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Abstract

Aging is a universal process that causes deterioration in biological functions of an organism
over its lifetime. There are many risk factors that are thought to contribute to aging rate, with
disruption of metabolic homeostasis being one of the main factors that accelerates aging.
Previously, we identified a new function for the putative G-protein-coupled receptor, Bride of
sevenless (BOSS), in energy metabolism. Since maintaining metabolic homeostasis is a
critical factor in aging, we investigated whether BOSS plays a role in the aging process.
Here, we show that BOSS affects lifespan regulation. boss null mutants exhibit shortened
lifespans, and their locomotor performance and gut lipase activity—two age-sensitive mark-
ers—are diminished and similar to those of aged control flies. Reactive oxygen species
(ROS) production is also elevated in boss null mutants, and their ROS defense system is
impaired. The accumulation of protein adducts (advanced lipoxidation end products [ALES]
and advanced glycation end products [AGEs]) caused by oxidative stress are elevated in
boss mutant flies. Furthermore, boss mutant flies are sensitive to oxidative stress chal-
lenges, leading to shortened lives under oxidative stress conditions. Expression of superox-
ide dismutase 2 (SOD2), which is located in mitochondria and normally regulates ROS
removal, was decreased in boss mutant flies. Systemic overexpression of SOD2 rescued
boss mutant phenotypes. Finally, we observed that mitochondrial mass was greater in boss
mutant flies. These results suggest that BOSS affects lifespan by modulating the expression
of a set of genes related to oxidative stress resistance and mitochondrial homeostasis.

Introduction

Aging is a complex phenomenon with a multifactorial etiology. Several theories have been pro-
posed to explain how endogenous and exogenous factors affect aging. Reduced dietary caloric
intake is known to extend lifespan in a wide range of organisms including mammals and
worms [1, 2]. Caloric restriction induces changes in metabolic response. Loss of fat mass is the
most prominent metabolic change in response to restriction, and lipid homeostasis seems to
be an important factor in regulating lifespan [3]. Concomitantly, caloric restriction reduces
ROS generation [4]. Thus, the regulation of oxidant production and the ability of organisms to
respond to oxidative stress are intricately linked to aging and lifespan [5, 6].
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According to the free-radical theory of aging, ROS are predominantly byproducts of mito-
chondrial metabolism and are thought to be a risk factor for aging [7]. Thus, the regulation of
mitochondrial mass and activity is very important. How, though, are mitochondrial mass and
activity regulated? Although mitochondria possess their own genome (mtDNA), the majority
of mitochondrial proteins are encoded by the nuclear genome, translated in the cytoplasm,
and imported into mitochondria [8]. Therefore, mitochondrial mass and activity must be
coordinated with nutrient availability. Indeed, starvation or exercise increases mitochondrial
mass [9].

Here, we describe the functions of BOSS in the aging process. BOSS was originally identi-
fied as a ligand of the receptor SEVENLESS and required for the development of the R7 photo-
receptor neuron in the compound eye of Drosophila melanogaster [10]. Then we previously
discovered that BOSS possesses a critical metabolic function: maintaining energy homeostasis
[11, 12]. Insulin signaling is disrupted in boss mutant flies. Furthermore, boss mutant flies are
lean but hyperphagia. Because changes in metabolism are tightly linked with aging, we specu-
lated that BOSS might play a role in aging. Thus, we examined the lifespan of boss mutant flies
and various aging phenotypes of boss mutant flies. We discovered that boss mutants have a
short lifespan. Interestingly, we found that aging processes were accelerated in boss mutant
flies. In young boss mutant flies, locomotor activity and gut lipase activity were reduced. Fur-
thermore, oxidative stress (ALEs and AGEs) and oxidative damage were enhanced in boss
mutants. However, overexpression of SOD2 rescued boss mutant flies from oxidative damage
and from exhibiting an aged phenotype. Our findings suggest that BOSS may play a central
role in lifespan control through its involvement in mitochondrial function.

Results
boss mutant flies have shortened lifespan and mobility impairment

To determine the role of BOSS in aging, we first examined the lifespan of boss mutant flies (Fig
1A). Both female and male boss mutant flies had shorter lifespans compared to control flies,
indicating that aging in boss mutants might be accelerated.

To test the accelerated aging hypothesis, we used a behavioral task sensitive to age. Negative
geotaxis is a natural escape response of flies to climb vertically, and it is an ability that declines
with age [13, 14]. We compared age-related locomotor performance of mutant and control
flies using the rapid iterative negative geotaxis assay [15], which objectively measures climbing
performance by measuring negative geotaxis. We assessed performance of boss mutant and
control flies of different ages: 1, 7, 14, 21, 28, and 35 days old. Young 1-day-old boss mutant
flies displayed the same climbing performance as control flies, confirming normal locomotor
development. However, performance declined more rapidly in boss mutant flies with age com-
pared to control flies, with differences evident as young as 7 days old (Fig 1B). Additionally,
the performance decline in control flies paralleled the survival rate, while in boss mutant flies
the initial decline significantly exceeded the observed decline in survival rate. This hyperbolic
decline characteristic in boss mutant flies can be interpreted as an increased population sick-
ness already at a young age. Together, these results suggest that BOSS affects the lifespan of
flies.

Young boss mutant flies exhibit age-related decline of gut function

Next, we assessed gut lipase activity in boss mutant flies. Recently, it was reported that gut
lipase activity decreases during aging [16, 17]. Gastric lipases digest lipids in food, which are
then absorbed in the gut. Therefore, a reduction in gastric lipase activity decreases gut lipid
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Fig 1. Aging is accelerated in boss mutant flies. (A) Lifespan for male and female boss mutant flies. boss mutant flies have shorter lifespan than
control flies. Survival was presented by Kaplan Meier curves of control and boss mutant flies. n = 100 for each genotypes. Median survival for control
male = 40days, boss mutant males = 13.5 days, control female = 33days, boss mutant females = 9days (Log-rank test, p<0.0001). (B) Analysis of
vertical distance climbed in the rapid iterative negative geotaxis assay of boss mutant and control (w) male flies (n = 3 groups; each group contains
10 flies per genotype per time point). Data are means + SEM, and differences are significant by t-test (*P<0.05).

doi:10.1371/journal.pone.0169073.g001

storage. We found that gut lipid storage is reduced in young (10-day-old) boss mutant flies,
similar to that in aged control flies (Fig 2A).

The expression of gastric lipases was also decreased in boss mutant flies. This is consistent
with the decreased Oil-red-O staining in mutant flies (Fig 2A). Transcription of gastric lipases
(lipA/margo, CG6295, and dlip4) was also significantly downregulated in boss mutant flies, as
confirmed by qRT-PCR (Fig 2B).

To confirm and extend these results, we inhibited gastric lipases with orlistat (tetrahydrolip-
statin). Orlistat is widely used as an over-the-counter weight-loss drug [18, 19]. It acts inside
the intestine as a competitive inhibitor of pancreatic and gastric lipases, preventing their
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Fig 2. Gut lipase activity declines with aging in boss mutant flies. (A) Oil-Red-O staining of neutral lipids
in the guts of young (10-days) and old (30-days) control and boss mutant female flies. Anterior midgut region
stores lipid (arrowhead). (B) Expression of gut lipases (lipA/margo, CG6295, and dlip4) in the intestines of
young (day 10) flies, as assessed by qRT-PCR (n = 3, 5 guts per replicate). (C) boss mutant flies are resistant
to orlistat treatment. Young adult male boss mutant flies and control flies were fed a diet with or without orlistat
(2.0 M) for 5 days. Afterward TAG levels were determined (n =5, 10 flies per replicate) and normalized for
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total protein. Levels are presented as normalized to levels for wild-type flies. Data are mean relative
ratios + SEM, and differences are significant by t-test (*P<0.05).

doi:10.1371/journal.pone.0169073.9g002

interaction with dietary triacylglycerides (TAG) and thus blocking fatty acid release and die-
tary lipid uptake. In control flies exposed to orlistat, TAG levels were significantly reduced (Fig
2C). Orlistat, however, failed to affect TAG levels in boss mutant flies, indicating that endoge-
nous gastric lipase activity is very low. These data show that gastric lipase activity is decreased
in boss mutant flies due to downregulation of gastric lipase expression.

Age-related chronic FOXO activation in enterocytes leads to sustained repression of gut
lipase expression and disruption of lipid homeostasis [17]. We measured the expression of
FOXO target genes (Drosophila insulin receptor [dInR] and Thor/4E-BP) [20], and found that
dInR mRNA expression was significantly increased while Thor mRNA expression exhibited a
slight, but statistically non-significant increase. This suggests that FOXO activation in the gut
of boss mutant flies is enhanced (S1 Fig). Taken together, these data indicate that tissue homeo-
stasis is disrupted in the gut of boss mutant flies similar to that in aged control flies.

Oxidative stress is enhanced in boss mutant flies

Oxidative damage is a major risk factor for age-related diseases and aging. ROS, such as hydro-
gen peroxide (H,0,) and superoxide anions (O,"), are highly reactive molecules produced by
incomplete reduction of oxygen, and their production causes oxidative damage [21]. Oxidative
damage contributes to the onset of aging and to age-related diseases such as diabetes, obesity,
and neurodegenerative disorders [21]. This prompted us to ask the question: Does oxidative
damage accumulate more in boss mutant flies?

Since elevated ROS levels promote the oxidation of lipids and glucose, resulting in the accel-
erated formation of ALEs and AGEs [22, 23], we examined ALEs and AGEs levels to know
oxidative levels in control and boss mutant flies. First, we measured the level of 4-hydroxy-
2-nonenal (4-HNE), a major type of ALE. Under oxidative-stress conditions, lipid peroxida-
tion of w6-polyunsaturated fatty acids leads to the production of 4-HNE [24]. We found that
4-HNE levels were higher in boss mutant flies than in control flies at late stage (Fig 3A).

Next, we examined AGE levels during aging. In Drosophila, AGEs are also used as biomark-
ers of age-related damage [25]. AGEs fluoresce in a nonenzymatic reaction between reducing
sugars and amine residues on proteins, lipoproteins, and nucleic acids. AGEs also accumulate
during aging and correlate strongly with mortality rate in flies. We quantified fluorescent AGE
levels in sets of young and old male flies during aging (7- to 28-days old). Fluorescent AGE lev-
els were higher in boss mutant flies than in control flies at late stage (Fig 3B), indicating that
oxidative stress was enhanced in boss mutant flies.

The elevated fluorescent AGE levels in boss mutant flies prompted us to examine the expres-
sion of marker genes (AMRP4 and gstD1) that mediate oxidative stress resistance (Fig 3C) [26,
27]. These genes are induced in adult flies during normal aging and when flies are subjected to
oxidative stress, for example, by exposure to hyperoxic conditions or to paraquat. Both dMRP4
and gstD1 mRNAs were elevated in old control flies (35-days old) compared to young control
flies (7-days old). However, dMRP4 and gstD1 mRNA expression was not elevated in old boss
mutant flies, indicating that boss mutant flies are more sensitive to oxidative stress.

boss mutant flies are sensitive to oxidative stress

Since oxidative stress is enhanced in boss mutant flies and expression of genes involved in
resistance to it is reduced, we speculated that boss mutant flies might be more susceptible to
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Fig 3. Oxidative stress is enhanced in boss mutant flies. (A) ALEs were detected by Western blot and antibodies against 4-hydroxy-
2-nonenal (4HNE). Ages (0~50-days old) are shown at the top of the blot. (B) Accumulation of fluorescent AGEs was measured in control and
boss mutant flies (n = 3, 20 flies per replicate). Data are mean relative fluorescence + SEM, and differences are significant by t-test (*P<0.05,
**P<0.01). (C) Expression of ROS-inducible genes (dAMRP4 and gstD1) in young (7-days) and old (35- days) flies, assessed by gRT-PCR (n =3,
10 flies per replicate). Data are mean relative expression + SEM, and differences are significant by t-test (*P<0.05).

doi:10.1371/journal.pone.0169073.9003

conditions that increase oxidative stress. If this were the case, oxidative damage would accu-
mulate faster as these flies age. To examine this hypothesis, we first measured boss mutant flies’
survival curve when subjected to oxidative stress.

boss mutant and control flies were given food containing either paraquat (2 mM) or H,0,
(0.5%). Under these conditions, boss mutant flies died more quickly than control flies (Fig 4A),
providing more evidence that boss mutant flies are more sensitive to oxidative stress.

One reason to explain this increased susceptibility to oxidative stress is that levels of ROS in
the mutant flies may be dysregulated. Cellular levels of ROS are controlled by antioxidant
enzymes. Superoxide dismutase (SOD) is one of several major enzymes that regulate the
removal of ROS. Similar to other metazoans, Drosophila has three SOD isoforms (SOD1-3)
[28, 29]. SOD1 localizes to the cytoplasm, SOD2 to the in the mitochondrial matrix, and SOD3
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doi:10.1371/journal.pone.0169073.g004

to the extracellular space. Loss of either SOD1 or SOD2 causes early lethality in flies and mice
[30, 31], whereas ubiquitous overexpression of either SOD1 or SOD2 extends lifespan [32-36].
This is in line with our findings that boss mutant flies have increased oxidative stress levels and
increased sensitivity to oxidative stress.

We next measured the expression levels of SODs in boss mutant flies to test this idea. Quan-
titative RT-PCR revealed that expression of sod2 mRNA was decreased in boss mutant flies,
while expression of sod1 and sod3 mRNA was comparable to that in control flies (Fig 4B).

The mitochondrion is the major organelle that produces ROS, and SOD?2 is required to pre-
vent increased ROS levels. Consistent with our findings and hypothesis is that sod2 mutant
flies have a shortened lifespan [37]. We speculated that decreased SOD2 level in boss mutant
flies is one cause of their accelerated aging.
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SOD2 expression rescues sensitivity to oxidative stress of boss mutant
flies

To assess the role of SOD2 in boss mutant flies, we generated SOD2-overexpressing boss
mutant flies by crossing Act-Gal4 flies with UAS SOD2 flies. This resulted in Act-GAL4/UAS-
SOD2 flies with a boss mutant background (S2 Fig). First, we examined whether these flies are
sensitive to oxidative stress by exposing them to paraquat (10 mM) in their feed, as before (Fig
5A). Under this condition, SOD2-overexpressing boss mutant flies lived longer than boss
mutant flies, supporting our hypothesis that decreased SOD2 levels in boss mutant flies is one
cause of their accelerated aging under oxidative stress-producing conditions.
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Fig 5. SOD2 overexpression rescues aging phenotype of boss mutant flies. (A) Survival curves of SOD2-overexpressing boss mutant flies (Act-
Gal4, UAS-RFP/ UAS-SOD2; boss™) and boss mutant flies (Act-Gal4, UAS-RFP/ +; boss™) treated with 10 mM paraquat. SOD2 overexpression
prolonged the survival of boss mutant flies, shifting the survival curve to the right of the population of SOD2-overexpressing boss mutant flies (n = 30
for each genotypes). Error bars represent S.E. (B) ALEs were detected by Western blot and anti-4HNE antibody. SOD2 overexpression reduced the
staining intensity for ALEs (n = 3, 10 flies per replicate). (C) Oil-Red-O staining for neutral lipids in the guts of young (10-days) SOD2-overexpressing
control and boss mutant female flies. Anterior midgut region stores lipids (arrowhead). (D) Lifespan for male SOD2-overexpressing boss mutant and
boss mutant flies. SOD2 overexpression prolonged the survival of boss mutant flies. Survival was presented by Kaplan Meier curves of
SOD2-overexpressing boss mutant and boss mutant flies. n = 50 for each genotypes. Median survival for SOD2-overexpressing boss mutant = 51
days, boss mutant males = 48 days (Log-rank test, p = 0.044).

doi:10.1371/journal.pone.0169073.g005
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Next, we assessed oxidative stress levels in SOD2-overexpressing boss mutant flies by mea-
suring 4-HNE levels (Fig 5B). SOD2 overexpression reduced 4-HNE levels. These results dem-
onstrate that sensitivity to oxidative stress was rescued by SOD2 overexpression in boss mutant
flies.

We also examined gut lipid storage in SOD2-overexpressing boss mutant flies (Fig 5C). The
decreased Oil-red-O staining we observed earlier in young boss mutant flies (cf. Fig 2A) was
recovered in SOD2-overexpressing boss mutant flies. This suggests that SOD2 expression can
rescue gastric lipase activity of boss mutant flies. This is also in line with the observation that
SOD2 overexpression increases the lifespan of boss mutant flies under normal conditions (Fig
5D). From these SOD2 rescue experiments, we conclude that decreased SOD2 expression in
boss mutant flies contributes to their shortened lifespan.

Regulation of mitochondrial activity is disrupted in boss mutant flies

We previously reported that energy state is reduced in boss mutant flies [11, 12]. Reducing cel-
lular energy levels by starvation or exercise increases mitochondrial activity, and hence pro-
duction of the energy source, ATP[9,38]. This led us to speculate that mitochondrial mass
increases in boss mutant flies in order to meet energy demand.

To determine mitochondrial mass as a proxy measure, we measured the amount of mito-
chondrial DNA (mtDNA) relative to the amount of nuclear DNA (nDNA) in young (7-days
old) and old (35-days old) flies. The amount of mtDNA increased in boss mutant flies (Fig 6A).
We also examined the expression of ATP5A, a mitochondrial marker, in order to monitor the
amount of mitochondria in flies. ATP5A levels were higher in boss mutant flies compared to
control flies (Fig 6B), which is consistent with our results on mtDNA quantification (c.f. Fig
6A).

Next, we measured ATP levels in control and boss mutant flies, since mitochondria is at the
core of cellular energy metabolism, being the site of most ATP generation but also responsible
for generation of substantial amounts of superoxide caused by electron leakage from the oxida-
tive phosphorylation pathway [7, 38]. ATP concentrations were increased in young boss
mutant flies, indicating that mitochondrial activity is upregulated in boss mutant flies; ATP
concentrations were the same in old control and boss mutant flies (Fig 6C). The increased
mitochondrial mass without increased ATP production indicated that unfunctional mitochon-
dria are accumulated in old boss mutant flies.

Mitochondria are energy-converting organelles that produce most of the ATP required for
cellular functions and integrity, and they produce ROS as byproducts of electron transport
during the generation of ATP. ROS cause mtDNA mutations to accumulate, which may be
responsible for a decline in mitochondrial energy production. Thus, cells have developed
mechanisms—or mitochondria “quality control system”—to eliminate damaged mitochondria
[21].

The increased mitochondrial mass in boss mutant flies may be due to dysregulation of this
mitochondrial quality control system. To test this possibility, we examined the expression of a
key molecule in this system called peroxisome proliferator-activated receptor gamma co-acti-
vator 1 (PGC-1), a transcription coactivator. PGC-1 regulates gene expression for mitochon-
drial biogenesis and maintains the structural integrity of mitochondria [39, 40]. PGC-1 mRNA
levels in control and boss mutant flies at young and old time points were compared (Fig 6D).
We compared PGC-1 mRNA levels in young and old control and boss mutant flies, and found
that PGC-1 mRNA levels were significantly decreased in young boss mutant flies. This indi-
cates that mitochondrial biogenesis is reduced (Fig 6D). Mitochondrial mass was increased
throughout the lifespan of boss mutant flies. However, increased ATP levels were present only
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Fig 6. Mitochondrial mass is increased in boss mutant flies. (A) Quantification of mitochondrial DNA (mtDNA) in control and boss
mutant flies as determined by gPCR (n = 3, 5 flies per replicate). mtDNA of both young (7-days) and old (35-days) boss mutant flies was
greater than in control flies. Data are means + SEM (t-test, *P<0.05). (B) The amount of mitochondria was determined using Western
blotting and anti-ATP5A antibody. ATP5 levels were increased in boss mutant flies, suggesting that the total mass of mitochondria
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Expression of pgc? mRNA was measured in young (7-days) and old (35 days) flies by gRT-PCR (n = 3, 10 flies per replicate). pgc-1
mRNA levels were significantly decreased in young boss mutant flies, indicating indicates mitochondrial biogenesis is reduced. Data are
means + SEM (t-test, *P<0.05). (E) Representative confocal images showing indirect flight muscles stained with phalloidin (magenta) and
anti-ATP5 antibody (green). One representative optical section is shown from each phenotype. Scale bar, 50um. Comparison of the
mitochondrial size of both young (7-days) and old (35-days) of control and boss mutant flies are shown to the right. Data are means + SEM

(t-test, *P<0.05).

doi:10.1371/journal.pone.0169073.g006

in young flies, strongly indicating that dysfunctional mitochondria accumulate as boss mutant
flies age. In Drosophila, size of mitochondria is increased during aging[41]. This is consistent
with our finding that mitochondria in the flight muscles of young (7-days old) and old
(35-days old) boss mutant flies were much larger than those in comparably aged control flies
(Fig 6E). Taken together, the age-related increase in mtDNA and mitochondrial size with a
concomitant decrease in ATP levels might point towards reduced mtDNA quality in aging
boss mutants.

Hsp22 expression is not increased in boss mutant flies during aging and
oxidative stress stimulation

Finally, we examined hsp22 mRNA expression levels. Hsp22 belongs to the sHSP family, local-
izes in the mitochondrial matrix, and is involved in aging processes, and imparts resistance to
oxidative stress [42, 43]. HSP22 expression is upregulated during aging [44], in a long-lived fly
line [45], and in response to oxidative stress [27]. Corroborating a previous report [44], hsp22
expression progressively increased with aging in control flies (Fig 7A). However, while hsp22
expression was indistinguishable in young (7-days old) control and boss mutant flies, expres-
sion diverged with aging between the two groups. In boss mutant flies aged 21and 35 days,
hsp22 expression was significantly lower in the older flies.

We also examined hsp22 levels a second way, using hsp22 reporter (hsp22-dsRED) [44].
The promoter sequence of hsp22 gene is fused to DsRED; thus, DSRED expression level reflects
hsp22 expression level. hsp22-DsRED expression increased with age in wild-type flies but not
in boss mutant flies (Fig 7B). Oxidative stress stimulation with H,O, also clearly increased
Hsp22-dsRED expression in wild-type flies but slightly in boss mutant flies (Fig 7C), support-
ing the notion that boss mutant flies apparently cannot respond adequately to oxidative stress,
and thus fail to maintain mitochondrial integrity.

Discussion

Aging is associated with a decline of function at the organismal level. It begins with cellular
deterioration, which ultimately leads to the disruption of tissue homeostasis. The present
study indicates that BOSS influences on aging. We showed that boss mutant flies have a short-
ened lifespan (Fig 1), which is caused by deterioration of gut homeostasis and by elevation of
oxidative stress. Even in young boss mutant flies, gastric lipase expression and activity are
already reduced (Fig 2). Enhanced oxidative stress was also observed in boss mutant flies (Fig
3), and this was caused by an impaired ROS defense system (Figs 4-6). Our genetic analysis of
SOD2 expression rescue showed that reducing oxidative stress could rescue all aged pheno-
types of the boss mutant (Fig 5).

We previously reported that energy metabolism is disrupted in boss mutant flies, causing
lean phenotype [11, 12]. The gut is one of the key tissues for aging regulation [17]. Hyper-pro-
liferation of intestinal stem cells (ISCs) occurs in the aged gut, resulting in loss of tissue homeo-
stasis, elevated oxidative stress, and chronic JNK activation [16, 46, 47]. In boss mutant flies,
we found that oxidative stress is increased (Fig 3) and gut homeostasis is impaired (Fig 2).
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Fig 7. hsp22 expression is not induced in boss mutant flies. (A) Expression of hsp22 mRNA was measured in 7-, 21-and 35-days-old control and
boss mutant flies by using gRT-PCR (n = 3, 10 flies per replicate). Data are means + SEM (t-test, *P<0.05). (B) DsRed fluorescence was observed in
control and boss mutant flies bearing the Hsp22-DsRed reporter. DsRed fluorescence progressively increased during aging in control but not in boss
mutant flies. (C) Flies bearing the Hsp22-DsRed reporter were transferred to a diet containing 0.5% H,O, for 24 h, and then DsRed fluorescence was
observed. Under this oxidative stressful condition, boss mutant flies still failed to exhibit increased hsp22 expression, suggesting dysfunctional
mitochondria and oxidative stress dysregulation.

doi:10.1371/journal.pone.0169073.g007

Moreover, the expression and activity of gastric lipases were decreased in boss mutant flies,
producing a similar phenotype to that observed in aged control flies. Previously, we demon-
strated that BOSS is expressed in enteroendocrine cells, and knockdown of boss in these cells
lead to the lean phenotype [12]. Thus, it would be interesting to know whether BOSS expressed
in enteroendocrine cells and/or in other tissues (such as neurons and the fat body) affect gut
homeostasis.

A number of recent studies indicate that regulation of ROS levels seems to be very impor-
tant for aging. ROS is concomitantly generated during ATP production and causes oxidative
damage and cellular/tissue dysfunction if it accumulates [4]. Excessive ROS levels have a harm-
ful effect on cellular physiology [31, 37, 48], whereas physiological levels of ROS are likely
essential for the maintenance of cellular homeostasis [49]. This is called mitohormesis or adap-
tive cytoprotective responses to low levels of oxidative stress in the mitochondria [50, 51].
Thus, disrupted mitohormesis affects disease onset, progression, and aging.

Mitochondria are energy-converting organelles that produce most of the ATP required for
cellular functions and integrity, and they produce ROS as byproducts of electron transport
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during the generation of ATP. ROS cause mtDNA mutations to accumulate, which may be
responsible for a decline in mitochondrial energy production. Thus, cells have developed
mechanisms—or mitochondria “quality control system”—to eliminate damaged mitochondria
[21]. In the present study, ATP production was increased in young boss mutant flies, and mito-
chondrial mass was increased throughout their life (Fig 6). This indicates that dysregulation of
mitochondrial homeostasis lead to loss of tissue homeostasis. Indeed, we observed that the
expression of hsp22—which localizes in mitochondria and activates the ROS defense system
(sod2, dMRP4, and gstD1)—was decreased in boss mutants (Fig 7). Aged phenotypes were also
rescued by sod2 overexpression (Fig 5). Finally, we found that PGC-1 expression was decreased
in boss mutant flies (Fig 6D).

Since PGC-1 and Hsp22 increase mitochondrial biogenesis and extend lifespan in Drosoph-
ila [43, 47], we speculate that the acceleration of aging seen in the boss mutant flies is likely
caused by disruption of mitochondrial homeostasis. We previously found that boss mutants are
hyperphagic but paradoxically are lean, indicating that nutrient absorption might be disrupted
[12]. If this were the case, more mitochondria would be required to generate more ATP. Thus,
we speculate that the number of mitochondria and their activity might be increased in boss
mutant flies. However, concomitant generation of ROS might lead to cellular damage and loss
of metabolic homeostasis, ultimately leading to accelerated aging in boss mutant flies.

Our data strongly indicate that increased ROS levels influence the aging process, and that
normal mitochondrial function and structure are also damaged in the boss mutant. Very
recently, it was proposed that mitochondria affect the aging process not only by producing
ROS but also via other mitochondrial signaling pathways. Thus, changes in mitochondrial
dynamics and the electron transport chain could have an impact on aging [7, 52]. It would be
interesting and important, then, in the future to examine the molecular mechanism of how
BOSS localized in cell membranes regulates mitochondrial function and structure.

BOSS is an evolutionarily conserved protein [53]. The expression of GPRC5B, a mamma-
lian BOSS homologue, is similar to that of BOSS [54-56]. GPRC5B is broadly expressed in
brain, gut, and adipose tissues. Recently, aberrant expression of GPRC5B was identified to be
an obesity risk factor [57]. Considering that the regulatory mechanisms of energy metabolism
and mitochondrial quality control are highly conserved between Drosophila and mammals
[58, 591, specific analysis of Drosophila BOSS will open the door for understanding the broader
physiological functions of the highly conserved membrane protein BOSS/GPRC5B.

Materials and Methods
Fly stocks and genetics

The following fly strains were used: w (WT, control); boss' (null mutant, homozygous viable),
Act-Gal4>UAS-RFP (Kyoto Stock Center, DGGR#4414), UAS-Sod2 (Bloomington Drosoph-
ila Stock Center, #24494); hsp22-RED (a kind gift from Dr. John Tower).

Husbandry

Flies were grown on standard food (10% glucose/4% yeast/4% corn meal/1% agar) at a temper-
ature of 25°C under a 12h-12h light-dark regime.

Lifespan analysis

Female or male flies were collected at day 0 and maintained at a density of 10 or 20 flies per
vial. Flies were transferred to new vials every 3 days, and dead ones were noted in order to cal-
culate survival curves.
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Rapid iterative negative geotaxis assay

Fly climbing speed was assessed using the RING assay, as described previously [15]. 10 flies

(n = 3 groups) were transfer into each vial without anesthetizing. The vials were tapped and
all flies were knocked down to the bottom of each vial. After 3 seconds a picture was taken to
record the climb height. The procedure was repeated 5 times at 1min intervals and the average
height climbed of each vial was scored.

Quantitative real-time PCR (qRT-PCR)

Guts of female flies, aged 5 days, were used for RNA samples to measure gastric lipase expres-
sion (Fig 2B). To measure SOD1~3 expression (Fig 4B and S2 Fig) were collected from whole
flies. Samples were immediately frozen in liquid nitrogen for later analysis. Total RNA was
extracted using Trizol Reagent (Invitrogen). Total RNA samples (1 ug per reaction) were
reverse transcribed using oligo-dT and random primers and Superscript RT-III (Invitrogen).
The generated cDNA was used for real-time RT-PCR (qPCR Mastermix Plus for SYBERGreen;
Applied Biosystems). Rp49 gene was used as reference gene. Two-step RT-PCR was performed
with the following condition: denature temperature was 95°C and anneal and extend tempera-
ture was 60°C. Three separate samples were collected from each condition, and triplicate mea-
surements were made. Primers (S1 Table) were designed using the Universal Probe Library
Assay Design Center (Roche Applied Science).

Western blot analysis

Ten male flies were used for each condition. The antibodies used in Western blot analysis were
as follows: anti-4HNE (1:1000, JalCA); anti-ATP5A (1:100,000, Abcam); and anti-tubulin
(1:10,000, Sigma). HRP-conjugated anti-rabbit or anti-mouse IgG antibodies (Cell Signaling
Technology) were used as secondary antibodies. Blots were visualized using Chemi-Lumi One
Super reagent (Nacali Tesque Inc.). To quantify 4-HNE and ATP5A levels, staining intensity
of each lane was measured using Image] (http://imagej.nih.gov/ij/). Measured area is indicated
in the box.

Oil-Red-O staining

Guts from female adult flies, aged 10 and 30 days, were fixed in 4% paraformaldehyde for 25
min at room temperature, washed with distilled water, and incubated in 100% propylene glycol
for 5 min. Specimens were then incubated at 60°C in Oil-Red-O stain (0.5% Oil Red O in
propylene glycol), washed twice with propylene glycol, washed three times with PBS, and
mounted onto glass slides in 20% glycerol/PBS for imaging.

TAG assay

Orlistat treatment procedures involved growing flies on standard food with or without 2 pM
orlistat for 5 days. TAG levels were then assayed. For the TAG assay, male flies aged 3-5 days
were homogenized in PBS. Supernatant was collected after heat inactivation at 70°C for 5 min,
and centrifugation at 13000 rpm for 5 min. TAG was measured using a triglyceride assay kit
(Sigma). Data were normalized to total protein.

Oxidative stress assay

To induce oxidative stress, we fed male flies aged 5 days with standard food with 0.5% H,O, or
2 mM paraquat (Fig 4A) or 10mM paraquat (Fig 5A). The number of living flies were noted
every day and the survival rate was calculated.
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Fluorescent advanced glycation end products (AGEs)

Fluorescent AGEs were measured as previously described [22]. Twenty male flies were homog-
enized in 900 pl of 10 mM EDTA-Na,.H,O in PBS. Homogenate was transferred to a micro-
centrifuge tube containing 100 pul of a solution containing 10 mg trypsin/10 mM EDTA-Na,.
H,O0 in PBS. Following incubation for 24 h at 37°C, the digested homogenate was centrifuged
at 11,000g for 5 min. The supernatant was spin-filtered through a 0.22 pm cellulose membrane
(Millipore). Aliquots of the filtrate (200 pl) were transferred to 96-well plates, and fluorescence
was measured at excitation and emission wavelengths of 365 nm and 440 nm, respectively.
Fluorescence values for analysis were taken as the mean fluorescence from triplicate wells.

Mitochondrial DNA measurement

Mitochondrial DNA content was determined by the ratio of the gene for cytochrome oxidase
subunit I [57] to a nuclear gene GAPDH (S1 Table). Total DNA from the whole flies (n = 3, 20
flies per replicate) were prepared by homogenization in 10 mM Tris-HCI, pH 8.0, 1 mM
EDTA, 0.1% Triton X-100 and 10ug/ml protease K. Following 60 min incubation at 37°C, Pro-
tease K was heat inactivated at 95°C for 5 min. Mitochondrial DNA was quantified relative to
nuclear DNA by the ratio of cytochrome oxidase subunit I [57] to glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) in quantitative real-time PCRs. DNA copy numbers were measured
by using real-time PCR as described above.

ATP quantification

ATP levels were detected according to the procedures detailed in Tennessen et al. [60]. Five
10-day-old adult flies were used for this assay in the present experiment. Cellular ATP content
was quantified with a luciferin/luciferase-based assay using an ATP Determination Kit (Sigma-
Aldrich), and the data were normalized to the protein content.

Immunohistochemistry

7-day-old and 35-day old adult flies were used for the flight muscles staining with anti-ATP5A
(1:10,000, Abcam). To measure mitochondrial dimensions, the particle analysis function of
Image] was used.

Supporting Information

S1 Fig. Transcription of Foxo target genes thor and dInR in the guts of wild-type and boss
mutant flies. Expression of thor and dInR mRNAs was measured in young (7-days old) flies
by qRT-PCR (n = 3, 10 flies per replicate).

(TIF)

S2 Fig. Quantification of sod2 mRNA expression. Expression of sod2 mRNA was measured
in young (7-days old) flies by qRT-PCR (n = 3, 10 flies per replicate). Data are means + SEM
(*P<0.05).

(TIF)

S§1 Table. Primer sequences for qRT-PCR.
(TTF)
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