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Abstract: Based on Lemaitre’s strain equivalence hypothesis theory, it is assumed that the strength of
acid-etching rock microelements under the coupling effect of temperature and confining pressure
follows the Weibull distribution. Under the hypothesis that micro-element damage meets the D-P cri-
terion and based on continuum damage mechanics and statistical theory, chemical damage variables,
thermal damage variables and mechanical damage variables were introduced in the construction of
damage evolution equations and constitutive models for acid-etching rocks considering the coupled
effects of temperature and confining pressure. The required model parameters were obtained by
theoretical derivation, and the model was verified based on the triaxial compression test data of
granite. Comparing the experimental stress-strain curve with the theoretical stress-strain curve,
the results show that they were in good agreement. By selecting reasonable model parameters, the
damage statistical constitutive model can accurately reflect the stress-strain curve characteristics of
rock in the process of triaxial compression. The comparison between the experimental and theoretical
results also verifies the reasonableness and reliability of the model. This model provides a new
rock damage statistical constitutive equation for the study of rock mechanics and its application in
engineering, and has certain reference significance for rock underground engineering.

Keywords: rock mechanics; acid corrosion; coupling effect of temperature and confining pressure;
Weibull distribution; damage variable; constitutive model

1. Introduction

With the continuous development of the global economy, the consumption of fossil
fuels such as coal, oil and natural gas is increasing, and the emission of pollutants into
the atmosphere is rising sharply, leading to deteriorating environmental pollution. In
underground engineering, the geological conditions of rocks are very complex. In practical
problems such as underground disposal of nuclear waste, underground energy storage,
underground carbon dioxide storage, geothermal development, oil and natural gas ex-
ploitation, on the one hand, the rocks expand and crack when heated, on the other hand,
the rocks react with aqueous chemical solutions to form holes, which greatly changes
their mechanical properties, aggravate the damage evolution and seriously affect the long-
term stability of the project. Therefore, it is of great practical significance to study the
deterioration law and damage mechanism of mechanical properties of rock under high
temperature chemical confining pressure for rock engineering construction. Meanwhile, it
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is of great theoretical significance to establish the damage constitutive model of rock under
the coupling action of high temperature, chemistry and confining pressure. With the mas-
sive emission of carbon dioxide, acid rain has become a global environmental concern [1].
At the same time, with the continuous advancement of research in related fields of deep
underground rock engineering, the influence of the chemical corrosion environment on
the mechanical properties of rocks has attracted the attention of many associated scholars.
Rock materials are affected in many aspects such as physics, chemistry and mechanics
in an acidic environment. The corrosion phenomenon caused by the degradation of rock
properties until destruction is a relatively slow chemical process, making the rock mineral
composition, microstructure and mechanical properties change, resulting in undesirable
engineering effects. Therefore, it has become an urgent task to understand the changes and
damage evolutionary laws of rock mechanics under an acidic environment.

For a long time, the research on the effect of water-chemical solutions on rocks has
attracted the attention of many scholars. It has achieved tremendous progress and fruitful
results [2–11]. Some scholars have conducted experimental studies on the influence of
temperature on rock physical and mechanical parameters, such as rock peak strength,
Young’s modulus, Poisson’s ratio, and porosity, etc., and investigated the change of pore
structure and mechanical properties of limestone exposed to acid solutions by series of
triaxial and cyclic load tests [3–20]. However, only under the action of temperature and
chemical solution, the effect of rock on its mechanical properties is very different from
the effect of the coupling of the two. In recent years, some scholars have also carried
out experimental studies on the action of chemical environment and temperature on the
physical and mechanical properties of rocks [21–25]. For rock, the core issue of its strength
theory is the constitutive model. In fact, the rock damage theory is a theory to study the
damage evolution law and damage of damaged materials. The core issue is the damage
model, that is, the problem of establishing damage variables and their transformation.
With the development of statistical damage mechanics theory, the damage variable of
the rock can be defined by the assumption that the micro-element strength follows the
statistical distribution [26,27]. Based on these principles and methods, a series of damage
statistical constitutive models of rock under the coupled effect of temperature and external
load has been established. The corresponding chemical damage model was proposed
through the quantitative description of the chemical damage mechanism of chemical solute
erosion of rock [28,29]. Considering the strong nonlinearity of the peak intensity, a negative
exponential empirical model was proposed to describe the peak intensity [30,31]. The
effects of temperature and strain rate on peak stress, elastic modulus and energy absorption
were discussed, and the damage model of rock was established to describe the thermal-
mechanical coupling problem of rock accurately [32]. Using continuous damage theory and
statistical methods, the modulus of elasticity was chosen as the damage variable to deduce
the damage model of sandstone under the effect of temperature and hydraulic force, and a
model for the damage constitution of sandstone considering the effect of temperature and
hydraulic force was established [33]. An experimental study on the influence of the contact
area of the undercut anchor head face on the rock physical and mechanical parameters was
carried out [34].

The above research has played a positive role in analyzing the influence and damage
law of rock under the effect of acidic environment and temperature. However, there are still
some deficiencies, the current research direction are still mainly based on the impact of TMC
on the macro-mechanical properties of rocks, in the established rock damage constitutive
model, the rock micro element strength probability model and strength criterion are
relatively single, and lack the constitutive properties of acid-corroded rocks. There are few
studies on the damage mechanical properties of rock by establishing TMC coupled damage
constitutive model, and most of them do not consider the effect of confining pressure. The
study of the model requires further exploration. In view of this, the deterioration degree
and damage evolution law of rock materials were described by damage variables. The
damage evolution equation and damage constitutive model of rock under TMC coupling
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were established by using continuous damage mechanics theory and D-P criterion. Finally,
the reliability of the model and the method for determining model parameters is verified
by comparing with the stress-strain curve obtained by other experiments.

2. Establishment of Damage Constitutive Model of Rock under the Coupling Action
of Acid Etching-Temperature-Confining Pressure
2.1. Define of Chemical Damage Variables

Yang et al. [35] defined a damage variable based on the CT (Computer Tomography)
number of rocks:

DCT= −
1

m2
0

∆ρ

ρi
(1)

where: m0 is the spatial resolution of the CT machine; ρi is the density of the rock in the
undamaged state; ∆ρ is the change in density during the evolution of rock damage.

CT technology is the product of the combination of radiation technology and computer
technology. The basic principle is that the X-rays emitted by the CT-ray source can penetrate
the material to be tested, and the penetrating ability of X-rays of different wavelengths
is different, and the absorption ability of X-rays of the same wavelength is different for
different materials. The quantitative description of CT is the number of CT, the inventor of
the number of CT N. Hounsfield defined the CT numbers of air, water and ice as −1000,
0 and −100, respectively. Therefore, there is a certain relationship between the X-ray
absorption coefficient µ value of the detected object and the CT number.

Li et al. [11] combined with Yang et al. [36] based on the damage variable of rock CT
number to derive the acid-corroded sandstone damage variable DC based on CT number:

DC =
1
2
(DC1 + DC2) = 1− E(ρ1) + E(ρ2)

2ρ0
(2)

E(ρ) =
1000 + H
1000 + Hr

ρr (3)

Combining formula (2) and formula (3) can get the damage variable DC:

DC = 1− ρr(2000 + H1 + H2)

2ρ0(1000 + Hr)
(4)

where: ρr, ρ0, H1, H2, Hr are the density of the sandstone matrix material (g/cm3), the
density of the undamaged sandstone (g/cm3), the CT numbers of the sandstone in the
corroded area, the uncorroded area and the sandstone matrix material number, respectively.

2.2. Definition of Thermal Damage Variables

When the rock material encounters high temperatures, the generated thermal stress
causes the rock and mineral particles to expand and squeeze each other, causing the
cracks to expand and penetrate. Therefore, to construct a rock damage evolution equation
that considers the coupling effect of temperature and confining pressure, it is necessary
to introduce a and Function variables related to temperature. According to the theory
of macroscopic damage mechanics, temperature damage to rock can be characterized
by macroscopic mechanical parameters [37]. Through a large amount of literature and
test data, it can be concluded that temperature has a softening effect on rock, that is, as
temperature increases, the elastic modulus of rock decreases. Therefore, the elastic modulus
can be used to define the thermal damage variable, namely

DT = 1− ET
E0

(5)

where: DT is the rock thermal damage variable, ET is the rock elastic modulus at tempera-
ture T and E0 is the rock elastic modulus at room temperature.
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2.3. Definition of Force Damage Variables

There are various definitions for damage variables. Because material damage is the
cause of changes in the material’s meso-structure and certain macro-physical properties,
to some extent, the destruction of rock materials is the process of damage accumulation,
the benchmark for measuring damage can be selected from both the microscopic and
macroscopic aspects. The damage of micro-elements in rock under load is generally
random. Use the ratio of the number of damaged cells n under a certain stress level q to the
total number of cells N under the initial state to define the damage variable D, namely

D =
n
N

(6)

According to the Krajcinovic model, the damage variable is the failure probability P
of the element [38]. If the probability density function of the element failure is φ(x) , then P
is the cumulative distribution function of F, namely

Dm = P =

F∫
0

φ(x)dx (7)

Based on the strength of the rock micro-element obeys the Weibull distribution, and
its probability density function is:

φ(F) =
m
F0
(

F
F0
)

m−1
exp

[
−( F

F0
)

m]
(8)

where: F represents the intensity of the infinitesimal element, m and F0 are the parameters
of the Weibull distribution.

According to Equation (7), the damage variable of the rock under external load is

Dm =

F∫
0

φ(x)dx = 1− exp
[
−( F

F0
)

m]
(9)

2.4. Definition of the Total Damage Variable of the Rock under the Coupling Action of Acid
Corrosion-Temperature-Confining Pressure

Assuming that the effective volumes of undamaged rock, temperature damaged
rock and temperature-confining pressure coupling effect damage rock are V0, V1 and V2,
respectively, then

DT = 1− V1

V0
(10)

Dm = 1− V2

V1
(11)

From Equations (10) and (11), namely

DS = Dm + DT − DmDT (12)

where: DS is the total damage variable of the rock under the coupling effect of temperature
and confining pressure.

In summary, the total damage variable of rock under the coupling action of acid
corrosion-temperature-confining pressure can be obtained:

D = DC + DS − DCDS = DC + DT + Dm − DT Dm − DCDT − DCDm + DCDT Dm (13)
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Substituting formula (4), (5) and formula (9) into formula (13) can obtain the to-
tal damage variable of rock under the coupling action of acid corro-sion-temperature-
confining pressure:

D = 1− ρr(2000 + H1 + H2)

2ρ0(1000 + Hr)

ET
E0

exp
[
−
(

F
F0

)m]
(14)

2.5. Definition of Rock Micro-Element Strength under Confining Pressure

The failure of rock under external load is generally shear failure, namely

f (σ∗) = k0 (15)

where: σ* is the effective stress of the rock and k0 is a constant.
Based on the strength of the micro-element of the rock obeys the DP criterion, namely

F = f (σ∗) = αI1 +
√

J2 (16)

where: α is the strength parameter of the rock element, I1 and J2 are the first invariant of
stress and the second invariant of deviator stress, and α, I1 and J2 are

α =
sin ϕ√

9 + 3 sin2 ϕ
(17)

I1 = σ∗1 + σ∗2 + σ∗3 (18)

J2 =

(
σ∗1 − σ∗2

)2
+ (σ∗2 − σ∗3 )

2 +
(
σ∗3 − σ∗1

)2

6
(19)

respectively. ϕ is the friction angle of the rock.

ε1 = (σ∗1 − 2vσ∗3 )/E
σ∗1 = σ1

1−Dm
σ∗2 = σ2

1−Dm
σ∗3 = σ3

1−Dm

1− Dm = (σ1−2vσ3)
Eε1


(20)

Replace I1 and J2 with nominal stress σi representation, namely

I1 = Eε1(σ1 + 2σ3)/(σ1 − 2vσ3) (21)√
J2 = Eε1(σ1 − σ3)/

√
3(σ1 − 2vσ3) (22)

From formulas (16), (17), (21), (22), namely

F = f (σ∗) = αI1 +
√

J2 =

Eε1

[
sin ϕ(σ1 + 2σ3) +

√
3 + sin2 ϕ(σ1 − σ3)

]
√

9 + 3 sin2 ϕ(σ1 − 2vσ3)
(23)

2.6. Damage Evolution Equation of Rock under the Coupling Action of Acid
Etching-Temperature-Confining Pressure

Substituting Equation (23) into Equation (14), namely
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D = 1− ρr(2000 + H1 + H2)

2ρ0(1000 + Hr)

ET
E0

exp

−


ETε1

[
sin ϕ(σ1 + 2σ3) +

√
3 + sin2 ϕ(σ1 − σ3)

]
F0

√
9 + 3 sin2 ϕ(σ1 − 2vσ3)


m (24)

2.7. Damage Constitutive Model of Rock under the Coupling Action of Acid
Etching-Temperature-Confining Pressure

Based on the Lemaitre strain equivalence principle and the concept of effective stress,
the rock damage constitutive relationship can be established as follows:

σ∗i =
σi

1− D
; i = 1, 2, 3 (25)

where: σ∗i is the effective stress of the rock, σi is the nominal stress of the rock, and D is the
total damage variable of the rock. According to the generalized Hooke’s law

ε∗i =
[
σ∗i − v(σ∗j + σ∗k )

]
/ET (26)

where: (i,j,k) is (1,2,3), ET, v, ε∗i are the rock elastic modulus at temperature T, Poisson’s
ratio, the effective strain corresponding to the effective stress σ∗i , respectively.

Based on the deformation coordination conditions:

ε∗i = εi (27)

From Equations (25)–(27), we can get:

σ1 = ETε1(1− D) + v(σ2 + σ3) (28)

The initial axial strain generated under the initial confining pressure is

σ1t = σ1 − σ3 (29)

ε10 =
1− 2v

ET
σ3 (30)

ε1 = ε1t + ε10 (31)

where: ε1, ε1t, ε10 are the actual axial strain, the measured axial strain, the initial axial strain,
respectively, σ1t is the axial deflection stress.

Substituting Equations (24) and (29)–(31) into Equation (28), the statistical constitutive
model of triaxial compression of rock under the coupling action of acid etching-temperature-
confining pressure can be obtained:

σ1t = [ETε1t + (1− 2v)σ3]
ρr(2000+H1+H2)

2ρ0(1000+Hr)
ET
E0

exp

{
−
{

[ETε1t+(1−2v)σ3]
[
(σ1t+3σ3) sin ϕ+σ1t

√
3+sin2 ϕ

]
F0
√

9+3 sin2 ϕ[σ1t+(1−2v)σ3]

}m}
+(2v− 1)σ3

(32)

3. Determination of Model Parameters

The model parameter ρr, ρ0, H1, H2, Hr is obtained through the rock test and rock CT
scan test. The expression of ET can be expressed as:

ET = aT2 + bT + c (33)

where: a, b, and c are constants obtained by fitting experimental data.
The peak stress σp and the corresponding peak strain εp of the rock meet the following

two geometric conditions:
ε = εp, σ1 = σp (34)
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ε = εp,
dσ1

dε1
= 0 (35)

First, from Equations (32) and (34), we can get:

ρr(2000 + H1 + H2)

2ρ0(1000 + Hr)

ET
E0

exp
[
−
(

Fsc

F0

)m]
=

σp + (1− 2v)σ3

ETεp + (1− 2v)σ3
(36)

among them,

F =

[ETε1t + (1− 2v)σ3]

[
(σ1t + 3σ3) sin ϕ + σ1t

√
3 + sin2 ϕ

]
√

9 + 3 sin2 ϕ[σ1t + (1− 2v)σ3]
(37)

Secondly, the derivative of Equation (32) and combine Equation (35).
Take the partial derivative of Equation (32) to get

∂σ1t

∂ε1t

∣∣∣∣ σ1t = σp
ε1t = εp

=
ρr(2000 + H1 + H2)

2ρ0(1000 + Hr)

ET
E0

exp
[
−
(

F
F0

)m]{
ET −

m
[
ETεp + (1− 2v)σ3

]
Fsc

(
Fsc

F0

)m ∂Fsc

∂ε1t

}
(38)

Know from formula (35)

ET −
m
[
ETεp + (1− 2v)σ3

]
Fsc

(
Fsc

F0

)m ∂Fsc

∂ε1t
= 0 (39)

From Equation (37) can be obtained:

∂Fsc

∂ε1t

∣∣∣∣ σ1t = σp
ε1t = εp

=

ET

[
(σp + 3σ3) sin ϕ + σp

√
3 + sin2 ϕ

]
√

9 + 3 sin2 ϕ
[
σp + (1− 2v)σ3

] (40)

From Equations (39) and (40), we can get

(
Fsc

F0

)m
=

Fsc

√
9 + 3 sin2 ϕ

[
σp + (1− 2v)σ3

]
m
[
ETεp + (1− 2v)σ3

][
(σp + 3σ3) sin ϕ + σp

√
3 + sin2 ϕ

] =
1
m

(41)

From formula (36) and (41), the parameters m and F0 can be obtained:

m =
1

ln ET
E0

ρr(2000+H1+H2)
2ρ0(1000+Hr)

[
ETεp+(1−2v)σ3

σp+(1−2v)σ3

] (42)

F0 =

[
ETεp + (1− 2v)σ3

][
(σp + 3σ3) sin ϕ + σp

√
3 + sin2 ϕ

]
√

9 + 3 sin2 ϕ
[
σp + (1− 2v)σ3

] m
1
m (43)

Substitute the model parameters determined above into Equation (32), the damage
constitutive model of rock under the coupling action of acid etching-temperature-confining
pressure can be obtained.
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4. Verification of Damage Statistical Constitutive Model of Rock under
Triaxial Compression

This paper used the research results of Min et al. [39] on uniaxial and triaxial compres-
sion tests of granite after high temperature to verify the accuracy and applicability of the
model. The specific method is as follows:

Min et al. [39]; in the study of the triaxial compression test and the evolution of
mechanical properties of Beishan granite, the MXQ1700 box-type atmosphere furnace was
used to treat the rock samples at a high temperature with a heating rate of 5 ◦C/min and a
target temperature of 25 ◦C, 200 ◦C, 400 ◦C, 600 ◦C, 800 ◦C, after the temperature of the
rock sample reaches the target temperature, keep it at a constant temperature for 2 h. After
the program is stopped, turn off the power and cool naturally in the high-temperature
furnace. The confining pressures of the rock triaxial compression test are 1 MPa, 5 MPa,
10 MPa, 15 MPa and 25 MPa, respectively. The original physical and mechanical parameters
of Beishan granite under triaxial compression are shown in Table 1. The test curve was
obtained by performing triaxial compression tests at different temperatures and confining
pressures [39] (temperatures are 25 ◦C, 200 ◦C, 400 ◦C, 600 ◦C, 800 ◦C, respectively, and
confining pressures are 1 MPa, 5 MPa, 10 MPa, 15 MPa, 25 MPa, respectively).

Table 1. Original physical and mechanical parameters of granite under triaxial compression.

T/◦C σ3/MPa ET/GPa v ϕ/◦

25

1 36.43 0.191

49.68
5 37.30 0.199
10 38.70 0.220
15 41.10 0.234
25 41.80 0.245

200

1 35.55 0.212

48.96
5 38.14 0.243
10 39.30 0.268
15 42.12 0.283
25 42.83 0.297

400

1 30.40 0.240

51.89
5 33.60 0.274
10 37.36 0.311
15 39.05 0.327
25 40.46 0.343

600

1 21.09 0.255

51.48
5 26.94 0.282
10 28.52 0.309
15 31.36 0.336
25 34.13 0.352

800

1 13.57 0.264

46.83
5 17.79 0.302
10 21.43 0.332
15 23.51 0.340
25 27.73 0.376

Substitute the parameters in Table 1 into Equations (30) and (31), the parameters m
and F0 are shown in Table 2.
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Table 2. Model calculation parameters of triaxial compression of granite.

T/◦C σ3/MPa σp/MPa εp/% m F0/MPa

25

1 134.02 0.520 2.901 222.591
5 168.50 0.611 3.362 270.240

10 221.16 0.694 5.266 308.440
15 267.10 0.805 4.797 387.323
25 308.19 0.887 5.614 433.885

200

1 143.00 0.560 3.033 232.974
5 178.32 0.640 3.224 289.190

10 230.00 0.745 4.217 343.619
15 274.40 0.819 4.462 405.912
25 310.91 0.908 4.599 464.908

400

1 104.00 0.550 2.115 195.730
5 147.00 0.670 2.376 270.941

10 205.00 0.716 3.819 322.005
15 245.00 0.821 3.787 389.997
25 305.00 0.909 5.468 437.147

600

1 82.14 0.647 1.979 158.301
5 135.00 0.775 2.323 251.071

10 170.00 0.840 2.971 294.258
15 200.00 0.881 3.160 343.006
25 287.78 1.050 4.664 434.994

800

1 68.05 0.883 1.777 133.929
5 104.00 0.958 2.055 200.243

10 140.00 1.030 2.239 266.396
15 166.83 1.110 2.287 319.621
25 225.00 1.228 2.468 426.229

Comparison and Analysis of Results

Compare the peak values of stress-strain test curves and theoretical curves of granite
under different temperatures and confining pressures, as shown in Table 3. In order to
display the comparison results more intuitively, compare the experimental stress-strain
curve with the theoretical stress-strain curve under different confining pressures and
different temperatures, as shown in Figures 1 and 2. By comparing the experimental stress-
strain curve with the theoretical stress-strain curve, indicate that the established damage
statistical constitutive model can better reflect the stress-strain characteristics of the rock
during triaxial compression. Under the same confining pressure, the peak strain at the peak
point of the theoretical curve of the rock damage constitutive model established in this
paper does not change much with temperature, which is consistent with the actual situation.
The peak stress will gradually decrease with the increase of temperature. It can be seen
from Figure 1 that under the same confining pressure, the peak stress of granite gradually
decreases with increasing temperature. It can be seen from Figure 2 that under the same
temperature, the peak stress of granite increases with increasing confining pressure, which
is consistent with the experimental results. The theoretical curve can reflect the rock the
trend of strength and deformation with temperature and confining pressure, which further
illustrates the applicability of the constitutive model applicability and accuracy.

Table 3. Peak values of stress-strain test curves and theoretical curves of granite under different
temperatures and confining pressures.

T/◦C σ3/MPa σp/MPa εp/% σp
′/MPa εp

′/% R

25

1 134.02 0.520 134.00 0.528

0.998
5 168.50 0.611 168.50 0.616
10 221.16 0.694 221.00 0.704
15 267.10 0.805 267.10 0.802
25 308.19 0.887 308.20 0.905
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Table 3. Cont.

T/◦C σ3/MPa σp/MPa εp/% σp
′/MPa εp

′/% R

200

1 143.00 0.560 142.90 0.572

0.999
5 178.32 0.640 178.30 0.641
10 230.00 0.745 229.90 0.752
15 274.40 0.819 274.30 0.818
25 310.91 0.908 310.80 0.916

400

1 104.00 0.550 104.00 0.549

0.998
5 147.00 0.670 147.00 0.669
10 205.00 0.716 205.00 0.723
15 245.00 0.821 245.00 0.828
25 305.00 0.909 305.00 0.912

600

1 82.14 0.647 82.15 0.645

0.999
5 135.00 0.775 135.00 0.778
10 170.00 0.840 170.10 0.841
15 200.00 0.881 200.00 0.885
25 287.78 1.050 287.90 1.050

800

1 68.05 0.883 68.06 0.891

0.997
5 104.00 0.958 104.00 0.943
10 140.00 1.030 140.00 1.030
15 166.83 1.110 166.80 1.098
25 225.00 1.228 225.00 1.232
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5. Conclusions

In this paper, by introducing different damage variables and selecting the D-P criterion,
a damage constitutive model including the damage evolution equation under the action of
acid etching, temperature and confining pressure is established. The acid corrosion-high
temperature-confining pressure of rock constitutive model established can well predict the
stress-strain characteristics of the rock, the peak point of the model is consistent with the
test peak point, and the theoretical curve can reflect the variation trend of rock strength
and deformation with temperature and confining pressure. At the same time, it also shows
that the damage model, including the rock damage evolution equation established in this
paper, can fully reflect the characteristics that rock strength depends on confining pressure.
The main conclusions are as follows:

(1) The theoretical stress-strain curve of the established model is compared with the
stress-strain curve obtained from the experiment. Indicates that the established constitutive
model is more accurate. The rock damage constitutive model established in this paper
can better reflect the stress-strain characteristics of rock during triaxial compression, and
has certain practical significance for mining and nuclear waste storage in underground
high-temperature chemical environments. It is of great significance in the actual work of
predicting the damage of geotechnical engineering materials.

(2) The peak strain of the theoretical stress-strain curve of the model does not change
much with the change of temperature, while the peak stress will fluctuate slightly with
the change of temperature. The peak point of the theoretical stress-strain curve and the
peak point of the experimental stress-strain curve are in good agreement with the change
of temperature.
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(3) The model parameters F0 are affected by the confining pressure and peak stress of
the rock, and have certain mechanical significance. It further explains the correctness and
rationality of the assumptions in the process of model building.

(4) The rock constitutive model established in this paper has the following advantages:
there is no specific rock type parameter, and the required model parameters can be obtained
through conventional triaxial tests; it has nothing to do with the rock type, is a convenient
engineering application, and has wide applicability.
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