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Abstract

Prognostic assessment in traumatic brain injury (TBI) is embedded deeply in clinical care. Considering the limitations of
current prognostic indicators, there is increasing interest in understanding the role of new biomarkers, and in finding other
prognostic indicators of long-term outcomes following TBI. New prognostic indicators may result in the development of
more accurate prediction models that could be useful for both risk stratification and clinical decision making. We aimed to
review methodological issues and provide tentative guidelines for prognostic research in TBI. Prognostic factor research
focuses on the role of a specific patient or disease-related characteristic in relation to outcome. Typically, univariable
relations of the prognostic factor are studied, followed by analyses adjusting for other variables related to the outcome.
Following existing guidelines, we emphasize the importance of transparent reporting of patient and specimen charac-
teristics, study design, clinical end-points, and statistical analysis. Prognostic model research considers combinations of
predictors, with challenges for model specification, estimation, evaluation, validation, and presentation. We highlight
modern approaches and opportunities related to missing values, exploration of non-linear effects, and assessing between-
study heterogeneity. Prognostic research in TBI can be improved if key methodological principles are adhered to and

when research is performed in collaboration among multiple centers to ensure generalizability.
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Introduction

STABLISHING A RELIABLE PROGNOSIS early after traumatic
brain injury (TBI) is notoriously difficult because of the het-
erogeneity of the condition. Clinicians involved in the care of pa-
tients with severe TBI are not always in agreement when predicting
long-term functional outcomes.' More so, mortality after severe
TBI has been observed to be variable across centers in this popu-
lation, while most TBI patients die following the decision to
withdraw life-sustaining therapies.” The lack of appropriate prog-
nostic information was one of the factors shown to influence de-
cisions regarding the level of care for patients with severe TBI.?
To predict outcomes after moderate and severe TBI various
prediction models have been developed.* Prediction models com-
bine clinical characteristics and data to predict the risk of an out-
come for individual patients. Prediction models may support early
clinical decision making. They may also facilitate reliable com-

parison of outcomes among different patient cohorts and variations
in results over time. Further, prediction models have been used for
risk stratification of patients and covariate adjustment in random-
ized controlled trials (RCTs).>¢

Over the years, several prediction models for moderate and severe
TBI were proposed.* Among those, the Corticosteroid Randomisa-
tion After Significant Head injury (CRASH) and International Mis-
sion for Prognosis and Analysis of Clinical Trials in Traumatic
Brain Injury (IMPACT) models formed a contrast to previously
developed models.”® Previous models were commonly developed
on relatively small samples, often originated from a single center or
region, and lacked external validation.* Simple and more extensive
versions of the CRASH and IMPACT prediction models were
proposed, with increasing discriminative ability (Supplementary
Table S1). Blood biomarkers, imaging biomarkers, and dynamic
predictors have been suggested as promising indicators in TBI
research, which have the potential to further improve these models.
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TABLE 1. PROGNOSTIC RESEARCH: CHARACTERISTICS OF PROGNOSTIC FACTOR AND PREDICTION MODEL RESEARCH

Characteristic Prognostic factor

Prediction model

Research question
. What is the shape of the association?

. Is this factor independently associated with the outcome?

How well can we predict outcome based
on a combination of prognostic factors?

. What is the incremental predictive value?

. Relative risk (e.g., OR, HR) with 95% confidence interval

. Graphical assessment of continuous prognostic factors

. Improvement in performance measures (e.g., ¢ statistic,
Nagelkerke R?)

Univariate analysis and adjusted analysis including other
variables related to the outcome

Effect measure Predictive performance, including discrimination
(e.g., c statistic) and calibration

(e.g., graphical assessment)

W= WK —

Analysis Multivariable modeling and validation

OR, odds ratio; HR, hazard ratio.

Although guidelines have been proposed for model develop-
ment and reporting,”*~"! prognostic research studies in TBI often
have methodological limitations.*'*'* We aimed to review
methodological issues and provide tentative guidelines for prog-
nostic research in TBI. We first consider prognostic factor re-
search.!! Such research focuses on the prognostic role of a single
or multiple markers in combination with clinical characteristics
and other prognostic indicators. Next, we consider prediction
model research.’ Because prognostic research is increasingly
conducted in collaborative initiatives, such as the International
Initiative for Traumatic Brain Injury Research (InTBIR),'* we

explicitly consider challenges of multi-center data and analyses
for model development and validation.

Methods

Prognostic research studies can be separated into two main ca-
tegories: studies with a focus on the prognostic role of specific
patient- or disease-related characteristics in relation to outcome
(““prognostic factor research’), and studies with a focus on the
combined effect of various prognostic factors in spredicting the
outcome (‘‘prediction model research’) (Table l).*’”‘15 In prog-
nostic factor studies, we may start with assessing whether the factor

TABLE 2. SPECIFIC ELEMENTS FOR PROGNOSTIC FACTOR RESEARCH IN TBI, BUILDING oN THE REMARK GUIDELINE'®

Topic Description

Selection of patients Inclusion and exclusion criteria may vary among studies in relevant aspects, such as age, severity, setting,

region, and treatment policies. Inclusion of patients is ideally consecutive.

Prognostic factors
considered

Typical prognostic factors may include clinical indicators (vital signs, intracranial pressure, cerebroperfusion
pressure); radiological imaging (CT scan, MRI); electrophysiological tests (EEG, SSPEP); and tissue
biomarkers (in blood, cerebrospinal fluid). Timing of assessment after trauma, method of acquisition
(technology), as well as methods of handling and storage are important to report and address in statistical
analyses.

Study design All candidate variables need to be reported if examined or considered for inclusion in statistical models.
Outcome measures must be chosen in relation to the severity of the TBI and may vary from mild to more

severe TBI. Rationale for sample size should be provided.

Statistical analysis
methods

A core set of predictors needs to be considered for adjustment of prognostic factor associations, depending on
the severity of disease and availability of data. Core predictors for moderate and severe TBI include age,
motor score (or full GCS), and pupillary reactivity. For mild TBI, the core set is less well defined and may
depend on the outcome considered. Missing values in the variables in the core set may be imputed to gain
efficiency.

The relation of the marker to the core set variables needs to be studied; for example, with correlation analyses
and graphical inspections.

Marker values are commonly continuous in nature. The shape of the association with the outcome needs to be
examined with sufficiently flexible functions, such as splines, with graphical inspection.

Descriptive results Consider the flow of patients through each stage of the analysis, with the number of events, and reasons for
dropout.
Describe characteristics in sufficient detail, including demographics, standard prognostic variables, and the

prognostic factors considered, including the numbers of missing values.

Statistical results Univariate and adjusted analyses show the relationship between the marker and outcome, with the estimated
association (for example, odds ratio plus confidence interval). Adjustment should be for the core set of
variables, irrespective of statistical significance. Incremental predictive value can be indicated by measures

for discrimination, such as the increase in ¢ statistic, and overall fit, such as explained variability (R%).

Interpretation Results should be interpreted in the context of the pre-specified hypotheses and other relevant studies. Ideally,
replication is done in similar studies. Limitations of the study, and implications for future research, need to

be considered.

TBI, traumatic brain injury; REMARK, REporting recommendations for tumour MARKer prognostic studies; CT, computed tomography;
MRI, magnetic resonance imaging; EEG, electroencephalography; SSEP, somatosensory evoked potential; GCS, Glasgow Coma Score.
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is independently associated with the outcome of interest. “‘In-
dependently”” here refers to the association of the prognostic factor
with the outcome separate from other prognostic indicators, and
typically requires some form of statistical adjustment in the anal-
ysis. We may also analyze whether the risk of the outcome uniformly
increases or decreases, or has a more complex relationship when
considering a continuous predictor. Moreover, we may be interested
in a quantification of the incremental predictive value.

In prognostic factor research, it is typical to first study uni-
variable relations of the prognostic factor in a cross-table or re-
gression model, followed by regression analyses adjusting for
other variables related to the outcome. The effect measure com-
monly is relative, for example, an odds ratio (OR) in a logistical
regression model, when considering a binary outcome, or hazard
ratio (HR) in a Cox regression model, when considering a survival
outcome. A p value may support claims of statistical significance,
which can also be inferred if the 95% confidence interval does not
include the value 1. Graphical assessments are helpful to study the
shape of an association, while the incremental value can be noted
from the improvement in performance measures such as the
concordance (c) statistic (equivalent to the area under the receiver
operating characteristic [ROC] curve for binary outcomes), or
Nagelkerke’s R°.

Whereas prognostic factor research may give rise to speculation
on causal effect and mechanism of action, prediction models
commonly address a more pragmatic research question: How well
can we predict the outcome based on a combination of prognostic
factors? In prediction model research, it is typical to analyze
combinations of prognostic factors in multivariable models, fol-
lowed by analyses of predictive performance, including measures
for discrimination (e.g., c statistic) and calibration (e.g., graphics
and calibration statistics).® The assessment of performance needs
validation in independent data. We can distinguish between inter-
nal and external validation. With internal validation procedures,
such as bootstrap resampling and cross-validation, we aim to cor-
rect the performance estimates. In external validation studies, we
study the generalizability of the model in different but related
settings; for example, by assessing the performance of a proposed
model in another cohort.'®
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Methodological guidance for prognostic research is dispersed
throughout the literature. We take two previously proposed report-
ing guidelines as a basis: REporting recommendations for tumour
MARKer prognostic studies (REMARK), which was originally
intended for reporting of marker research in oncology, and Trans-
parent Reporting of a multivariable prediction model for Individual
Prognosis Or Diagnosis (TRIPOD), which was proposed for re-
porting of prediction model development and validation.”'®

Guidance for prognostic factor research

The original REMARK guideline consists of 20 items that need
to be reported in studies that focus on one or more prognostic
factors (Supplementary Table S2). More specifically, the guideline
was developed for prognostic model studies in oncology that in-
clude tumor markers. The REMARK guideline is applicable to
prognostic factor research in fields other than oncology, and is
especially relevant when tissue biomarkers are included as candi-
date gredictors. The guideline was endorsed by multiple jour-
nals.'®'®19 An “Exploration and Elaboration” document provides
more detail on the choice of the items, their relevance, and exam-
ples of good practice.>® We focus on the items that are most rele-
vant to prognostic factors in TBI research and provide examples for
illustration (Table 2).

Patient selection. When designing prognostic studies, the
study population must represent the targeted population for which
these models will be used. However, the selection of patients may
vary substantially among studies. Inclusion and exclusion criteria
may differ among studies in relevant aspects, such as age (pediatric,
adult, geriatric), severity (e.g., based on the Glasgow Coma Scale
score [GCS]), setting (emergency department, ward, intensive care
unit), region (low/middle/high income country), and treatment
policies. For example, the CRASH study included 7526 patients
from low- and middle-income countries, and 2482 from high-
income countries, where mortality at 14 days was 21% versus 16%
(p<0.001).” The IMPACT study included 11 cohorts (three RCTs,
eight observational studies),® and substantial differences were
found in outcome among 265 centers in this study.?' In the INTBIR

Box 1. International Initiative for Traumatic Brain Injury Research (InTBIR) Consortium

InTBIR is a collaborative effort of the European Commission (EC), the National Institutes of Health (NIH), the Canadian Institutes
of Health Research (CIHR), the United States Department of Defense (DoD), the Ontario Brain Institute (OBI), and OneMind, which
aims to coordinate and leverage international clinical research activities on TBI research. InTBIR’s goal is to improve healthcare and
lessen the global burden of TBI through the discovery of causal relationships between treatments and clinically meaningful outcomes.
InTBIR therefore focuses on collecting, standardizing, and sharing clinical TBI data for comparative effectiveness research.

A SELECTION OF INTBIR STUDIES AND THEIR CHARACTERISTICS

Study Geographical region(s) Centers Inclusion criteria

CREACTIVE Europe, Israel 72 Moderate to severe TBI

CENTER-TBI Europe, Israel 59 Clinical diagnosis of TBI; <24 h after injury; clinical indication
for CT scan

ADAPT Australia, Europe, India, New Zealand, 49 <18 years of age; severe TBI; require ICP monitoring

South Africa, United States

TRACK-TBI  United States 20 Clinical diagnosis of TBI; clinical indication for CT scan

TBI-Prognosis Canada 17 Severe TBI; admitted to the intensive care unit

GNRG Latin America 14 >13 years of age; Severe TBI; non-penetrating TBI; absence
of ICP monitoring

TBlIcare United States 2 >18 years of age; mild to severe TBI; clinically significant

pain over the last 6 months

Information obtained from https://intbir.nih.gov/projects
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Box 2. Selection of Outcomes to Be Considered in Prognosis Research in Traumatic Brain Injury

Outcome

Instrument

Mortality

Functional status

Generic HRQoL
TBI-specific HRQoL
Post-concussion symptoms

Neuropsychological testing
Return to work

GOS-E

EQ5-D, SF36, SF12

QoLIBRI, QoLIBRI-OS

Rivermead post-concussion questionnaire

Post-traumatic stress disorder PCL-5
Depression HADS, PHQ-9
Anxiety HADS, GAD-7

GOAT, RAVLT, TMT, CANTAB, 10m walk and timed up and go

Adapted from Maas et al., 2014.%

assessment tests.

GOS-E, Glasgow Outcome Scale-Extended; HRQoL, health-related quality of life; EQ-5D: EuroQol 5 Dimensions Questionnaire; SF12, Short-
Form 12; SF36, Short-Form 36; QOLIBRI, Quality of Life after Brain Injury; QOLIBRI-OS, QOLIBRI-Overall Scale; PCL-5, PTSD Check List;
HADS, Hospital Anxiety and Depression Scale; PHQ-9, Patient Health Questionnaire; GAD-7, General Anxiety Disorder 7; GOAT, Galveston
Orientation and Amnesia Test; RAVLT, Rey Auditory Verbal Learning Test; TMT, Trail Making Test; CANTAB, Cantab neuropsychological

consortium, inclusion criteria also varied substantially among
studies, considering the different objectives and targeted popula-
tions of TBI patients (See Box 1).

Prognostic factors. Prognostic factors may range from
clinical indicators (e.g., disease severity, vital signs, intracranial
pressure, cerebral perfusion pressure) to radiological imaging
(e.g., computed tomography [CT], magnetic resonance imaging
[MRI]), electrophysiological tests (electroencephalogram [EEG],
somatosensory evoked potential [SSEP]), and tissue biomarkers
(in blood, or cerebrospinal fluid) (Supplementary Table S4). The
timing of measurements may vary from the acute phase to several
weeks after trauma.

Biomarkers have received increased attention in the last decade.
Specifics of the data acquisition need to be considered carefully,
and this may be challenging when conducting multi-center studies.
Timing and method of acquisition, as well as methods of preser-
vation and storage, are important. Apart from these aspects being
reported, they may also need to be addressed in statistical analyses;
for example, by adjusting for the time between data acquisition and
trauma. If control samples are used, their characteristics also need
to be described carefully, including their selection.

The assay methods used should be provided, preferably with a
detailed protocol, including specific reagents or kits used, quality

control procedures, reproducibility assessments, quantitation
methods, and scoring and reporting protocols. Further, it is im-
portant to perform assays blinded to the study end-point, for an
unbiased assessment.

As an example, biomarkers were sampled at admission up to 24
months post-injury in the Collaborative European NeuroTrauma
Effectiveness Research in Traumatic Brain Injury (CENTER-TBI)
study. Samples of whole blood, serum, and plasma for genetic,
biomarker, and hemostasis analyses were stored in a specific bio-
bank (Pecs, Hungary). A detailed description of the data acquisi-
tion, including the timing, method, preservation, and storage has
been described elsewhere.*

Study design. Cohort studies are the preferred design for
prognostic research. Ideally, we measure a prognostic factor in a
prospective cohort of consecutive patients and evaluate the re-
lationship with the outcome while minimizing potential con-
founding. Confounding may occur if these prognostic factors
(from clinical data or test results) are evaluated according to
clinical indications. In TBI research, we might consider a number
of different outcomes, depending on the research question and
population under study (see Box 2). For efficiency, case-control
or nested case-control designs can also be used for prognos-
tic factor studies, especially if measurements are relatively

Box 3. Example of a Rationale For Sample Size
Sample size calculation for the CENTER-TBI study

infrastructure.

model, tau of 0.43).

research.

The sample size estimate (n=5400) for the CENTER-TBI study was motivated by:

e Practical logistical considerations; higher numbers would imply too large a burden on local, national, and international

e Power calculations for the different strata, targeting comparative effectiveness analyses, assuming a between-center and
between-country heterogeneity as identified in previous research (expressed by variance parameter from a random effects

o Postulated odds ratios for intervention effects of ~5% improvement in outcome, to be evaluated in comparative effectiveness

Overall, a sample size of 5400 subjects would provide statistical power to detect odds ratios of 1.2 associated with differences in
process characteristics of specific interventions with a power of 80%.




2506 RETEL HELMRICH ET AL.

Box 4. Missing Values

For missing values, multiple imputation has evolved as a standard statistical tool. For many research questions, it is suboptimal to
simply drop records with a missing value (complete case analysis). It may be reasonable to drop a variable with high numbers of
missing observations.

Multiple imputation

e Multiple imputation may often be reasonable for missing values in the variables in the adjustment model, to maximize the
available sample size for the adjusted analysis. The assumption is that missingness may be related to other variables, but not to
unmeasured confounders. To make this ‘“‘missing at random’ assumption plausible, it is advised to let the imputation model
have a rich set of variables: prognostic factors, context factors (e.g. place [site] and time [year] of inclusion), and the outcome.

e Multiple imputation may also be used for the prognostic factor under study. Such imputation may be more controversial,
because we may not want to project findings from the prognostic factor: outcome relation in the complete data on the
incomplete data. On the other hand, imputation is efficient, especially if the prognostic factor is correlated to other factors.
Repeating the imputations multiple times should appropriately capture uncertainty in the process.

e Even more controversial is the imputation of missing outcome data. Statistically, this approach is especially useful if correlates
of outcome are available, such that the correlation structure can be exploited. For example, missing 6 month Glasglow Outcome
Score (GOS) might be imputed for a patient if 3 and 12 month GOS are available in the data. Again, uncertainty should be
captured appropriately by repeating the imputation procedure several times (Richter et al., 2019).>® Each imputed data set is

analyzed as a complete set, with combination of results according to Rubin’s rules (Van Buuren, 2018).%”

expensive. For reporting, all clinical end-points, and all candi-
date variables, need to be mentioned if examined or considered
for inclusion in any form of statistical analysis. Such a trans-
parent report is essential for proper interpretation of a specific
prognostic factor—outcome relationship from a large set of po-
tential relationships as examined in the study. For subjective
outcomes measure, blinding of the assessor is important. This
means that the assessor should be unaware of the values of the
results of the prognostic factors studied.

Sample size. A methodological and ethical rationale for the
sample size should be provided (see Box 3). A formal approach
may consider a pre-specified effect size for the prognostic factor,
combined with the anticipated distribution of the factor and the end-
point. A pragmatic rationale can also be provided.

Statistical analysis

Some key predictors need to be considered for adjustment of
prognostic factor associations (‘‘adjustment model’”), with the aim

of disentangling the ‘‘independent’ association of the prognostic
factor. The choice of the set will depend on the severity of TBI and
the availability of data. Core predictors for moderate and severe
TBI may include age, motor score (or full GCS), and pupillary
reactivity (based on literature, and the CRASH and IMPACT core
models) (Table S1). Other important prognostic factors may in-
clude CT characteristics, secondary insults, and biomarker mea-
surements.>* For mild TBI, a core set is less well defined and may
depend on the outcome considered, such as post-concussive
symptoms, neurocognitive functioning, and health-related quality
of life. In defining confounders, we should follow epidemiological
principles, and not adjust for intermediate factors, which are po-
sitioned in between the prognostic factor and the outcome.

The analysis with the adjustment model should ideally be de-
scribed in detail, not only with respect to the selection of poten-
tially confounding factors, but also on their coding, and the
approach to missing values (see Box 4). Further, the relationship of
the prognostic factors to the variables in the adjustment model need
to be studied, including correlation analyses and graphical in-
spections. A final issue is how we deal with continuous variables
(see Box 5).

Box 5. Continuous Variables

A common approach is to dichotomize prognostic factors as normal/abnormal, or normal/elevated. Such dichotomization implies a
loss of information if the original variable was continuous (Royston et al., 2006). This loss can be quantified by comparing model fit
with a continuous version of the prognostic factor and a dichotomized version, expressed, for example, as explained variability (R
statistics). There are many arguments why dichotomization should be avoided in medical research (Royston, 2006).%®

Instead, the shape of the association of a continuous predictor with the outcome needs to be examined carefully. A linear association
may be considered as a starting point. Log transformations are common to consider for biomarkers. Various other types of non-linear
functions can be used, which provide greater flexibility, such as square terms, splines, or fractional polynomials. Graphical inspection is
also useful to visualize relations that are difficult to grasp from formulas. Differences in fit can be examined, for example, by R?
statistics.

Continuous variables in the IMPACT study

Linear relations with outcome were good approximations after assessment of non-linearity using restricted cubic splines for the
continuous predictors age and glucose. A positive linear relation was observed for age and glucose, with higher values being associated
with poorer prognosis (Fig. 1).
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Nonlinearity assessment of continuous variables age (left) and glucose (right) in parts of the International Mission for
Prognosis and Analysis of Clinical Trials in Traumatic Brain Injury IMPACT) study.
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Results
Descriptive results

It is important to show the flow of patients through the
study, including the number of patients included in each stage
of the analysis and the number of dropouts. The number of
patients and the number of events need to be clear for each
of the analyses performed. Baseline characteristics of the
patients must be described in sufficient detail, including dis-
tributions of basic demographic characteristics (age, sex, and
GCS), standard (disease-specific) prognostic variables, and
the prognostic factors considered, including the numbers of
missing values.

Statistical results

Results of univariable and adjusted analyses should be shown to
document the relationship between the prognostic factor and the
outcome, with the estimated effect size (for example, OR and
confidence interval). If imputation of missing observations must be
done, modeling results should be compared with the results from a
complete case analysis. In a complete case analysis, participants
who have missing data on one or multiple predictor variables are
excluded. A comparison of the results between imputation and
complete case analysis is especially important if participants have
missing data on the prognostic factor under study. To evaluate the
impact of missing values, it may also be insightful to present pat-
terns of missingness.

Incremental predictive value is often of interest. This can be
indicated by measures for discrimination, such as the increase in
the concordance statistic (c statistic, or area under the ROC curve
[AUC]), and overall fit, such as pseudo R?2* The c statistic or
AUC ranges between 0.50 (no discrimination) and 1.0 (perfect
discrimination).

For example, the discriminatory power of the IMPACT models
was calculated with a cross-validation procedure within the IM-
PACT data.® The discriminative ability, indicated with the AUC,
increased with increasing model complexity; the AUC was 0.74 for
the core, 0.77 for the CT, and 0.79 for the laboratory model for
mortality in the tirilazad United States trial (Fig. 2). These results
showed the incremental predictive value of the predictors in the CT
and laboratory IMPACT models.

Interpretation

Although studies on prognostic factors or biomarkers often have
quite positively framed conclusions, only a few prognostic factors
or markers have been validated and proven clinically useful.>>%®
Results should hence be interpreted with caution, and in the context
of the pre-specified hypotheses and other relevant studies. Ideally,
replication is done in similar studies. Limitations of the study need
to be discussed, as do implications for future research, including the
need for validation studies. A prognostic factor may hint at a bio-
logical mechanism, opening new avenues for further research, in-
cluding potential new interventions. A prognostic factor may also
simply indicate an association without a deeper explanation. Such a
factor may still be useful by allowing for more accurate risk esti-
mation, specifically as a building block with other prognostic fac-
tors in prediction models.

Guidance for prediction model research

The TRIPOD guideline consists of 22 items that need to be
reported in a study that focuses on the development and/or vali-
dation of a prediction model (Table $3).° Similar to REMARK, the
guideline was endorsed by multiple journals,”*® and an extensive
“Explanation and Elaboration”” document is available.”® We focus
on the items that are most relevant to prediction models in TBI
research (Table 3), and provide examples for illustration.

Modeling context. Prediction model development or valida-
tion studies share many aspects with prognostic factor research. In
both, the selection of patients, the measurements aspects of prog-
nostic factors, and the study design need attention. Prediction
models aim to estimate absolute risk and are best developed or
validated in cohort studies. The lowest risk of bias is expected in
prospective patients and cohorts of consecutive patients. Prospective
cohort studies are increasingly being conducted including in the
context of the InTBIR initiative.'* Data from an RCT has the ad-
vantage of careful, standardized, high-quality data collection.
However, an RCT typically has specific eligibility criteria, which
results in a relatively narrow patient selection. Further, not all
consecutive patients may consent to participate. A cohort of pa-
tients that is not representative of all consecutive patients is not
optimal for prediction modeling. An optimal cohort for prediction
models consists of unselected consecutive patients who meet the
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(IMPACT) core (left), computed tomography (CT) extended (middle) and laboratory (right) models at external validation in the tirilazad

United States trial.

eligibility criteria for the target population, and is collected through
prospective, careful, standardized, and uniformed high-quality data.

The outcome considered for a prediction model should be patient
centered. Mortality and the Glasgow Outcome Scale (-Extended)
(GOS and GOS-E) 6 months post-injury have often been used, in
line with the primary endpoints in RCTs (see Box 2). In prognostic
model research, the outcome measure depends on several factors,
including the clinical severity of patients, clinical end-point, and
the purpose of the model. The GOS-E is a valuable outcome scale
in moderate and severe TBI. It is, however, a relatively simplistic
scale for assessment of global outcome after TBI, which lacks
sensitivity for mild TBI patients. We may, therefore, consider in-
cluding other outcomes, such as health-related quality of life, post-
concussive symptoms, and neurocognitive functioning, especially
for patients following mild TBI.

As for prognostic factor research, the sample size needs to be
justified. In addition to reasoning based on the anticipated effect size

of a prognostic factor, sample size can also be motivated by rules of
thumb, such as having at least 10 events per candidate predictor.®

Candidate predictors. The CRASH and IMPACT models
considered only three to four predictors for their Basic and Core
models, respectively (Table S1). This narrow selection of predic-
tors was motivated by a literature review to identify the most
common and strong key predictors in moderate to severe TBL'> A
wider selection may be of interest to improve the predictive ability.
It may then make sense to consider extensions on the small set of
key predictors rather than starting a “de novo model” building
exercise. In mild TBI, prediction models and key predictors are less
well established, which may motivate a more exploratory approach.

If the number of candidate predictors is limited (e.g., <20), this is
considered to be modeling of low-dimensional data. A different and
challenging field is that of high- dimensional data, where numbers
of candidate predictors may exceed the numbers of patients (‘‘p>n

TABLE 3. SPECIFIC CONSIDERATIONS FOR PROGNOSTIC MODELS IN TBI, BUILDING ON THE TRIPOD GUIDELINE®

Topic

Description

Candidate predictors
and modeling

Model development

All prognostic factors considered in developing or validating the multivariable prediction model need to be
mentioned, including how and when they were measured. Discuss approaches to dealing with missing values.

The modeling approach needs careful description, including dealing with continuous predictors and statistical

interactions. Estimation of associations may include shrinkage and penalization techniques to prevent
predictions for new patients being too extreme, a problem that occurs with traditional estimation methods.
Finally, clustering of data needs to be considered; for example, in a multi-center context, or a multi-cohort
context, with fixed or random effect modeling.

Model performance

Important measures include discrimination (c statistic), calibration (graphical assessment, with intercept and

slope as key parameters), overall performance (e.g., R?), and indications of decision quality (decision curve
analysis, if clinical decisions are to be supported by the model).

Model validation

Methods for internal validation, such as bootstrap resampling, are important at model development to correct

performance estimates for statistical optimism.

External validation is a stronger test, and starts with a clear description of how the predictions were calculated
and a comparison of the validation and development samples. ‘‘Internal-external’’ validation should be
considered for multi-center or multi-cohort studies.

Interpretation

Multivariable prediction models have a long tradition in TBI research, but the clinical role of the developed or

validated model needs careful discussion; for example, merely informing, benchmarking, or supporting

decision making.

TBI, traumatic brain injury; TRIPOD, Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis.
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Box 6. Modeling Techniques

and reduce the risk of overfitting.

Prognostic models are usually developed with multivariable regression techniques on data from (prospective) cohort studies.
Prognostic models for traumatic brain injury (TBI) most commonly predict binary outcomes (e.g., mortality, unfavorable outcome).
For such binary outcomes, the logistical regression model is the most widely used statistical technique. Recently, modern modeling
techniques, such as penalized estimation and machine learning, are gaining increased attention. Machine learning techniques aim to
learn more directly from the data, without assuming some type of underlying statistical model. These techniques are more flexible than
traditional modeling techniques (e.g., they can adjust the complexity of the method according to the data, and can capture complex
relationships between the factors and the outcome). However, more data is required to obtain accurate estimates of model parameters,

TRADITIONAL AND MODERN MODELING TECHNIQUES

Modeling techniques

Methods

Regression

Penalized estimation

Machine learning techniques

Logistical regression
Generalized additive model
Ridge regression

LASSO

Elastic net

Neural network

Random forest

Support vector machine

s

situation,” see Box 6). In any case, all candidate predictors that
are used in developing or validating the multivariable prediction
model should be listed, with a description of how and when they
were measured.

As was discussed for prognostic factors, missing values are a key
issue. A candidate predictor may be excluded from further mod-
eling if it has many missing values (e.g., >50% missing values).
Traditional multivariable statistical analysis may suffer severely
from missing values: a single missing value in one of the candidate
predictors causes the full patient record to be discarded. Multiple
imputation is a well-known strategy to fill in missing values. It
allows for statistically appropriate use of records with one or more
missing values, and should hence be preferred over a complete case
analysis.

Model development. Prognostic models are typically de-
veloped using regression analysis. Recently, machine learning
approaches, such as support vector machines, random forests, and
neural nets, have gained increased attention. It is yet unclear
whether and in which scenarios such methods outperform regres-
sion analysis in prediction of outcome following TBI.*

Modeling a combination of predictors poses challenges that in-
clude potential non-linear associations, interaction effects of pre-
dictors, optimal estimation, and dealing with clustering. When we
consider a continuous predictor as a linear term in a prediction
model, we assume that the effect is the same at each part of the
range of the predictor. For example, we may assume that the effect
of being 10 years older is the same at the age of 40 (50 vs. 40) and
70 (80 vs. 70) years for patients following TBI. If a non-linear
relation is expected, we can use flexible functions such as splines or
fractional polynomials in regression models. Modern modeling and
algorithmic approaches, such as generalized additive models
(GAM) or support vector machines (SVMs), may include even
more flexible high-dimensional smoothness in the relations of
continuous predictors to the outcome.

Combinations of prognostic factors may have differential effects,
meaning that statistical interactions may be present. Multiplicity is a

threat in attempts of modeling such interactions. For example, five
predictors imply that 10 potential two-way interactions could be
studied, while ignoring higher-order interactions. The number of
potential interactions rises quickly with a large number of predictors
(e.g., 45 for 10 predictors, and 190 for 20 predictors). Currently,
available prediction models often ignore such potential interactions
and merely rely on the main effects of predictors. If assessed, it may
be useful to perform overall tests of significance (e.g., considering
all potential interactions with age and sex).>' If such a single overall
test does not show significant results, we may decide to ignore the
interactions. Alternatively, tree-based methods such as like Classi-
fication And Regression Trees (CART) and random forests indi-
rectly consider interactions between factors. However, these
methods are at risk for overfitting.>

Another challenge lies in the optimal estimation of prognostic
associations. Statistical overfitting of available data is a key prob-
lem in prediction models: patterns in the data are described that do
not generalize outside the specific data set considered.®> As the
complexity of the model (e.g., the number of coefficients or pa-
rameters estimated) increases, there is a greater risk for overfitting.
Such overfitting may be reduced by reducing the number of ex-
amined prognostic associations in a model. Regression coefficients
can be shrunk toward zero for less extreme and more stable pre-
dictions.*=* Similarly, penalization procedures can be followed,
such as ridge regression, and penalized estimation. A particularly
promising approach is the Least Absolute Shrinkage and Selection
Operator (LASSO), which shrinks some coefficients to zero, hence
effectively reducing the set of candidate predictors. Such selection
through penalization is a statistical improvement over classical
stepwise selection methods (e.g., backward stepwise selection
based on p values). Stepwise selection methods have many disad-
vantages; for example, these methods lead to too extreme estimates
of the effect of selected predictors.®

Finally, the statistical analysis may need to consider the clus-
tering of data; for example, in the context of a multi-center or multi-
cohort study. Stratification by cluster can be achieved by a fixed
effect approach (by conditioning on the cluster; e.g., with dummy
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variables for the studies), or by random effect modeling (also
known as hierarchical modeling, or mixed effect modeling). Ran-
dom effect modeling is advised in instances of a larger number of
clusters; for example, more than five clusters, which allows for a
quantification of the between-cluster heterogeneity. Heterogeneity
is commonly found in the baseline risk, whereas heterogeneity in
prognostic effects may be less relevant; specifically, if clusters are
similar in basic attributes (setting, inclusion criteria).>> Updating of
a model to a specific setting may be motivated by substantial het-
erogeneity across settings.> >’

Model performance. Performance of prediction models is
most commonly assessed with respect to discriminative ability as in
the question of how well we can separate low risk (favorable out-
come) from high-risk patients (unfavorable outcome). Discriminative
ability is then measured with a concordance (c) statistic (equivalent to
the AUC for binary outcomes). The c statistic is a rank order statistic
that ranges between 0.5 (no discrimination) and 1 (perfect discrimi-
nation). Limits for “satisfactory” or “good” discrimination are in-
herently subjective, and context dependent. Values at ~0.8 have
been achieved for rather simple prediction models (Basic CRASH
and Core IMPACT models, Table S1). We note that the discrimi-
native ability depends not only on model characteristics (strong
prognostic associations), but also on the heterogeneity of the sample
of patients (between patient- differences and case mix). Hence, dis-
crimination was substantially higher in unselected cohort studies than
in RCTs.™

Performance can further be quantified by calibration, as by
asking if close to x of 100 patients with a risk prediction of x%
have the outcome. A graphical assessment of calibration is at-
tractive, with predictions on the x-axis and the outcome on the
y-axis. Perfect predictions should be on the 45 degree line. For
binary outcomes, the plot contains 0 and 1 values for the y-axis.
Smoothing techniques can be used to estimate the observed
probabilities of the outcome in relation to the predicted proba-
bilities (e.g., using the locally estimated scatterplot smoothing
[LOESS] algorithm or polynomials).>**°

The calibration plot can be characterized by an intercept a,
which indicates whether predictions are systematically too low or
too high (“‘calibration-in-the-large’’), and a calibration slope b,
which should be 1.*! At model development, a=0 and b=1 for
classical regression models. At validation, calibration-in-the-large
problems are common, as well as b< 1, reflecting overfitting of a
model.

Performance of the CRASH model was assessed in terms of
calibration (calibration graph) and discrimination (c statistic). In
the derivation sample, the CRASH models showed excellent dis-
crimination, with c statistics >0.80. Moreover, the models showed
good calibration graphically.

Overall performance measures relate to goodness of fit. For bi-
nary outcomes, a model’s goodness of fit can be assessed through
measures similar to overall performance measures for linear
models that indicate the explained variability, here labeled “‘pseudo
R?.” Pseudo R? is based on the improvement in model likelihood
over a null model.*> These measures are especially useful for as-
sessing incremental value of predictors. Several variants are
available, including Nagelkerke’s and McFadden’s R?, which both
provide for a natural scaling between 0 and 100%.%

Recent developments include decision-analytic approaches that
explicitly consider the relative weight of false-positive and true-
positive classifications. Such weighting is essential if prediction
models are used to help guide clinical decisions. However, pre-
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diction models have not been perceived clinically useful to help
guide decisions with regard to level of care. However, they could be
eventually used as part of decision support tools or aid for level of
care decisions. ‘‘Decision curve analysis’ has been proposed as a
technique to quantify clinical utility, if clinical decisions are to be
supported by the model. Here, the clinical utility of a prediction
model, or the extension of a model with a prognostic factor, is
examined over a range of plausible decision thresholds.**

Model validation. Model performance can be estimated from
the sample where the model was developed (‘‘apparent perfor-
mance’’). Such assessments are usually optimistic because the
model was optimized for the same data where performance was
evaluated. Methods for internal validation, such as bootstrap re-
sampling or cross-validation, are important during model de-
velopment to correct the performance estimates.*> Bootstrap
procedures can estimate statistical optimism if all modeling steps
are replayed per bootstrap resample, such as selection from a set
of candidate predictors.*® Both bootstrap resampling and cross-
validation use all available data for model development and are
therefore preferred methods for internal validation. A split
sample approach uses only part of the data for model develop-
ment and is not recommended, because of inefﬁciency.45

External validation is a stronger test for a prediction model. Such
an analysis starts with a clear description of how the predictions
were calculated and a comparison of the validation and develop-
ment samples. Specifically, the heterogeneity in case mix is rele-
vant: more heterogeneous validation samples will increase the
expected discrimination.*” Temporal validation includes validation
in a more recent data set, whereas geographic validation includes
validation in another place. Large scale multi-center studies pro-
vide good opportunities for what has been labeled ‘‘internal-
external validation.”” With internal-external validation, every
center or cohort is left out once when developing the models.
Models are evaluated in the centers or cohorts that were not used for
model development. This process is repeated until all participants
have been used for model validation, so that all centers are left out
once, and model performance is estimated over all validations. This
procedure is a variant of cross-validation, a technique that can also
be used for internal validation. At internal validation, parts of the
data are left out at random, whereas internal-external validation
leaves non-random parts of the data out. A sufficient number of
events is required for reliable assessment of performance.*®

As an example, the IMPACT models were cross-validated
across IMPACT cohorts and externally validated in the CRASH
trial.® Across the IMPACT cohorts, the best performance was seen
for the three observational studies, with AUCs >0.80, whereas the
RCTs showed lower discriminative abilities. At external validation
in the CRASH trial, the discriminatory ability of the models in-
creased with increasing complexity; the AUCs ranged between
0.77 and 0.80.

Interpretation. The clinical role of the model needs careful
consideration. In the design of RCTs, prediction models may assist
in patient selection or stratification.* In the analysis of RCTs,
prognostic factors can be used for covariate adjustment. In that
case, we advise that the model be refitted in the sample under study,
preferably with the prognostic factors as individual variables.>
One of the aims of this adjustment is to correct for any imbalance
that may have arisen (by chance) between the treatment arms.
Moreover, the statistical power of an adjusted analysis of the
treatment effect may be larger than that of an unadjusted analysis.”’
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In observational studies, a prediction model may be used for
confounder adjustment in comparing outcomes among centers or at
a patient level. Prediction models may also serve as a reference in
the evaluation of the incremental value of a new prognostic factor.
A prognostic factor should be added to the reference model for a
fair evaluation.”* Such an evaluation should also consider the time
of assessment. For example, when prognostic factors are measured
during the first 3 days of hospital admission, a reference model can
be based on all available information until 3 days rather than fo-
cusing on the admission phase.

Validity of estimated associations and baseline risk is required if
predictions are used to provide prognostic estimates to patients or
relatives, benchmarking, or decision support. Similarly, validity of
predictions is essential if models are used to support the decision-
making process at the bedside. For example, models are used to
decide whether or not a patient should have a CT performed fol-
lowing mild TBI when consulting in the emergency room.>

Model validations in various medical fields have shown that
baseline risk often varies among settings.”* For TBI, substantial
between-center differences in baseline risk have been shown.”
Using a prediction model in a specific setting hence requires con-
sideration of the plausibility of applying absolute risk predictions
from the development setting. Ideally, a validation study is per-
formed, to verify whether the average observed and predicted risks
are similar (calibration-in-the-large, reflecting correctness of
baseline risk). Often, we find that some statistical updating of the
baseline risk is needed.*”

Summary

Establishing a reliable prognosis early after TBI is challenging
because of several factors, including the heterogeneity of the
condition. Further, prognostic research in TBI often has method-
ological limitations, which has resulted in a lack of reliable prog-
nostic information for patients with moderate and severe TBI. We
aimed to review methodological issues and provide tentative
guidelines for prognostic research in TBI. For this purpose, we have
considered two existing reporting guidelines: the REMARK and
TRIPOD guidelines, from which advice on appropriate methods
can be inferred. For prognostic factor research, we emphasize the
importance of transparent reporting of patient and specimen char-
acteristics, study design, clinical end-points, and statistical analy-
sis. Prediction model research especially brings challenges for
model specification, estimation, evaluation, validation, and pre-
sentation. The TRIPOD guidelines underscore the importance of
transparent reporting of these aspects of model development and
validation. Further, we have highlighted modern approaches and
opportunities related to missing values, exploration of non-linear
effects, and assessing between-study heterogeneity by leave-one-
study-out cross-validation.

Discussion

Our review presents various methodological aspects of prog-
nostic research and may provide a solid foundation for future
studies of prognostic factors and prediction models in TBI. For
prognostic factor research, we took the REMARK guidelines as a
foundation. These guidelines have been developed by methodo-
logical experts and have been received positively by other scientists
and editors of journals.'®'®'® Similarly, we used TRIPOD as a
foundation for methodological guidance for prediction model re-
search.”?”?® These guidelines are primarily intended for trans-
parent reporting. Additionally, advice on appropriate methods can
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be inferred from the items listed, and from the motivation for the
inclusion of the items in these guidelines. Also, more in-depth
material is available in the ““Explanation and Elaboration” docu-
ments of these guidelines.?>

In prognostic research it is important to carefully describe the
selection of patients, the prognostic factors considered, and the
study design. Previous reviews showed poor methodological
quality of many model development studies in TBI,'*'* and im-
provements can be made with respect to dealing with missing
values (multiple imputation), assessment of non-linear relations
(using splines or other flexible functions), and estimation of prog-
nostic associations (e.g., using LASSO). For prediction models,
modern machine learning algorithms may prove to be useful for
modeling of high-dimensional data. No benefit is expected from
such methods in low-dimensional data.*® Classical regression
models may then be adequate, especially if the selection from
candidate predictors is done carefully, and modern shrinkage or
penalization techniques are used to prevent too extreme and too
optimistic predictions.

Validation of prognostic claims is essential in prognostic factor
research and prediction model research. Prediction models need
external validation to assess discriminative ability and reliability
(calibration) of predictions in new settings. Heterogeneous model
performance can be interpreted as a warning signal that simple
universal applicability of a ‘“‘global’” prediction model should be
reconsidered, and this indicates that the prediction model should
be updated per setting.>> Various methods are available to update
models to a specific setting, including calibration-in-the large,
adjustment of all regression coefficients, updating of individual
predictor effects, and extending the model with new predictors.’’
Recent collaborative efforts, such as the InTBIR consortium,
provide opportunities for validation. For prognostic factors, we
suggest providing forest plots with estimates per study, as is
standard for genomic analyses. For prediction models, we suggest
internal-external validation procedures, in which performance
is assessed in a study that is left out of the model development
process.

Prognostic research in TBI can be improved if the described key
methodological principles are adhered to, and when research is
performed in collaboration among multiple centers. Recent col-
laborative initiatives provide new opportunities for large-scale
studies with cross-validation of promising findings.
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