specificity of Nrd1 RNA cross-linking is seen at

other highly expressed genes. Among the top 100 Nrd1 ChIP

peaks determined using CisGenome [24] are ten other ribosomal

protein genes, none of which are among the top 100 Nrd1 PAR-

CLIP peaks (not shown). We conclude that Nrd1, Nab3, and

presumably Sen1 are able to enter the early Pol II elongation

complex independent of RNA binding and monitor the nascent

RNA for appropriate binding sites.

Nrd1 and Nab3 binding sites
Figure 2A shows the logos [25] of motifs in a representative

MEME [26] trial using sequences of 40 nt centered on the most

prominent RNA cross-link (T to C) sites. Nrd1 cross-links reveal a

consensus sequence UGUAG with an E-value of 1.8e225 where

the underlined U is the most frequently cross-linked residue. The

top-scoring motif in the Nab3 pool is a consensus sequence

GNUCUUGU. The E-value under the same conditions as the

Nrd1 analysis is much higher (6.7e3) indicating that this motif is

not nearly as constrained. These motifs are nearly identical to the

GUA[A/G] and UCUU sequences that we previously identified

using genetic and biochemical approaches [7,8] and contain many

of the over-represented 4 mer sequences in sequences that cross-

link to Nrd1 and Nab3 by the CRAC protocol with 254 nm UV

irradiation [20]. Our Nab3 motif is very similar to the

UUCUUGUW motif identified by microarray analysis of RNA

co-purified with Nrd1 in the absence of cross-linking and under

non-denaturing conditions [27]. No conserved motifs were

observed for Sen1 and Rpb2, consistent with their presumed

roles as enzymes that interact non-specifically with RNA.

About 50% of the Nrd1 and Nab3 cross-linked regions overlap.

This is not surprising given that Nrd1 and Nab3 are known to

dimerize in vivo and in vitro [7,28]. The second most significant

motif, as determined in MEME, in the Nrd1 set corresponded to

the top rated motif in the Nab3 analysis and vice versa, again

suggesting that Nrd1 and Nab3 binding sites are located close to

each other.

In Figure 2B we show that Nrd1 cross-linking sites are clustered.

The 50 Nrd1 cross-linked sites with the most reads (as determined

by MochiView [29]) were used as an anchor in this plot. The

number of cross-links observed as a function of the distance from

the top 50 cross-linked sites is increased in a window approxi-

mately 30 nt upstream and downstream of the central Nrd1 cross-

link. No similar clustering of Nab3 cross-linking sites was observed

indicating that most Nab3 binding regions do not contain multiple

motifs. Together, these results suggest that these strong Nrd1

binding sites have been selected to bind multiple Nrd1 proteins,

a result consistent with our in vitro binding experiments suggest-

ing that the Nrd1-Nab3 complex binds cooperatively to RNA

targets [7].

Author Summary

Transcription in eukaryotes is widespread including both
protein-coding transcripts and an increasing number of
non-coding RNAs. Here we present the results of transcrip-
tome-wide mapping of a set of yeast RNA–binding proteins
that control expression of some protein-coding genes and a
number of novel non-coding RNAs. The yeast Nrd1-Nab3-
Sen1 pathway is required for termination and exosome-
mediated processing of non-coding RNA polymerase II
transcripts. Our data show that these components bind
unexpected targets including a large number of antisense
transcripts originating from the 39 end of genes that are
poorly expressed in the sense direction. We also show that
Sen1 helicase, involved in termination of non-coding RNAs,
is also present at the 39 end of mRNAs, suggesting a more
fundamental role in transcription termination. Mis-regula-
tion of transcription is the underlying cause of many disease
states. For example, mutation of the human Sen1 gene,
senataxin, causes a range of neurodegenerative disorders.
Understanding the roles of yeast RNA–binding proteins in
controlling termination of coding and non-coding RNAs will
be useful in deciphering the mechanism of these proteins in
human cells.

Yeast RNA-Binding Termination Factors
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Nrd1, Nab3, and Sen1 bind to snoRNA transcripts
For both Nrd1 and Nab3 data sets binding sites on snoRNA

transcripts were among the most extensively cross-linked (Tables S2

and S3). At most snoRNAs we observed a peak of Nrd1 binding

downstream of the mature 39 end of the RNA consistent with the

previously demonstrated role in termination [16]. Figure 3A and 3B

shows the distribution of cross-linked sequences downstream of

SNR3 and SNR13. Nrd1 binds predominantly downstream of

the mature RNA, while Rpb2 cross-links across the transcript.

Surprisingly, Sen1 cross-links efficiently to some snoRNA tran-

scripts like snR3, but not to others, like snR13. This is an

unexpected result considering previous experiments showing that at

both of these snoRNA genes Pol II reads through the terminator in a

sen1 mutant at the non-permissive temperature [16] and both genes

have Sen1 present on chromatin as determined by ChIP [30,31].

Sen1 binds poorly to attenuated mRNA transcripts
We have previously shown that Nrd1 regulates its own

expression by binding to sites in the 59 end of its mRNA and

directing premature termination. This attenuation mechanism

requires the function of Nrd1, Nab3 and Sen1 [16]. The Nrd1-

Nab3-Sen1 pathway is also required for the formation of

attenuated transcripts from the IMD2 promoter [12]. We were

therefore surprised that Sen1 does not crosslink as efficiently to

NRD1 or IMD2 mRNA as it does to other mRNAs, for example

CCW12 (Figure 3C and 3D and Figure S2).

Nrd1 binds preferentially to unstable intergenic ncRNAs
Of the top 300 Nrd1 and Nab3 peaks, 93 and 54, respectively,

overlap with CUTs (out of 925 annotated CUTS [32,33]). By

contrast, only 23 (Nrd1) and 8 (Nab3) peaks overlap with SUTs

(stable unannotated transcripts, out of 847 annotated SUTs

[32,33]). This preference for binding unstable transcripts is

consistent with Nrd1-Nab3 binding being a key feature that

distinguishes between CUTs and SUTs [20]. In Figure S3 we

show that Nrd1 binds to several known CUTs. The Nrd1 cross-

linking sites on CUT transcripts tend to be located toward the 59

end, a position in which Nrd1 and Nab3 may direct the observed

range of termination sites downstream of these binding sites

[9,10,34]. The observation that some CUTs are not bound by

Nrd1 is somewhat surprising. In Figure S3 we observe that some

CUTs and SUTs are not expressed under our experimental

conditions as shown by the lack of cross-linking to Rpb2.

Nrd1 and Sen1 are differentially distributed on protein-
coding genes

Nrd1, Nab3, and Sen1 also bind to RNA sequences derived

from protein-coding genes. Cross-linked sequence reads were

sorted into ten bins covering each coding region in order to display

genes of different length on the same scale. Figure 4A–4C shows

the distribution of Nrd1 plus-strand and minus-strand reads on

genes ranked by expression level. Figure 4D–4F shows a similar

distribution of Sen1 reads. Highly expressed genes have a peak of

Nrd1 sense-strand reads derived from the 59 end. Genes with the

lowest level of expression show a peak of Nrd1 cross-linked

antisense reads at the 39 end. For Sen1 we observe the largest

number of reads on the 39 end of the most abundantly transcribed

genes.

Nrd1 binding to the 59 end of protein-coding transcripts
Nrd1 has been implicated in several regulatory mechanisms

involving binding to sequences in the 59 end of transcripts.

Figure 1. Transcriptome and chromatin mapping of Nrd1, Nab3, and Pol II on a segment of chromosome X. The top two panels depict
the position of Pol II. The bottom two panels show the position of Nrd1 and the middle panel depicts Nab3. The top and bottom panels represent
chromatin immunoprecipitation data for Rpb3 [63] and Nrd1 expressed as log2 IP/input, while the middle three panels represent RNA cross-linked to
Rpb2, Nrd1 and Nab3 expressed as reads per 107 reads in the respective data sets. The scale for Nrd1 and Nab3 PAR-CLIP has been set to 5006107 to
emphasize the lack of PAR-CLIP reads at RPS5. The peak of reads (6107) for Nrd1 and Nab3 on snR3 transcripts is 3,000 and 7,000, respectively. The
coordinates and positions of genes on chromosome X are shown at the bottom.
doi:10.1371/journal.pgen.1002329.g001

Yeast RNA-Binding Termination Factors
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Autoregulation of Nrd1 expression by attenuation is one example.

Another form of regulation involving Nrd1 and Nab3 binding

near the 59 end of transcripts is alternative transcription start site

(TSS) selection on genes involved in nucleotide biosynthesis.

IMD2, URA2, URA8 and ADE12 have been shown to use

alternative transcription start sites (TSSs) in response to nucleotide

availability. For IMD2 and URA2 the upstream starts used in the

presence of sufficient NTP result in the elongation complex

passing through a Nrd1-Nab3 terminator thus reducing transcrip-

tion of mRNA [12,13,15]. We observe peaks of Nrd1 binding on

all of these transcripts (not shown). In addition, we see similar

binding on other genes involved in nucleotide metabolism

including HPT1, GUA1 and ADE17 (Figure S4). For each of these

genes multiple TSSs have been reported and are located upstream

and downstream of the Nrd1-Nab3 binding region, consistent with

regulation by TSS selection.

Figure 5 shows two additional genes, PCF11 and RPB10 that

have 59 Nrd1 binding peaks. In each case the peak of binding is

downstream of at least one mRNA 59 end suggesting that the gene

may be regulated by premature termination. Increased levels of

RNA from cells in which Nrd1 levels were depleted confirm that

PCF11 and RPB10 are negatively regulated by Nrd1 (Figure 5C

and 5D). In the case of PCF11 this regulation is particularly

interesting because PCF11 encodes a protein with a similar

termination function to Nrd1. While Pcf11 has primarily been

associated with termination of mRNAs it also plays a role in

termination of non-poly(A) transcripts [30,35]. Nrd1 and Pcf11

have been proposed to compete for recruitment to the transcrip-

tion complex [36,37] and the ability of Nrd1 to regulate Pcf11

expression may play a role in balancing this competition. For

example, conditions that reduce Nrd1 protein levels would be

expected to lead to compensatory increases in both NRD1 and

PCF11 expression. Nrd1 binding also regulates expression of

RPB10, a gene encoding an RNA polymerase subunit that is

common to all three nuclear RNA polymerases. This observation

suggests a possible role for the Nrd1 pathway in regulating

expression of the transcription machinery.

Nrd1 binds to antisense transcripts at the 39 end of
coding regions

In addition to sense-strand binding, we observe a large number

of Nrd1 reads derived from RNAs that are anti-sense to annotated

genes. Figure 4 shows that these reads are concentrated at the 39

end of genes that are not heavily transcribed in the sense direction.

Figure 6 shows Nrd1 and Rpb2 binding to antisense transcripts at

the 39 ends of the YKL151C and USA1 genes. We do not observe

abundant Sen1 cross-linking to the antisense transcript despite the

fact that it cross-links efficiently to the sense transcript of the

downstream gene. In Figure S5 we show that YKL151C encodes a

39 antisense CUT. We think it is quite likely that these antisense

transcripts originate from divergent transcription from the

downstream promoters [32,33] and may be involved in suppress-

ing transcription in the sense direction of YKL151C and USA1.

Sen1 binds to the 39 end of mRNA transcripts
Our cross-linking experiments show that Sen1 cross-links to

abundantly transcribed mRNAs. In Figure 7E we show examples

of Sen1 binding to transcripts derived from the heavily transcribed

RPL28, RPS13, RPL30 and PMA1 genes. Several arguments

suggest that this Sen1 cross-linking occurs on nascent transcripts.

First, Sen1 and Rpb2 both cross-link in clusters that are spaced

along the transcript in coincident peaks. A similar clustering of Pol

II-associated RNA has recently been attributed to pausing of Pol II

as nucleosomes are removed from the path of the elongating

polymerase [38]. Such clustering would not be expected on mature

transcripts. Second, although upstream cross-links are less abundant

on ribosomal gene transcripts, there is some cross-linking to intron

sequences that are enriched on nascent transcripts. Taken together,

these results suggest preferential binding to nascent RNA but we

cannot rule out binding to unprocessed precursors that have been

terminated and released from the template.

We note that Sen1 peaks are stronger toward the 39 end,

especially on the ribosomal protein transcripts. This is confirmed

in Figure 7D by plotting all Sen1 and Rpb2 reads with respect to

the 39 end of transcripts derived from the most heavily transcribed

genes [39]. Interestingly, the peak of Sen1 is broadly distributed

over the 75 nt before the polyadenylation site (pA) with few if any

reads extending beyond this cleavage site. In Figure 8 we show

that this downstream Sen1 cross-linking peak does not correspond

to Nrd1 or Nab3 cross-linking sites. A distinct peak of Pol II is

Figure 2. Conserved Nrd1 and Nab3 binding motifs. (A)
Sequence Logos of Nrd1 and Nab3 cross-linking sites generated from
MEME analysis of the top 277 cross-linked sites for Nab3 and the top
271 cross-linked sites for Nrd1. MEME conditions were set to discover
zero or one motif per sequence with a minimum number of sites set to
100 and the width to eight nucleotides. (B) Histogram showing the
distribution of T to C transitions plotted with respect to the top 50 Nrd1
cross-linking sites anchored to the zero position on the X axis.
doi:10.1371/journal.pgen.1002329.g002
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observed between 25 and 50 nt downstream of the pA site.

Clearly, Pol II continues to transcribe beyond the pA site but we

see little evidence for Pol II more than a few hundred bases further

downstream (Figure 7E).

In Figure 8 we have also compared our Rpb2 cross-linking data

set with the Net-seq data set derived from RNA non-covalently

associated with affinity purified Pol II [38]. While we see a very

similar pattern of reads within coding regions, we notice a

difference in the pattern of Pol II downstream of the pA site. The

downstream peak of Pol II that we observe in our PAR-CLIP data

is often missing in the Net-seq data (Figure 8).

Discussion

Nrd1, Nab3 and Sen1 have been shown to form a complex with

Pol II [3] and to direct the termination and subsequent processing

of nascent transcripts [16,40]. We have used an in vivo cross-

linking approach [18] to map the positions of these yeast RNA-

binding proteins in living cells. Our protocol maps Nrd1 and Nab3

binding sites to downstream snoRNA sequences that have

previously been shown to direct termination in vivo

[7,8,10,16,41] thus validating our procedure. These downstream

sequences are rapidly processed by the nuclear exosome [42,43]

indicating that cross-linking of Nrd1 and Nab3 occurs preferen-

tially on nascent transcripts.

The observation that Nrd1 ChIPs to chromatin at highly

expressed genes but only cross-links to a sub-set of these

transcripts (Figure 1) is consistent with a model in which Nrd1,

Nab3, and Sen1 enter the early Pol II elongation complex by

association with the Ser5 phosphorylated CTD [4,6]. This

association places Nrd1 and Nab3 in position to monitor the

nascent transcript for suitable RNA binding sites. The presence of

Spt5 in the Nrd1-Nab3-Sen1 complex [3] suggests a possible role

for Nrd1 and Nab3 in an early transcription elongation

checkpoint that controls the transition between early inefficient

elongation and the processive elongation that characterizes many

Pol II genes [1,2]. Nrd1 and Nab3 binding to the nascent

transcript could help slow elongation until all components of the

elongation complex are assembled.

This early elongation checkpoint may serve as a regulatory step

and several yeast genes including NRD1, IMD2, URA2, and SER3

contain Nrd1-bound RNAs derived from early elongation

complexes. We provide evidence here that several additional

genes can be added to this list including PCF11 and RPB10

(Figure 5); HPT1, GUA1 and ADE17 (Figure S4); and DIP5, LSR1,

RSF1, SWI5, and MEP1 (not shown). Data about the transcription

start site(s) of these genes is limited leaving open the question of

whether these genes are regulated by premature termination [11],

alternative start site selection [12,13,15], or promoter occlusion by

an upstream ncRNA [44].

Figure 3. PAR-CLIP plots for Nrd1, Rpb2, and Sen1. (A) and (B) Binding to snoRNA genes SNR3 and SNR13. (C) and (D) Binding to protein coding
genes NRD1 and CCW12. Pre-mRNA transcription start-sites are indicated by arrows on the gene map. The Nrd1 scale is set to 600 reads/107 to
emphasize minor peaks. Full-scale peaks for Nrd1 on SNR3 and SNR13 are 5,000 reads/107 and for the NRD1 gene is 2,500 reads/107.
doi:10.1371/journal.pgen.1002329.g003
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Nrd1 antisense binding
Another unexpected observation is that many poorly expressed

protein-coding genes express Nrd1-bound 39 antisense sequences.

Previous studies in yeast have identified regulatory antisense

transcripts for IME4, PHO5, PHO84 and the Ty1 retrotransposon

[45–49]. In the case of PHO84 and Ty1, antisense transcripts

appear to act in trans [47,49], although in the case of PHO84 cis-

suppression is also observed [48]. In Figure 6 we show several

genes with Nrd1 cross-linked anti-sense RNA peaks localized to

the 39 coding region. In each case the gene exhibiting 39 antisense

transcripts is poorly transcribed in the sense direction as

determined by RNA sequencing [39] and the downstream gene

is highly expressed in glucose-containing media [50]. These

antisense transcripts likely result from bi-directional transcription

from the downstream promoter [32,33]. The Rpd3s histone

deacetylase complex has been shown to repress antisense initiation

at many promoters [38] and it is possible that the Nrd1-Nab3 non-

poly(A) termination pathway prevents elongation of those anti-

sense transcripts that lack or escape Rpd3s control. The question

of whether these antisense transcripts are regulatory remains to be

answered, but we note that each of these Nrd1 antisense peaks

correlates with Rpb2 cross-linking sites but does not show efficient

Sen1 binding. We propose that Nrd1 pauses Pol II at these sites,

preventing sense strand transcription either through transcription

interference or by establishment of chromatin marks that are

inappropriate for transcription of the sense strand.

Sen1 binding
The distribution of Sen1 is surprising on two counts. First, we

failed to observe efficient cross-linking on some transcripts that

had previously been shown to depend on Sen1 function for proper

termination. SNR13 transcripts normally terminate just down-

stream of the Nrd1 binding site but in a sen1 mutant Pol II reads

through into the downstream TRS31 gene [16] and Sen1 ChIPs to

this downstream region [31]. Similarly, Nrd1 autoregulation is

disrupted in a sen1 mutant with steady-state levels of Nrd1 mRNA

increasing about 10-fold [11,16]. The failure of Sen1 to efficiently

crosslink to these transcripts can be explained in several ways.

Figure 4. Gene-averaged positive and negative strand Nrd1 and Sen1 cross-linked reads on genes ranked by expression level. (A–C)
Nrd1. (D–F) Sen1. High transcription and low transcription are the top and bottom quartiles as determined by RNA sequencing [39]. Medium
transcription represents the middle half of yeast genes ranked by expression level. Cross-linked RNA reads from the positive strand (above) and
negative strand (below) were sorted into ten fractionally equal coding-region segments (indicated by boxes) and 50 bp segments for the 59 and 39
UTRs. Lighter shading is used to indicate the difference between scaled reads derived from coding regions and unscaled reads from the UTRs.
doi:10.1371/journal.pgen.1002329.g004
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First, the RNA at these sites may interact with Sen1 in a manner

that prevents close apposition of Sen1 amino acid side chains with

4SU residues in the bound RNA. A second possibility is that Sen1

may play a structural role, stabilizing the Nrd1-Nab3-Sen1

complex in a manner that does not require the helicase activity.

In this model the sen1 mutation may alter the structure of the

complex leading to disruption of Nrd1 and/or Nab3 termination

function. A third possibility is that Sen1 may be required for

expression of another factor that is required for termination of

non-poly(A) transcripts. Finally, the low amount of Sen1 cross-

linking may indicate that low levels of Sen1 are sufficient for

proper termination at some genes. Future experiments must be

directed at understanding the role of Sen1 in termination of

snoRNA and attenuated Pol II transcipts.

Figure 6. Antisense transcripts on genes that are poorly expressed. In each panel the downstream gene expresses an antisense transcript
cross-linked to Nrd1 (blue) and Rpb2 (purple). Sen1 (green) cross-links poorly to the downstream antisense transcripts but cross-links to the upstream
sense transcripts. In each panel the sense reads are above the midline and negative strand reads are below as indicated by the negative reads per 107

on the Y axis.
doi:10.1371/journal.pgen.1002329.g006

Figure 5. Nrd1 regulation by binding in the 59 UTR. (A and B) Nrd1 cross-linking to the 59 UTR of PCF11 and RPB10. The sequence below each
plot shows the Nrd1 (blue arrow) and Nab3 (red arrows) cross-linking sites. Transcription start sites are indicated by black arrows. (C) Northern Blot for
PCF11 and RPB10 transcripts derived from wild-type cells or cells in which Nrd1 expression is regulated by a Tet promoter [62]. Cells were grown in
the presence of doxycycline. (D) Quantitative RT-PCR of RPB10 and PCF11 RNA derived from wild-type cells or cells in which Nrd1 expression is
regulated by a Tet promoter [64]. Cells were grown in the presence of doxycycline. The relative abundance of each target transcript is normalized to
the abundance of ACT1 and 18S rRNA in the same sample.
doi:10.1371/journal.pgen.1002329.g005
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A second unexpected result from the Sen1 cross-linking data set

is the widespread distribution of Sen1 on mRNA transcripts. A

role for Sen1 in mRNA 39 end formation has been suggested by

previous experiments. Sen1 interacts with Glc7, a protein

phosphatase that is part of the CPF complex [51,52]. In addition,

sen1 mutants display a weak read through phenotype on some pA

Figure 7. Distribution of Rpb2 and Sen1 on highly expressed genes. (A–D) Rpb2 and Sen1 reads distributed on transcripts from the RPL28,
RPS13, RPL30 and PMA1 genes. The position of polyadenylation sites [39] is indicated by a red arrow. (E) Distribution of reads averaged over the top
quartile of genes ranked by expression level. The X axis values are determined relative to the polyadenylation site [39]. Rpb2 reads are plotted in
purple and Sen1 reads in green.
doi:10.1371/journal.pgen.1002329.g007
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terminators [53,54,55] but not others [30]. Although a genome-

wide survey of Pol II distribution in a sen1-E1597K mutant did not

detect widespread read through of pA terminators [31] some read

through was observed and our data shows that several of those

genes including RPL43B, RPS28A, RPL36B, and SOD1 display

prominent Sen1 binding near their pA site (not shown).

Our data shows that Sen1 cross-linking occurs all along mRNA

transcripts, peaking at the 39 end (Figure 7). Sen1 interacts with

the Pol II CTD [5] but whether this interaction is direct is not

known. Based on the increased cross-linking toward the 39 end of

genes it is possible that Sen1 interacts with the Ser2 phosphor-

ylated form of Pol II or another protein that binds to this

phosphorylated form of the CTD.

The failure of Sen1 to cross-link downstream of the pA site

would seem to rule out a rho-like termination model in which

Sen1 translocates along the transcript facilitating termination upon

reaching the paused downstream Pol II. Recently Mischo et al.

[54] have shown that Sen1 helicase activity is required to remove

R loops that form at the 39 end of some transcripts. This proposal

is based in part on the identification of DNA:RNA hybrids

downstream of the pA site [54]. Sen1 helicase activity could

act to remove RNA from the DNA:RNA hybrid and expose

RNA downstream of the pA site for degradation by the 59-39

exonuclease Rat1. Our data argue, however, that Sen1 acts

upstream but not downstream of the pA site. We can clearly

observe cross-linked Pol II downstream of the pA site but there is

no corresponding Sen1 cross-linking in this region. Sen1 could act

upstream of the cleavage site to remove RNA from R loops and

allow access of the cleavage/polyadenylation machinery and

subsequently the 59-39 exonuclease Rat1. This model is consistent

Figure 8. Nab3, Nrd1, Rpb2, Rpb3, and Sen1 reads distributed on a variety of genes. The missing peak of Pol II downstream of the pA sites
in the NET-seq Rpb3 data [38] is indicated by an asterisk and the position of the pA site by an arrow.
doi:10.1371/journal.pgen.1002329.g008
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with previous experiments showing a synergistic effect of sen1 and

rat1 mutations [53,55].

Our data also suggest that the downstream peak of Pol II

represents the Pol II termination complex. Kinetic modeling of

yeast Pol II transcription suggests a termination time of about one

minute [56]. This is greater than the amount of time needed to

transcribe many yeast genes, suggesting that termination is the

rate-limiting step for formation of some mRNAs. We suggest that

the peak of Rpb2 cross-linking we observe downstream of the pA

site of heavily transcribed genes (Figure 7) represents this rate-

limiting Pol II elongation complex that is in the act of terminating.

We note that this downstream peak of Pol II is not as prominent in

the NET-seq data (Figure 8; [38]). The NET-seq data is obtained

by affinity purifying Pol II elongation complexes from chromatin

after digestion with DNase I. We propose that the downstream

termination complex is sensitive to DNase I digestion because of

an allosteric change that takes place as the elongation complex

passes through the pA site [57]. Thus, the RNA is lost from these

complexes and is under-represented in the NET-seq data.

Materials and Methods

Yeast strains
The genomic NRD1, NAB3, SEN1 and RPB2 genes in BY4733

were tagged with both 6His and biotin tags (HTB) [19]. The resulting

strains expressed proteins with a slightly higher molecular weight that

could be enriched on streptavidin beads (Figure S6). These strains

displayed no abnormal growth phenotypes. A TAP-tagged NRD1

yeast strain was used for chromatin immunoprecipitation.

Cell growth and UV 365 nm cross-linking
For the first two data sets, yeast cells expressing HTB tagged

Nrd1 or Nab3 were grown at 30uC in 2 L of synthetic complete

(SC-URA) medium supplemented with 2% dextrose, 120 mM

Uracil, 0.01 mM Biotin from OD600,0.1 to mid-exponential phase

(OD600,0.5). 4SU was added to a final concentration of 300 mM

and growth continued at 30uC until OD600,1.5. Addition of 4SU

had no effect on the growth rate of yeast during the time course of

the experiment. Cells were harvested by centrifugation and the cell

pellet was re-suspended in 60 ml of ice-cold water, separated into

two 30 ml aliquots and placed in 145620 mm sterile tissue culture

dishes kept on ice. Cells were irradiated on ice with 365 nm UV

light (0.15 J/cm2) in a Stratalinker 2400 (Stratagene), three times for

10 minutes each with shaking between irradiations. Cells were

pooled, centrifuged, and the cell pellet was re-suspended in 5 ml of

buffer-1 (8 M urea, 300 mM NaCl, 0.5% Nonidet P-40, 50 mM

sodium phosphate, 50 mM Tris-HCl, pH 8.0, and EDTA-free

protease inhibitor mix for His-Tag sequences (RPI)) then frozen in

droplets in liquid nitrogen. Cell droplets were kept in 280uC until

processed as described below.

In the analysis of the initial Nrd1 and Nab3 data sets we

observed binding to a number of RNAs derived from stress-

induced genes. The RNA in these early experiments was obtained

from cells that were irradiated after centrifugation and re-

suspension in ice-cold water [21], a procedure that is likely to

induce a stress response. To eliminate this possibility we developed

a second technique to irradiate cells growing in liquid media at

30uC. Two liters of growing cells were placed in a two-liter beaker

on a magnetic stirrer and irradiated from a distance of 10 cm for

10 min with a UV Power–Shot 1100 Lamp. This lamp delivers

1 W/cm2 primarily in the in the 300–400 nM range with a peak

at 365 nm. To eliminate shorter wavelength light the beaker was

covered with a Pyrex baking dish. Cells irradiated in this manner

were processed as described below.

Protein–RNA purification
Protein purification was based on a previously published

protocol [58]. Cell droplets were lysed in liquid nitrogen using a

Spex SamplePrep 6870 freezer mill with 10 cycles of one minute of

breakage and two minutes of cooling, at a frequency setting of 15

cps. Lysates were thawed at room temperature, resuspended in

5 ml of buffer-1 then sonicated using a 1/80 microprobe tip of

Branson sonifer cell disruptor Model 250/450. Sonication was

performed three times at 50% power for 5 seconds with 30 second

intervals at room temperature. Cell lysates were cleared by

centrifugation at 40,000 rpm in Beckman L-80 ultracentrifuge at

room temperature for 30 minutes using Ti 70.1 rotor. Cleared

lysates were incubated with Ni-NTA agarose (QIAGEN, 500 ml

slurry pre-equilibrated in buffer-1) for 3 hours at room temper-

ature. Ni-NTA agarose was then washed in 5 ml of buffer-1; 5 ml

of buffer-1, pH 6.3; and 5 ml of buffer-1, pH 6.3, +10 mM

imidazole. Proteins were eluted in 8 ml of buffer-2 (8 M urea,

200 mM NaCl, 2% SDS, 50 mM sodium phosphate, 10 mM

EDTA, 100 mM Tris-HCl, pH 4.3, and EDTA-free protease

inhibitor mix for His-Tag sequences (RPI)). The pH of the eluate

was neutralized and loaded onto streptavidin magnetic beads (New

England Biolabs). A 200 ml slurry of beads was pre-equilibrated in

buffer-3 (8 M urea, 200 mM NaCl, 0.2% SDS, 100 mM Tris-

HCl, pH 8.0, and EDTA-free protease inhibitor mix for His-Tag

sequences). After incubation overnight at room temperature the

streptavidin magnetic beads were washed in 36500 ml of buffer-3,

36500 ml of buffer-3 with 2% SDS, 36500 ml of buffer-3 without

SDS, and then 36500 ml of T1 ribonuclease buffer (150 mM KCl,

2 mM EDTA, 0.5 mM DTT, 50 mM Tris-HCl, pH 7.4, and

EDTA-free protease inhibitor mix for His-Tag sequences (RPI

Crop.)). The streptavidin magnetic beads were resuspended in

0.5 ml of T1 buffer before RNase T1 (Fermentas) was added to

obtain a final concentration of 40 U/ml and the bead suspension

was incubated at room temperature for 15 minutes. Beads were

washed three times with 500 ml of T1 wash buffer (500 mM KCl,

0.05% NP40, 0.5 mM DTT, 50 mM Tris-HCl, pH 7.8, and

EDTA-free protease inhibitor mix for His-Tag sequences (RPI

Corp.)) and three times with 500 ml of polynucleotide kinase

(PNK) buffer (50 mM NaCl, 10 mM MgCl2, 5 mM DTT, 50 mM

Tris-HCl, pH 7.4, and EDTA-free protease inhibitor mix for His-

Tag sequences). Beads were resuspended in 160 ml of PNK buffer

before Thermosensitive Alkaline Phosphate (TSAP) (Promega) was

added to obtain a final concentration of 0.15 U/ml, and Super-

RNase inhibitor (Ambion) was added to obtain a final concentra-

tion of 1 U/ml. The bead suspension was incubated for 30 minutes

at 37uC then was washed once with 500 ml of buffer-3 without

SDS, and 3 times with 500 ml of PNK buffer.

cDNA library construction from crosslinked RNA
Streptavidin magnetic beads from the previous step were

resuspended in 200 ml of PNK buffer then c-32P-ATP (MP

Biomedicals) was added to obtain a final concentration of 0.5 mCi/

ml and T4 PNK (New England Biolabs) was added to obtain a final

concentration of 1 U/ml. The bead suspension was incubated at

37uC for 30 minutes before non-radioactive ATP was added to

obtain a final concentration of 100 mM, the incubation was

continued for 10 minutes at 37uC. The bead suspension was

washed 4 times with 650 ml of T4 RNA Ligase2 truncated (Rnl2

(1–249)) buffer (2 mM MgCl2, 1 mM DTT, 50 mM Tris-HCl,

pH 7.5) (New England Biolabs).

Streptavidin magnetic beads from the previous step were

resuspended in 19 ml of Rnl2 (1–249) buffer combined with

19 ml of 50% Polyethylene Glycol 8000 (PEG 8000) (Promega).

To the bead suspension was added 2 ml of 100 mM adenylated
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39 adapter oligodeoxynucleotide (AppATCTCGTATGCCGT-

CTTCTGCTTGTC; IDT), 0.4 ml of 1 M MgCl2, 2.5 ml of Rnl2

(1–249) (200 U/ml) (New England Biolabs), 1.25 ml of RNase

inhibitor (40 U/ml) (Invitrogen). The bead suspension was

incubated at room temperature for 4 hours then washed once

with 500 ml of buffer-3 without SDS, and 3 times with 500 ml of

PNK buffer. The washed streptavidin magnetic beads were re-

suspended in 38 ml of PNK buffer, then to the bead suspension

was added 2 ml 100 mM 59 adapter oligonucleotide (GUUCAGA-

GUUCUACAGUCCGACGAUC), 1.25 ml of RNase inhibitor

(40 U/ml), 2.5 ml of T4 RNA ligase (10 U/ml) (Fermentas), 3 ml of

10 mM ATP (New England Biolabs). The bead suspension was

incubated overnight at 16uC then washed once with 500 ml of

buffer-3 without SDS, and 3 times with 500 ml of Protease K

buffer (75 mM NaCl, 6.25 mM EDTA, 1% SDS, 50 mM Tris-

HCl, pH 7.5). The streptavidin magnetic beads were resuspended

in 200 ml of protease K buffer follow by the addition of Protease

K (Ambion) to the final concentration of 1.2 mg/ml. After

incubation at 55uC for 30 minutes, the supernatant was trans-

ferred to a new tube and another 200 ml of protease K buffer was

added to the streptavidin magnetic beads. The incubation was

continued for 5 minutes at 55uC before the supernatant was

combined and the RNA was recovered by acidic phenol/

chloroform extraction followed by a chloroform extraction and

an ethanol precipitation. The pellet was dried and then dissolved

in 12 ml of DPEC water. The recovered RNA was divided into

364 ml aliquots and kept in 280uC until further preparation.

The recovered RNA was used to synthesize a cDNA library.

Time course PCR amplification was performed in order to

determine the optimum number of cycles for amplifying the cDNA

library. One aliquot of recovered RNA was taken out of 280uC to

thaw on ice, then reverse transcription oligonucleotide (CAAG-

CAGAAGACGGCATACGA) was added to the final concentra-

tion of 5 mM. The mixture was briefly centrifuged, heated at 70uC
on a preset thermal cycler for 2 minutes and the tube was then

placed on ice. To the iced tube containing the primer-annealed

template RNA was added 4 ml of the premixed reverse

transcription reaction mixture containing 2 ml of 5 X first strand

buffer (375 mM KCl, 15 mM MgCl2, 250 mM Tris-HCL,

pH 8.3) (Invitrogen), 0.5 ml of 12.5 mM dNTP mix (Fermentas),

1 ml of 0.1 M DTT (Invitrogen), and 0.5 ml of RNase inhibitor

(40 U/ml) (Invitrogen). The tube was heated on the preset thermal

cycler at 48uC for 3 minutes then Superscript II reverse

transcriptase (Invitrogen) was added to the final concentration of

20 U/ml, the incubation was continued for 1 hour on the preset

thermal cycler at 44uC. Time course PCR was carried out on a

50 ml scale using cDNA from the previous step and Phusion DNA

polymerase (Finnzymes) (10 ml of the cDNA, 0.5 ml of 25 mM

dNTP Mix, 10 ml of 5 x Phusion HF buffer (Finnzymes), 1 ml of

100 mM primers, 0.5 ml of 2 U/ml Phusion DNA polymerase).

PCR cycle conditions of 10 s at 98uC, 30 s at 60uC, 15 s at 72uC
were used. Aliquots of 6 ml were removed every other cycle

starting with cycle number 14 by temporarily pausing the PCR

cycle at the end of the 72uC step. The maximum cycle of the PCR

was set at 30 cycles. PCR aliquots were analyzed on a 6% Novex

TBE PAGE gel (Invitrogen) and the optimal cycle number for

cDNA amplification was chosen as five cycles prior to reaching the

saturation level of PCR amplification. The optimal cycle number

PCR was performed on a 50 ml scale using cDNA prepared from

another aliquot of recovered RNA (4 ml). The amplified cDNA

product was separated on a 6% Novex TBE PAGE gel

(Invitrogen) and the band of interest was excised and eluted using

1 x gel elution buffer (Illumina). RNA fragments with both

adapters produce PCR fragments that span a range of 100–150 nt.

The 59-adapter-39-adapter products without inserts may be

detected after amplification of the cDNA as an additional PCR

band at around 75 nt in length. The eluted DNA from gel

extraction was ethanol precipitated followed by DNA analysis

using Agilent 2100 Bioanalyzer. DNA was sequenced using an

Illumina GAII sequencer (University of California, Riverside).

Bioinformatic analysis
Sequences were trimmed using the function trimLRPatterns

from the ShortRead package in Bioconductor [59]. Reads were

aligned to the Sacchromyces cerevisiae genome using the short read

aligner Bowtie [60]. The bowtie alignment allowed the read to

have up to 1 mismatch and align once to the genome. Reads that

aligned more than once to the genome will be discussed elsewhere

[22]. All figures were made using the Mochiview genome browser

[29]. The processed wig files for each dataset, along with fasta file

of the yeast genome for alignment, can be downloaded from Gene

Expression Omnibus [61] under the series number GSE31764

(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE31764).

Chromatin immunoprecipitation
Cells containing a TAP-tagged NRD1 gene were grown in yeast

extract peptone dextrose (YPD) to an absorbance of about 0.8 and

cross-linked with formaldehyde for 20 min at room temperature

and processed for chromatin immunoprecipitation according to

standard protocols [62]. ChIP and Input DNA were first amplified

using linker adapted random primer and sequenase 2 and further

amplified and labeled using PCR and Cy3- and Cy5- CTP,

respectively. Cy dye labeled ChIP and Input DNA was combined

with Agilent aCGH/ChIP hybridization buffer containing 2x Hi-

RPM Hyb Buffer, Agilent blocking agent and Human cot-1 DNA

and hybridized to Agilent 244K yeast tiling array (G4491A) for

40 hours on MAUI hybridization system with constant mixing.

The hybridized array was washed using Agilent aCGH/ChIP-on-

chip array washing buffer kit (5188–5266) and scanned on Axon

GenePix Scanner (GenePix A4300) and the raw data extracted

using GenePix Pro 6.0. Preliminary analysis of the ChIP data was

carried out using CisGenome to identify ChIP enriched regions.

Yeast RNA analysis
Total RNA was extracted from yeast with hot acid phenol and

run on a 1% denaturing formaldehyde MOPS agarose gel,

visualized by ethidium bromide and Northern blotted as

previously described [11]. Samples with clear rRNA bands and

no visible degradation were analyzed by quantitative real-time

RT-PCR. RNA was treated with turbo-DNA-free (Ambion)

according to the manufacturer’s instructions for the most stringent

treatment. Reverse transcription was performed using the iScript

cDNA Synthesis Kit (BioRad). Real-time PCR was performed in

triplicate 20 ml reactions on a CFX96 Real-time PCR detection

system (BioRad) using iQ SYBR green supermix (BioRad)

according to the manufacturer’s instructions. Data from at least

two replicate experiments were pooled using the Gene Study

feature of the CFX96 real-time software, which normalizes for

fluorescence intensity differences between plates. Expression was

normalized to both ACT1 and 18S ribosomal RNA and the ratios

were graphed relative to the wild-type control sample, which was

set to 1 for each gene. Error bars represent the positive and

negative range of the standard error of the mean.

Treatment of tet-promoter strains
Tet-promoter yeast strains (Open Biosystems) and a control

strain lacking a tet-responsive promoter were seeded to an initial
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A600 of 0.06 in YEPD. Cultures were grown at 30u for 2.5 hrs prior

to the addition of doxycycline at a final concentration of 10 mg/ml

and were grown an additional five hrs before collection.

Supporting Information

Figure S1 Distribution of Nrd1 and Nab3 cross-links on snR13

and Nrd1 transcripts. (A) Nab3 (red) and Nrd1 (blue) reads are

aligned to the region downstream of the SNR13 gene. The

sequence corresponding to the main peak is shown below the plot

with an arrow indicating the most frequently cross-linked base.

Nrd1 and Nab3 binding motifs identified in our earlier genetic

selection are indicated above the transcript and the arrow

indicates the most frequent T to C transition. (B) Nrd1 and

Nab3 reads aligned to the Nrd1 gene. This binding region

correlates with earlier work showing that sequences upstream of

and including the 59 part of the coding region are necessary for

autoregulation of Nrd1 expression.

(EPS)

Figure S2 Cross-linking of Nrd1, Rpb2 and Sen1 to the IMD2

gene. The transcription start site is indicated by an arrow on the

gene map.

(EPS)

Figure S3 Cross-linking of Sen1, Rpb2, Nab3 and Nrd1 to

selected CUTs and SUTs. (A) Cross-linking to NEL025c, the

original CUT (SUT?) [34] (B and C) Cross-linking to CUTs

described in [9]. Note that the antisense CUT in the 39 end of

FMP40 is not annotated in the Steinmetz or Jacquier databases

[31,32]. (D and E) Cross-linking to some CUTs but not others. In

each of these figures there is one CUT cross-linked while another

is not. This is also observed in A and B. (F) Highly expressed

CUT585 cross-links efficiently to Nrd1 and Nab3 but not Sen1.

(EPS)

Figure S4 Binding of Nrd1 to the upstream regions of genes

involved in nucletide metabolism. (A) GUA1 encoding GMP

synthase. (B) ADE17 encoding both 5-aminoimidazole-4-carbox-

amide ribonucleotide transformylase and inosine monophosphate

cyclohydrolase activities. (C) HPT1 encoding hypoxanthine-

guanine phosphoribosyltransferase.

(EPS)

Figure S5 NRD1-dependent termination of a transcript anti-

sense to YKL151C. RNAs produced in strains with wild-type

NRD1 (NRD1HA) or mutant nrd1 (nrd1-102HA) with and without

the deletion of the exosome gene RRP47 were probed with a radio-

labeled T7 transcript complimentary to the antisense RNA. SCR1

is probed as a loading control.

(EPS)

Figure S6 Western blot of proteins derived from tagged Nrd1,

Nab3, Rpb2 and Sen1 strains. (A) Protein extracts were run on

SDS-PAGE and transferred to nitrocellulose. Nrd1 (green) was

detected with a rabbit polyclonal antibody and Nab3 (red) with a

mouse monoclonal antibody. Secondary antibodies were labeled

with IR dyes and detected with a LiCor Odyssey scanner. (B)

Proteins in cell extracts were affinity purified on streptavidin

beads, eluted in SDS sample buffer, run on SDS PAGE, blotted

and probed with an anti-His-tag antibody anti-RGS(H)4, (Qiagen).

The asterisk indicates the position of the Rpb2 tagged protein.

Due to its low abundance or instability we were unable to observe

Sen1-HTB in extracts by Western Blot. (C) Silver stain of Sen1-

HTB purified on strepavidin beads.

(EPS)

Table S1 Distribution of sequence reads corresponding to

different classes of RNAs. The distribution of reads from five

different data sets is presented as both the number of reads and the

percentage of total reads. The data discussed in this publication

have been deposited in NCBI’s Gene Expression Omnibus [61] and

are accessible through GEO Series accession number GSE31764

(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE31764).

(DOC)

Table S2 The top 100 Nab3 cross-linked sites.

(XLSX)

Table S3 The top 100 Nrd1 cross-linked sites.

(XLSX)
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