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Abstract

This study reports complete plastome sequences for six species of Neotropical Cranichideae

and focuses on identification of the most variable regions (hotspots) in this group of orchids.

These structure of these six plastomes is relatively conserved, exhibiting lengths ranging

between 142,599 to 154,562 bp with 36.7% GC on average and exhibiting typical quadripar-

tite arrangement (LSC, SSC and two IRs). Variation detected in the LSC/IR and SSC/IR junc-

tions is explained by the loss of ndhF and ycf1 length variation. For the two genera of

epiphytic clade in Spiranthinae, almost whole sets of the ndh-gene family were missing. Eight

mutation hotspots were identified based on nucleotide diversity, sequence variability and par-

simony-informative sites. Three of them (rps16-trnQ, trnT-trnL, rpl32-trnL) seem to be univer-

sal hotspots in the family, and the other five (trnG-trnR, trnR-atpA, trnP-psaJ, rpl32-infA, and

rps15-ycf1) are described for the first time as orchid molecular hotspots. These regions have

much more variation than all those used previously in phylogenetics of the group and offer

useful plastid markers for phylogenetic, barcoding and population genetic studies. The use of

whole plastomes or exclusive no-gap matrices also positioned with high support the holomy-

cotrophic Rhizanthella among Orchidoideae plastomes in model-based analyses, showing

the utility of plastomes for phylogenetic placement of this unusual genus.

Introduction

Orchidaceae are one of the largest families of flowering plants, including five subfamilies, 736

genera and more than 30,000 species [1, 2]. One of the five subfamilies is Orchidoideae,

divided into four tribes, including Cranichideae. As currently recognized, this cosmopolitan

subtribe has eight subtribes and includes 96 genera with ca. 1,400 spp [1, 3]. They are charac-

terized by their fleshy, but not tuberose, fasciculate roots, clustered or distributed along rhi-

zome [3].
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Many studies have dealt with phylogenetic issues in the tribe, some in a more comprehen-

sive way focusing on revised limits of the subtribes or involving circumscription or new posi-

tions of genera [4–18], among others. In these studies, largely based on plastid markers, the

nuclear ribosomal internal transcribed spacers (nrITS) have been the exclusive source of

nuclear information in the tribe (exception being [18], who used Xdh in Goodyerinae). Most

of these studies used only a few plastid regions, usually rbcL and matK exons, the intron/spacer

of trnL-F and less frequently the atpB and psaB exons and the rpoB-trnC spacer. Use of these

regions was purely based on their previous use in other studies without prior analysis of their

variability. Moreover, the low resolution and support in several clades in these studies necessi-

tates identification of new and more variable regions for obtaining well-supported results.

In recent years, high-throughput sequencing technologies have provided an opportunity

for study of genomic evolution and interspecific relationships of organisms based on large-

scale genomic resources, such as complete plastome sequences [19, 20]. Due to their abun-

dance in the cells, generally maternal inheritance and conserved structural characteristics,

plastomes can provide information for studying species divergence and interspecific relation-

ships of plants [21]. In most angiosperms, plastomes have a quadripartite structure: two

inverted regions (IRs) intercalated between large single-copy (LSC) and small single-copy

(SSC) regions [21, 22]. The plastome is circular and usually ranges from 107 to 218 kbp in

length with about 120 genes [20]. In the orchid family, the length of the plastome is usually

within this range [23, 24], except for holomycotrophic species in which some plastomes have

shrunk to 19 kbp [25, 26].

In this study, we aim to identify the most variable plastid regions in this orchid tribe for use

in future phylogenetics and population genetics studies of Atlantic Rainforest endemics. To do

that, complete plastomes of six Cranichidinae species native to the Neotropics were first

assembled and annotated. We analysed the differences in genome size, content, and structure,

characterizing sequence divergence in hotspot regions. We also included six previously pub-

lished Paleotropical Cranichidinae plastomes. In addition, we evaluated the phylogenetic

relationships in Orchidoideae based on eighteen plastome datasets to contribute to an under-

standing the position of these genera with the phylogenomic data available so far. We focus in

particular on the Australian underground orchid, holomycotrophic Rhizanthella gardneri R.S.

Rogers, which has been the subject of phylogenetic controversy due to having one of the most

highly reduced plastomes of any orchid sequenced to date, with only 59,910 bp and 33 retained

genes [3, 27, 28].

Material and methods

Taxon sampling, DNA extraction and sequencing

Fresh leaf material of Aspidogyne longicornu (Cogn.) Garay (Goodyerinae) Prescottia sta-
chyodes (Sw.) Lindl. (Cranichidinae), Cyclopogon argyrifolius (Barb.Rodr.) Barb.Rodr., Sauro-
glossum elatum Lindl., Eurystyles cotyledon Wawra, Lankesterella ceracifolia (Barb.Rodr.)

Mansf. (all Spiranthinae) was collected from southeastern Brazil in the Atlantic Rainforest

(Table 1).

Plastid enrichment was performed according to the protocol developed by [29], adapted for

a small amount of tissue [30]. Plastid-enriched DNA was extracted according to [31], scaled to

2 mL, and purified with DNA Clean and Concentrator kit (Zymo Research, Orange, CA).

Approximately 1 ng of DNA was used for library preparation using the Nextera XT DNA Sam-

ple Prep Kit (Illumina Inc., San Diego, CA), following manufacturer’s instructions. Sequencing

was performed on an Illumina MiSeq (Illumina Inc., San Diego, CA). The number of paired

reads (2 × 250 bp) per sample varied from 501,686 to 1,637,814 and were imported as FASTQ
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format in CLC Genomics Workbench v.11.0 (http://www.qiagenbioinformatics.com). Reads

were trimmed using a 0.05 quality threshold, resulting in 498,811 to 1,534,494 reads of 167 bp

length on average (S1 Table). These reads were assembled into contigs in CLC Genomics

Workbench (v. 8 and 12) and DNASTAR Lasergene v. 14. The correct size and positioning of

the IRs were determined using REPuter [32], and the IR boundaries were analyzed and visually

compared in Geneious Prime 2019.1.1 (https://www.geneious.com). Annotations were manu-

ally checked: protein-coding regions were validated with ExPASy [33] and tRNA with tRNAs-

can-SE 2.0 [34]. The graphic representation of the plastomes was then produced using

OGDRAW [35].

Plastome structure, gene content, and general characteristics of the plastid genomes

sequenced were compared with three published plastomes of the same subtribe from the

Paleotropics available on the NCBI website: Anoectochilus emeiensis K.Y.Lang (NC033895),

Goodyera fumata Thwaites (NC026773), and Goodyera schlechtendaliana Rchb.f. (NC029364).

Sequences were aligned using the progressive Mauve algorithm [36] in Geneious Prime to ver-

ify structural differences between plastomes.

Comparison of the number of protein, tRNA and rRNA coding regions was performed by

plastome alignment with MAFFT 7 software with the automatic algorithm plugin, 200PAM/

k = 2 [37] in Geneious Prime. In order to examine IR junctions, sequence and content of these

regions were plotted using the online IRscope tool [38]. DnaSP v5.10.1. [39] was employed to

assess sequence variability (SV) among each protein-coding gene (CDS), intron, and intergenic

spacer (IGS) of more than 150 bp flanked by the same region. The number of mutations, inser-

tion/deletion (indel) events, and conserved sites were counted for each sequence. SV was calcu-

lated according to the method of [40]: SV = (number of nucleotide mutations + the number of

indel events)/(the number of conserved sites + the number of nucleotide mutations + the num-

ber of indel events) × 100%. The number of potentially parsimony informative sites (PIS) and

nucleotide diversity (Pi) were obtained as calculated in DnaSP. The nrITS sequences of the same

species were obtained from GenBank to compare the levels of variation in various plastid regions

with this most widely used nuclear marker in Orchidaceae (except for the use of Anoectochilus
roxburghii (Wall.) Lindl.—GQ32877 instead of A. emeiensis due the lack of an available nrITS).

Phylogenetic analyses

For phylogenomic analyses, we used as an outgroup the plastome of Cypripedium japonicum
Thunb. (NC027227), subfamily Cypridedioideae. We also included the available plastomes

Table 1. Vouchers and general features of the complete plastomes of Cranichideae species analyzed in this study.

Plastome Voucher Total cpDNA Size

(bp)

Length of LSC region

(bp)

Length of IR regions

(bp)

Length of SSC region

(bp)

% GC GenBank

accession

Aspidogyne
longicornu

Engels, M.E. 1504

(UPCB)

153,436 82,437 26,492 18,015 36.9 MN597437

Cyclopogon
argyrifolius

Carvalho, B.M. 153

(RB)

154,495 83,704 26,506 17,779 36.9 MN597436

Eurystyles cotyledon Imig, D.C. 366

(UPCB)

139,811 79,842 24,396 11,177 36.5 MN597435

Lankesterella
ceracifolia

Imig, D.C. 358

(UPCB)

142,599 78,992 26,892 9,823 36.3 MN597434

Prescottia
stachyoides

Smidt, E.C. 1080

(UPCB)

154,044 83,373 26,493 17,685 36.7 MN597433

Sauroglossum elatum Imig, D.C. 502

(UPCB)

154,562 83,822 26,503 17,734 37.0 MN597432

https://doi.org/10.1371/journal.pone.0227991.t001
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from subfamily Orchidoideae, tribe Orchideae, subtribe Orchidinae: Dactylorhiza majalis
(Rchb.) P.F.Hunt & Summerh. (MK984209), Habenaria pantlingiana Kraenzl. (NC026775),

Ophrys sphegodes Mill. (AP018717), Platanthera chlorantha (Custer) Rchb. (MK937914), P.

japonica (Thunb.) Lindl. (NC037440); tribe Diurideae, subtribe Rhizanthellinae: Rhizanthella
gardneri R.S.Rogers (GQ413967); and tribe Cranichideae, Subtribe Goodyerinae: Anoectochi-
lus emeiensis K.Y.Lang (NC033895), Goodyera fumata Thwaites (NC026773), Goodyera pro-
cera (Ker Gawl.) Hook. (NC029363), Goodyera schlechtendaliana Rchb. f. (NC029364),

Goodyera velutina Maximowicz ex Regel (NC029365), and Ludisia discolor (Ker Gawl.) Blume

(NC030540). Multiple sequence alignments were performed using MAFFT 7 [37] with settings

described above, visually inspecting and manually adjusting them with Geneious Prime. Indels

were treated as missing data. Phylogenetic analyses were performed using maximum likeli-

hood (ML), maximum parsimony (MP), and Bayesian inference (BI) in order to explore the

results with different assumptions. Due to the loss of many plastid genes in R. gardneri, we

repeated the phylogenetic analyses with only non-gap positions to reduce the effect of missing

data on the phylogenetic placement of this species. ML trees were calculated using IQ-tree

1.6.11 [41] with the concatenated unpartitioned scheme and tree search with 1,000 bootstrap

replicates in a single run [42, 43]. The best-fit models of substitution inferred in the “super-

gene” analyses by AIC were GTR+F+R5. For the support, we used the ultrafast bootstrap

approximation (UFBoot) [44], with the strategy (-bnni) to reduce the risk of overestimating

support. Also, we calculated the SH-like approximate likelihood ratio test (-alrt 1000) [45] as

an alternative method of estimating support. We accepted only SH-aLRT� 80% and

UFboot� 95% as a good support. MP analyses were performed with Fitch parsimony [46]

using the software PAUP 4.0b10a [47]. Analyses included 1,000 random taxon-addition repli-

cates, holding 10 trees per replicate, TBR swapping algorithm, followed by a second search to

explore all topologies from the previous search, limited to 10,000 trees. Support was estimated

with 1,000 bootstrap replicates [48], simple addition, TBR algorithm and holding 10 trees per

replicate. BI was performed using MrBayes 3.2.6 [49] with GTR+I+G model. The analyses

started from random trees and employed Markov chain Monte Carlo (MCMC) runs, over ten

million generations, sampling trees every 1000 generations. We discarded 25% of the initial

generations as the burn-in, after visual inspection for stabilization of tree log-likelihood, as

measured by the standard deviation(s) and PSRF (potential scale reduction factor) values [50]

and ESS>300 in the Tracer 1.7 [51]. The remaining trees were used to produce the BI tree

with posterior probabilities. All trees were edited with FigTree 1.4.0 [52].

Results

Plastome description and hotspot characterization

The six newly sequenced plastomes exhibited lengths ranging from 139,811 to 154,562 bp,

with 36.7% average GC content and the typical quadripartite structure (Table 1, Fig 1).

The Mauve alignment indicated that there are no major structural differences between the

analyzed plastomes (S1 Fig). Variation in the length of some regions (S2 Table) and differences

in the positioning of some genes in IR boundaries (Fig 2) was identified.

The list of plastid genes identified is presented in Table 2, and statistics for each CDS,

intron, and intergenic spacer are in S2 Table.

A few length differences in one copy of the rpl22 gene were detected in the LSC/IRb junc-

tion. The ndhF region was absent in Eurystyles cotyledon, and the length of ycf1 was shorter

than in the other studied species in the IRb/SSC junction. In the SSC junction with IRa, there

are differences in the length of the second copy of the ycf1 and a few differences in the length

of rpl22.
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All genes are present in all species, except for some subunits of NAD(P)H-quinone oxidore-

ductase, which are missing in Lankesterella ceracifolia (ndhA, ndhC, ndhE, ndhG, ndhH, ndhI,
ndhJ, nhdK) and Eurystyles cotyledon (ndhA, ndhC, nhdF, ndhG, ndhI, ndhJ, nhdK).

For all regions longer than 150 bp, the statistics for Pi, SV and PIS/bp are relatively congru-

ent. For the ten most variable regions in each statistic, all are intergenic spacers and eight most

variable regions are the same for the three parameters (rps16-trnQ, trnG-trnR, trnR-atpA,

trnT-trnL, trnP-psaJ, rpl32-infA, rps15-ycf1 and rpl32-trnL). No individual region has more

nucleotide diversity (Pi) than nrITS, but rpl32-trnL and rpS16-trnQ contain more sequence

variability (SV) and rpL16-rpS6 contains more parsimony-informative sites (Fig 3, S2 Table).

Phylogenetic relationships

The aligned dataset consisted of 195,841 characters, of which 153,336 (78%) are monomor-

phic, and 16,086 (8.2%) characters were potentially parsimony-informative. MP recovers only

one tree (L = 64,472 steps) with a consistency index of 0.78 and retention index of 0.72. All

phylogenetic analyses reconstructed the same topology with strong support for monophyly of

Fig 1. Cranichideae plastomes circular map. A, Aspidogyne longicornu, B, Cyclopogon argyrifolius, C, Eurystyles cotyledon, D, Lankesterella
ceracifolia, E, Prescottia stachyoides, F, Sauroglossum elatum. The genes represented inside the circle are transcribed clockwise and those

outside are transcribed counter-clockwise. The dark gray rim inside the figure corresponds to the distribution of GC content across the

plastome.

https://doi.org/10.1371/journal.pone.0227991.g001

Fig 2. Comparison of the boundaries of LSC, SSC, and IR regions of the complete plastomes of Cranichideae. JLB (IRb /LSC), JSB

(IRb/SSC), JSA (SSC/IRa) and JLA (IRa/LSC) denote the junctions between each corresponding region in the genome.

https://doi.org/10.1371/journal.pone.0227991.g002

Phylogenomics of Cranichideae

PLOS ONE | https://doi.org/10.1371/journal.pone.0227991 January 28, 2020 6 / 15

https://doi.org/10.1371/journal.pone.0227991.g001
https://doi.org/10.1371/journal.pone.0227991.g002
https://doi.org/10.1371/journal.pone.0227991


tribes Cranichideae and Orchideae (Fig 4). In Cranichideae, Cranichidinae are monophyletic

with strong support, Prescottia stachyoides is sister of Spiranthinae and both sister to Goodyer-

inae. In Spiranthinae, Eurystyles cotyledon plus Lankesterella ceracifolia are sister to Cyclopogon
argyrifolius plus Sauroglossum elatum. In subtribe Goodyerinae, Goodyera is biphyletic, and

Aspidogyne is sister to G. fumata. All these relationships receive strong support. Rhizanthella is

sister to Orchideae with high support in the BI and ML trees, but with MP this species is sister

to both Cranichideae and Orchideae with low support (not shown).

The matrix excluding gaps consisted of 51,193 characters, of which 36,614 (73%) are con-

stant, and 4,090 (8,1%) characters were potentially parsimony-informative. MP recovered one

Table 2. List of genes identified in the plastomes of Aspidogyne longicornu, Cyclopogon argyrifolius, Eurystyles cot-
yledon, Lankesterella ceracifolia, Prescottia stachyoides and Sauroglossum elatum.

Group of gene Gene name

Gene expression machinery

Ribosomal RNA genes rrn4.5b; rrn5b; rrn16b; rrn23b

Transfer RNA genes trnA–UGCab; trnC–GCA; trnD–GUC; trnE–UUC; trnF–GAA; trnfM–CAU; trnG–
GCCb; trnG–UCC; trnH–GUGb; trnI–CAUb; trnI–GAUab; trnK–UUU; trnL–
CAAb; trnL–UAAa; trnL–UAG; trnM–CAU; trnN–GUUb; trnP–UGG; trnQ–UUG;

trnR–ACGb; trnR–UCU; trnS–GCU; trnS–GGA; trnS–UGA; trnT–GGU; trnT–
UGU; trnV–GACb; trnV–UACa; trnW–CCA; trnY–GUA

Small subunit of ribosome rps2; rps3; rps4; rps7b; rps8; rps11; rps12ab; rps14; rps15; rps16a; rps18; rps19b

Large subunit of ribosome rpl2ab; rpl14; rpl16a; rpl20; rpl22 b; rpl23b; rpl32; rpl33; rpl36
DNA-dependent RNA

polymerase

rpoA; rpob; rpoC1a; rpoC2

Translational initiation

factor

infA

Maturase matK
Genes for photosynthesis

Subunits of photosystem I

(PSI)

psaA; psaB; psaC; psaI; psaJ; ycf3a; ycf4

Subunits of photosystem II

(PSII)

psbA; psbB; psbC; psbD; psbE; psbF; psbH; psbI; psbJ; psbK; psbL; psbM; psbN; psbT;

psbZ
Subunits of cytochrome b6f petA; petBa; petDa; petG; petL; petN
Subunits of ATP synthase atpA; atpB; atpE; atpFa; atpH; atpI
Subunits of NADH

dehydrogenase

ndhAacd; ndhBabc; ndhCcd; ndhDcd; ndhEd; ndhFcd; ndhGcd; ndhHcd; ndhIcd; ndhJcd;

ndhKcd

Large subunit of Rubisco rbcL
Other functions

Envelope membrane

protein

cemA

Subunit of acetyl-CoA

carboxylase

accD

C-type cytochrome

synthesis

ccsA

Subunit of protease Clp clpPa

Component of TIC complex ycf1b

Unknown function ycf2b

a Genes containing introns
b Duplicated genes
c Deleted in Eurystyles
d Deleted in Lankesterella

https://doi.org/10.1371/journal.pone.0227991.t002
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tree (L = 19,860 steps) with a consistency index of 0.79 and retention index of 0.69. All analyses

reconstructed the same topology for complete matrix, except for lack of support for a clade of

Goodyerinae that contains Ludisia discolor, Anoectochilus emeiensis and Goodyera (Fig 4).

Fig 3. Expected number of genetic differences within each protein-coding sequence (CDS), intron, and intergenic

spacer (IGS) of Cranichideae plastomes. Gene order is preserved beginning at the top with the large single-copy

(LSC), intersection of the inverted repeat (IR), and the small single-copy (SSC) region at the bottom, ending with

rps15-ycf1. For comparison, nrITS is placed at the bottom. The vertical dotted lines highlight the average value across

regions (Pi = 0.056, SV = 20.14 and PIS/bp = 6.55), and the stars highlight the ten regions that on average contain the

greatest amount of nucleotide diversity (Pi), highest sequence variability (SV), and greatest number of potentially

informative characters (PIS/bp). Regions in red were used in previous phylogenetic studies of the group.

https://doi.org/10.1371/journal.pone.0227991.g003

Fig 4. Phylogenetic relationships inferred with ML, MP, and BI. A. Full-length plastome sequences of representative Orchidoideae. B.

With only non-gap sites of the plastomes. Node support is derived from IQ-tree bootstrap, and SH-like approximate likelihood ratio test

above the branches and maximum parsimony bootstraps and Bayesian posterior probabilities bellow the branches. Cypripedium japonicum
was specified as the outgroup.

https://doi.org/10.1371/journal.pone.0227991.g004
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Rhizanthella is sister to Orchideae with high support in BI and ML analyses, and with MP this

species is again sister to Cranichideae and Orchideae with low support (not shown).

Discussion

Plastome description and hotspot characterization

This study sequenced for the first time six whole plastomes for six orchid species in subtribe

Cranichideae. The genomic structure and gene content are conserved in general. Plastome

length in Eurystyles cotyledon and Lankesterella ceracifolia were shorter than those of the other

species, due to loss of most ndh genes encoding subunits of the NAD(P)H-quinone oxidore-

ductase proteins. The ndh gene complex comprises 11 genes that act in electron transport in

photosystem I [53]. However, in Orchidaceae plastomes, there is a great variation in retention/

deletion of the ndh genes among different clades, suggesting independent losses [24, 54–57].

Because they are important genes for photosynthesis, there may be functional copies in the

nuclear or mitochondrial genomes [21, 26, 55, 58, 59], but it has also been suggested that the

ndh genes are dispensable [60]. In several photosynthetic groups that are neither mycohetero-

trophic nor parasitic (summarized in [61]), ndh genes have been lost and often are the first

plastid genes to be lost [26, 62]. Eurystyles and Lankesterella are the only genera of the epi-

phytic clade in Spiranthinae (sensu [17]), and their ndh gene loss should probably be consid-

ered an apomorphic character in the relation to the other two Spiranthinae plastomes

sequenced. [54, 55] suggested that there is a clear relationship between the loss of ndh genes

and instability in IR/SSC boundaries, and [24] also reported length variation in ycf1. In our

study, both conditions are related to differences in these boundaries (Fig 2).

Niu et a. [63] reported mutational hotspots as genus-specific in orchid plastomes and pro-

posed three markers for Epidendroideae (trnK-rps16, trnS-trnG, and rps16-trnQ) and two for

Cypripedioideae (clpP-psbB and rps16-trnQ). In a study of plastome variation in Dendrobium,

[64] proposed the combination of five markers (trnT-trnL, rpl32-trnL, clpP-psbB, trnL intron,

and rps16-trnQ) for phylogenetic and DNA barcoding studies of the genus. Here, we suggest

eight hotspot markers for Cranichideae. Due to previously being regarded in other studies as

hot spots, three of them (rps16-trnQ, trnT-trnL, rpl32-trnL) seem to be universal in the family,

but the other five (trnG-trnR, trnR-atpA, trnP-psaJ, rpl32-infA, and rps15-ycf1) are identified

for the first time.

Phylogenetic relationships

In all analyses, the currently recognized taxa (tribes and subtribes) with more than one plas-

tome included in the analysis were recovered with high support and, although with limited

taxon sampling, our results agreed with the classification proposed in [1]. In Cranichidinae, as

expected, Prescottia is sister to the Spiranthinae plastomes sampled, and in Spiranthinae, the

epiphytic clade (Eurystyles plus Lankesterella) is also recovered with high support as sister to

Cyclopogon plus Sauroglossum, in agreement with the results of [17]. By contrast, for the Good-

yerinae, although the subtribe is recovered with high support, Goodyera is biphyletic. Chen

et al. (2019) demonstrated the non-monophyly of Goodyera as currently circumscribed using

two nuclear and five plastid markers. Our results place Goodyera fumata sister to Aspidogyne,
which corresponds to the Microchilus subclade sensu [18].

Many non-photosynthetic taxa (both mycotrophic and parasitic) have a history of being

phylogenetically difficult to place because many of the plastid regions utilized in early phyloge-

nies are absent or degraded, and there have been such problems as well with holomycotrophic

orchids [25, 26, 65, 66]. The position of holomycotrophic Rhizanthella in our analyses agrees

with the classification scheme of [1], sister to Cranichideae with high ML and BI support and
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low support with MP, which placed Rhizanthella as a sister to both tribes. The full plastome

analysis shows better support than the use only non-gaped sites. In addition, absence of some

regions in the plastomes of non-photosynthetic taxa species and rate heterogeneity could lead

to phylogenetic artifacts [65].

Conclusions

In this study, six plastid genomes of Cranichideae species were sequenced and annotated.

They are relatively conserved, but for the epiphytic clade of Spiranthinae almost the whole set

of the ndh-gene complex was truncated or pseudogenized. Eight mutation hotspot regions

were identified in these plastid genomes and have much more variation than any those used

for the group before, giving them potential as markers for phylogenetic, barcoding and popula-

tion genetic studies. Although different criteria and methods could affect hotspot identifica-

tion, our findings in this study compared with previous studies in other orchid groups suggest

many plastid hotspots in are clade-specific, whereas other hotspots are shared by all orchid

genera. The use of complete plastomes supported placement of holomycotrophic Rhizanthella
as sister to Cranichideae, demonstrating the utility of plastomes in orchid phylogenetics.
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