
R E G E N E R A T I V E M ED I C I N E

Implantation of the clinical-grade human neural stem cell line,
CTX0E03, rescues the behavioral and pathological deficits in the
quinolinic acid-lesioned rodent model of Huntington's disease

Yongwoo Yoon1 | Hyun Sook Kim2 | Iksoo Jeon1 | Jeong-Eun Noh1 |

Hyun Jung Park1 | Suji Lee1 | In-Hyun Park3 | Lara Stevanato4 |

Caroline Hicks4 | Randolph Corteling4 | Roger A. Barker5 | John D. Sinden4 |

Jihwan Song1,6

1Department of Biomedical Science, CHA

Stem Cell Institute, CHA University,

Seongnam-si, Gyeonggi-do, Republic of Korea

2Department of Neurology, CHA Bundang

Medical Center, CHA University, Seongnam-si,

Gyeonggi-do, Republic of Korea

3Department of Genetics, Yale Stem Cell

Center, Yale School of Medicine, New Haven,

Connecticut

4ReNeuron, Pencoed Business Park,

Bridgend, UK

5John van Geest Cambridge Centre for Brain

Repair, Department of Clinical Neuroscience,

University of Cambridge, Cambridge, UK

6iPS Bio, Inc., Seongnam-si, Gyeonggi-do,

Republic of Korea

Correspondence

Jihwan Song, DPhil, CHA Stem Cell Institute,

Department of Biomedical Science, CHA

University, Rm 604, CHA Bio Complex,

335 Pangyo-ro, Bundang-gu, Seongnam-si,

Gyeonggi-do 13488, Republic of Korea.

Email: jsong5873@gmail.com

Funding information

National Research Foundation of Korea,

Grant/Award Number:

NRF-2017M3A9B4061407; iPS Bio, Inc;

ReNeuron, United Kingdom

Abstract

Huntington's disease (HD) is a devastating, autosomal-dominant neurodegenerative dis-

ease, for which there are currently no disease-modifying therapies. Clinical trials to

replace the damaged striatal medium spiny neurons (MSNs) have been attempted in the

past two decades but have met with only limited success. In this study, we investigated

whether a clonal, conditionally immortalized neural stem cell line (CTX0E03), which has

already shown safety and signals of efficacy in chronic ischemic stroke patients, could

rescue deficits seen in an animal model of HD. After CTX0E03 transplantation into the

quinolinic acid-lesioned rat model of HD, behavioral changes were measured using the

rotarod, stepping, and staircase tests. In vivo differentiation and neuronal connections of

the transplanted CTX0E03 cells were evaluated with immunohistochemical staining and

retrograde tracing with Fluoro-Gold. We found that transplantation of CTX0E03 gave

rise to a significant behavioral improvement compared with the sham- or fibroblast-

transplanted group. Transplanted CTX0E03 formed MSNs (DARPP-32) and GABAergic

neurons (GABA, GAD65/67) with BDNF expression in the striatum, while cortically

transplanted cells formed Tbr1-positive neurons. Using a retrograde label, we also found

stable engraftment and connection of the transplanted cells with host brain tissues.

CTX0E03 transplantation also reduced glial scar formation and inflammation, as well as

increasing endogenous neurogenesis and angiogenesis. Overall, our results demonstrate

that CTX0E03, a clinical-grade neural stem cell line, is effective for preclinical test in HD,

and, therefore, will be useful for clinical development in the treatment of HDpatients.
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1 | INTRODUCTION

Huntington's disease (HD) is a devastating genetic disease, affecting

approximately 5 out of every 100 000 people in the United States,

Europe, and Australia.1 In HD, one of the earliest and major patholo-

gies is the degeneration of the medium spiny neurons (MSNs) in the

striatum due to the cytotoxic effects of mutant huntingtin protein.

Coupled with pathology at other sites, especially the cortex, MSN

degeneration leads to the classical clinical trial of abnormal move-

ments, psychiatric problems, and cognitive deficits. Currently, there is

no cure or disease-modifying therapy available for HD patients.

Therefore, stem cells have long been considered a promising thera-

peutic resource for HD to replace the lost striatal MSNs as well as to

modulate several pathogenic pathways through paracrine release of a

range of neuroprotective and immune modulatory factors.2 A signifi-

cant number of stem/progenitor cells have been studied that include

embryonic stem cells; multipotent progenitor cells from the embryo or

fetus, which are already partially committed to a neural lineage; cells

from the umbilical blood; autologous or allogenic adult stem cells from

various tissues; and finally induced pluripotent stem cells.3,4 Among

them, neural stem cells (NSCs) have been regarded as a promising

option to treat HD as they can survive and differentiate into proper

neuronal cell types in vivo. Numerous studies have indicated that

NSC can have the potential to replace the damaged MSNs and make

functionally active connections to the host neuronal network. Both

systemic injection of human NSC in the quinolinic acid (QA) rat

model5 and intrastriatal injection of human NSC in the 3-NP rat

model6 demonstrated reduced striatal damage and improved locomo-

tor activity. Transplanted mouse NSC from neurospheres could sur-

vive in R6/2 transgenic HD model.7 More recently, intrastriatal

transplantation of mouse induced pluripotent stem cell-derived NSCs

(iPSC-NSC) in YAC128 mice also ameliorated locomotor deficits and

differentiated into MSNs.8 Although various preclinical studies using

different types of NSC in different rodent HD models have indicated

its potential therapeutic benefits, no one has tested the efficacy of

clinical-grade human NSC, such as CTX cells so far. Clinical trials of

intracerebral transplantation using human fetal striatal tissues have

demonstrated limited benefits and survival.2

A sustainable source of ethically approved, safe, and potent

stem cells is one of the most important requirements for the devel-

opment of an effective cell therapy, and this holds for HD as well.

CTX0E03 (CTX) is a GMP-manufactured conditionally immortalized

human NSC line9,10 under current clinical trial (PISCES III,

NCT03629275) and may serve as a reliable source of NCS for pro-

viding beneficial effects in preclinical HD studies. Direct intracere-

bral implantation of CTX cells in a rodent middle cerebral artery

occlusion (MCAO) model of stroke demonstrated reproducible

recovery of lesion-associated behavioral deficits by stimulating

reparative mechanisms, such as angiogenesis and neurogenesis in

the lesion site.9,11 When CTX cells were placed into the ischemic

brain, engulfment of apoptotic cells by macrophages promoted M2

polarization, resulting in tissue repair.12 Based on this mechanistic

understanding, it has been hypothesized that these cells may have

benefits in other diseases of the brain, such as HD. To test this

hypothesis, we investigated the effect of CTX in the QA-lesioned

rat model of HD. In this model, excitotoxic lesion leads to degenera-

tion of the DARPP-32 positive cells and an inflammatory response,

which correlates with the typical loss of MSNs and neu-

roinflammation seen in HD patients at postmortem.13

2 | MATERIALS AND METHODS

2.1 | Cell preparation

2.1.1 | Control fibroblast cell line

Embryonic fibroblasts were obtained from aborted human embryos

following approval by the Institutional Review Board of CHA

Gangnam Medical Center (Seoul, Korea). Fibroblasts were

maintained in Dulbecco's modified Eagle's medium (DMEM) high

glucose (Welgene, Korea), supplemented with 10% fetal bovine

serum (Invitrogen) and 1% penicillin/streptomycin (Sigma-Aldrich)

grown on 0.2% gelatin-coated culture dish. For the transplantation

of fibroblasts, they were dissociated using 0.25% trypsin-EDTA and

resuspended at 100 000 cells/μL in DMEM high glucose with

30 μM Y-27632 (Tocris) following centrifugation at 1200 rpm for

3 minutes.

2.1.2 | CTX (CTX0E03) drug product

CTX is of human origin and was established as a clonal cell line

by conditional immortalization with c-mycERTAM.14 CTX0E03/06T

passage 23 was revived from cryopreservation with a viability of

96%. CTX cells were cultured in a serum-free medium (RMM)

Significance statement

This study investigated the effects of clinical-grade neural

stem cells manufactured from a conditionally immortalized

cell line, CTX0E03, which is currently in a phase IIb clinical

trial in the United States in patients with moderate to severe

disability after ischemic stroke, on an animal model of

Huntington's disease (HD). The results demonstrated that

intracerebral transplantation of CTX0E03 cells can lead to

significant improvements in the behavioral and pathological

deficits of a rodent model of HD by both cell replacement

and host cell regeneration mechanisms. Therefore, this

study provides a strong basis for clinical development of

these cells to treat HD patients in the future.
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supplemented with epidermal growth factor (EGF, 20 ng/mL,

Peprotech), basic fibroblast growth factor (bFGF, 10 ng/mL,

Peprotech), and 4-hydroxytamoxifen (4-OHT, 10 mM, Sigma) on

laminin (20 μg/mL, or 2.28 μg/cm2 AMS Biotech) coated vessels

in an incubator at 37�C in a humidified atmosphere containing

5% CO2. The cells were fed every 2 to 3 days and passaged once

the cells were 70% to 80% confluent. CTX drug product

(DP) cells was prepared from two T-500 flasks, seeded and

grown to 85% confluency for harvest at passage 32. For cell har-

vest, the medium was aspirated and the adherent cells washed

with HBSS (–Ca2+/Mg2+). Cells were then dissociated with

TrypZean/EDTA (BE02-034E Lonza) for 5 minutes before the

addition of the DTI/Benzonase inhibitor (Invitrogen R007100;

Merck 1.01654.0001). Cells were collected from flasks with

20 mL of RMM+GF+4-OHT and centrifuged at 500g (eg,

1500 rpm) for 5 minutes at ambient temperature. The cell pellet

was resuspended in RMM+GF for trypan blue viability and cell

counting, then centrifuged and resuspended in 57.7% HTS

(HypoThermosal)-FRS/DMEM: F12 at a density of 50 000 cells/μL

in HTS-FRS (BioLife Solutions, 101102). Finally, CTX (CTX0E03)

DP (CTX0E03/07 passage 32) was prepared at ReNeuron

(Guildford, UK) and shipped frozen under controlled conditions to

the CHA Stem Cell Institute (Republic of Korea). For use, a vial

of CTX0E03 cells was removed from <−135�C storage and

thawed immediately in a water bath at 37 (±1)�C for 1 minute

before placing on ice for a maximum of 4 hours. Before each

use, cells were gently triturated using a pipette. As for the

medium control, HTS-FRS was used.

2.2 | QA model of HD and CTX cell transplantation

Animal experiments were performed in accordance with the CHA Uni-

versity Institutional Animal Care and Use Committee (IACUC140013).

Male Sprague Dawley rats (Orient Bio Ltd, Seongnam, Korea) were

group housed (12:12, light:dark cycle) and fed ad libitum. At 8 weeks

of age, 50 rats received a single, unilateral injection of 2 μL volume

containing 120 nmol QA (2,3-pyridinedicarboxylic acid, Sigma) into

the right striatum-stereotaxic coordinates AP = +1.0, ML = +2.5 mm,

DV = −5.0 mm. One week after QA lesioning, animals that developed

behavioral deficits in the rotarod (the time spent on the rotarod

<60 seconds), stepping (the left step numbers <1), and staircase (the

number of pellets taken <4) tests were selected for cell transplanta-

tion. A total of 32 QA-lesioned rats underwent stereotaxic injection

into the striatum and the cortex with each site receiving 1 μL of the

“transplant material” which contained either Media (N = 11, Sham

group), 1 × 105/μL Human Fibroblasts (N = 9), or 1 × 105/μL CTX cells

(N = 12). This cells were delivered at the coordinates, AP = +1.5,

ML = +2.5 mm, DV = −5.0 mm for the striatum and AP = −0.5,

ML = +1.5 mm, DV = −2.0 mm for the cortex. All animals received

immunosuppressant, Cyclosporine A, by the intraperitoneal route

starting at a dose of 10 mg/kg, 2 days prior to the transplantation

surgery and then 5 mg/kg daily after surgery until sacrifice

(Supporting Information Figure S1).

2.3 | Retrograde labeling with Fluoro-Gold

At 12 weeks post-transplantation, two rats from the CTX-

transplanted group were injected with 0.5 μL volume of 4% Fluoro-

Gold (FG) into the globus pallidus using the stereotaxic coordinates

AP = −1.0, ML = +2.5 mm, DV = −6.0 mm.15 Animals were sacrificed

1 week after FG injection and processed for immunohistochemistry.

2.4 | BrdU administration

At 12 weeks post-transplantation, three rats from each of the Sham

(Media), Fibroblast, and CTX-transplanted groups were injected with

BrdU (Cat no B5002, Sigma-Aldrich) at a dose of 50 mg/kg twice

daily, for 3 days by the intraperitoneal route.16 After 3 days of BrdU

administration, animals were sacrificed and processed for

immunohistochemistry.

2.5 | Behavioral testing

2.5.1 | Rotarod test

The rotarod test was performed at 0 (baseline), 2, 4, 6, 8, 10, and

12 weeks post-transplantation to assess motor coordination. Baseline

was set before cell transplantation, which was performed 7 days after

QA lesioning. Rats were placed on the rotating rod with an accelerat-

ing speed of 4 to 40 rpm over a period of 3 minutes with a 15 minutes

rest period between trials.17 The time taken for each rat to fall from

the rod was recorded over three separate trials and the mean laten-

cies were used for analysis. Rats underwent rotarod test training com-

prising of three trials per day over three consecutive days prior to QA

lesioning.18 Rats spent on the rotating rod for less than 60 seconds

were selected for cell transplantation.

2.5.2 | Stepping test

The stepping test was performed at 0 (baseline), 2, 4, 6, 8, 10, and

12 weeks post-transplantation to assess akinesia. Rats were held on a

tabletop in a forelimb stance, with their body at nearly 90� on the

table. Once the rats appear relaxed, they were pushed forward to

move along the surface of the tabletop. We counted the number of

right and left steps while moving across the surface. This test was

always performed by the same operator and rats were familiarized

with the experimenter's grip prior to testing. During the test, the num-

ber of forepaw placements was counted as the rat was moved slowly

in both forehand and backhand directions along the edge of a table
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over a distance of 90 cm in a 5-second period.19 Rats used the left

step more than one time were not selected for cell transplantation.

2.5.3 | Staircase test

The staircase test was performed once a day for three consecutive

days at time 0 (baseline), 2, 4, 6, 8, 10, and 12 weeks post-

transplantation to provide a quantifiable measure of fine motor

reaching skill in the left affected limb only. The staircase consists of a

two-compartment box with a raised platform and two stairs in the

narrow compartment. The left steps on the stairs in the narrow

compartment can be reached only with the left paw and the right

steps only with the right paw. The eight wells of each step are filled

with five 45 mg food pellets. Food was removed from holding cages

24 hours prior to testing and replaced thereafter. Rats underwent a

10-minutes test period, during which time the number of food pellets

retrieved with the affected limb was measured. Rats underwent a

training period for the staircase test prior to QA lesioning. Rats

that took less than four food pellets were selected for cell

transplantation.

2.5.4 | Statistical analysis for behavioral test
measurements

Analysis of the behavioral data from the rotarod, stepping, and stair-

case tests was performed using Statistical Analysis System Program

(Enterprise 4.1; SAS Korea). The performance measured from the

three behavioral tests was analyzed according to the PROC MIXED

procedure. For post hoc analysis, Fisher's least significant difference

(LSD) was used.

2.6 | Immunohistochemistry

2.6.1 | Tissue preparation

At 13 weeks post-transplantation, rats were transcardially perfused with

heparinized (5 U/mL) saline (NaCl 0.9%) followed by 4% buffered para-

formaldehyde. Brains were removed from their skulls and fixed overnight

in 4% buffered paraformaldehyde at 4�C to 8�C, then, transferred to

30% sucrose phosphate buffered saline (PBS) solution for 3 days until

they sank and they were then frozen in OCT compound. Forty-microme-

ter thick coronal cryosections prepared using a cryotome (CM3050,

Leica, Germany) were stored in cryoprotective solution (40% glycerol,

40% ethylene glycol, 0.2 M PBS) at −20�C until use.

2.6.2 | CTX cell survival

Cell survival was evaluated with seven free-floating sections from

each of the 12 CTX injected brains. A human-specific nuclei (hNu)

antibody (1:200, MAB1281, Chemicon) was used with conventional

single label DAB (3,30-diaminobenzidine) immunohistochemistry to

detect CTX cells.

2.6.3 | CTX cell differentiation

CTX differentiation was analyzed from the transplanted rat brains.

Dual label fluorescence immunohistochemistry was performed using

antibodies to the human-specific nuclei20 (1:200, MAB1281,

Chemicon) or human-specific mitochondria (hMito; 1:200, AB3598,

Chemicon) to detect CTX cells, combined with differentiation markers

of DARPP-32 (1:100, #2306, Cell Signalling) for MSNs, GABA

(1:1000, A2052, Sigma) and GAD 65/67 (1:200, AB1511, Chemicon)

for GABAergic neurons, Tbr1 (1:200, ab31940, Abcam) and BDNF

(1:200, Ab1534, Chemicon) for cortical neurons. Goat antimouse IgG-

conjugated Alexa 555 (1:200, Molecular Probes) and goat antirabbit

IgG-conjugated Alexa 488 (1:200, Molecular Probes) were used as

secondary antibodies for detection and visualization, and a DAPI

counterstain was applied. Images were captured using a confocal

laser-scanning microscope imaging system (Leica TCS SP8, Germany).

2.6.4 | Host brain responses

Host brain responses were investigated on the transplanted rat brains.

Based on the DAB immunohistochemistry, CTX-transplanted animals

showing a good graft survival with average behavioral scores were

chosen (N = 3). As for the other experimental groups, three indepen-

dent animals with average scores were chosen from the Sham (media,

N = 3) and Fibroblast (N = 3) groups. Three independent sections from

each animal (ie, a total of nine sections from three brains of each

experimental group) were used for immunohistochemical (IHC) analy-

sis per each marker. Fluorescence immunohistochemistry was per-

formed on free-floating sections using primary antibodies to

investigate the glial scar with GFAP IHC (1:200, 556327, BD Biosci-

ence), the microglial response with Iba-1(1:100, 019-19741, Wako),

the macrophage response with ED1 (1:100, MCA1957GA, Serotec),

the inflammatory M1 macrophage phenotype with iNOS (1:100, sc-

650, Santacruz), the anti-inflammatory M2 phenotype with CD206

(1:100, sc-34 577, Santacruz), neurogenesis with DCX (1:200, #4604,

Cell Signalling) and BrdU (1:100, 555 627,BD Pharmigen), and angio-

genesis with Reca-1 (1:200, ab9774, Abcam). Goat antimouse IgG-

conjugated Alexa 555 (1:200, Molecular Probes) and goat antirabbit

IgG-conjugated Alexa 488 (1:200, Molecular Probes) were used as

secondary antibodies, and a DAPI counterstain was applied. Images

were captured using a confocal laser-scanning microscope imaging

system (Leica TCS SP8). For BrdU immunohistochemistry, tissue

sections underwent pretreatment in 0.1 M sodium citrate buffer for

30 minutes at 100�C before incubation with the antibody. Host

responses were quantified using the ImageJ software (NIH). Manual

counts were used for collection (ED1, iNOS, CD206 positive cells for

macrophage responses; DCX, BrdU-positive cells forneurogenesis,
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and Reca-1 positive blood vessels for angiogenesis) or measurement

of the area of staining (GFAP for glial scar and Reca-1 for angiogene-

sis) within three separate 100 μm2 regions of interest. For the glial

scar, the region of interests (ROIs) of macrophage response and angio-

genesis were sampled within the striatum and for neurogenesis, and

the same ROIs were applied to each brain within the subventricular

zone (SVZ). Data (counts or area) were statistically analyzed using the

one-way analysis of variance (SigmaPlot).

3 | RESULTS

3.1 | Behavioral improvement following
transplantation of CTX cells

To evaluate the therapeutic effect of CTX cells on animal model, we

transplanted them into QA-lesioned rodent model of HD (N = 12).

We used media (N = 11, Sham group) and human fibroblasts (N = 9,

Fibroblast group) as control groups. On the rotarod, stepping and

staircase tests, the CTX treated group exhibited significantly improved

performance compared with Sham and Fibroblast only grafted groups,

between 8- and 12-weeks post-transplantation (Figure 1).

3.2 | Survival, distribution, and differentiation of
CTX cells in QA-lesioned brain

To prevent or reduce immune rejection of human-derived CTX cells

when transplanted into a rat HD model, immunosuppressant,

Cyclosporine A, was administered intraperitoneally, starting at a dose

of 10 mg/kg, 2 days prior to the transplantation surgery and then

5 mg/kg daily after surgery until sacrifice. To determine whether CTX

cells were integrated into the QA-lesioned host brain following trans-

plantation, we performed histological analysis. Serial sections col-

lected from the 12 CTX-implanted brains, in the range of AP: +1.6 mm

and −1.2 mm, were subject to brightfield immunohistochemistry using

a human-specific nuclei antibody (hNu) to detect surviving CTX cells

(Figure 2). We detected CTX cells in the transplanted brains at

13 weeks postimplantation that were mostly located close to the site

of transplantation, in the range of AP: +0.8 mm and −0.8 mm, in the

lesioned striatum (Figure 2) as well as in the overlying cortex. Quantifi-

cation of CTX survival in the striatum showed that over 10% of the

original number of transplanted cells were present at 13 weeks post-

transplantation. Sections from CTX-transplanted brains were also sub-

ject to double-label fluorescence immunohistochemistry to determine

the level of neural differentiation within the graft. To identify the

CTX-derived cells in the transplanted animals, we further performed

immunohistochemistry with a series of antibodies against DARPP-32

(MSN), GABA and GAD 65/67 (GABAergic), BDNF and Tbr1 (gluta-

matergic). Microscopic analysis revealed that some surviving CTX cells

in the lesioned striatum expressed markers specific for striatal neuro-

nal subtypes, such as DARPP-32, GABA, and GAD 65/67 (Figure 3). In

addition, some CTX cells in the striatum expressed the neurotrophic

factor, BDNF (Figure 2). Only CTX cells transplanted into the cortex

expressed Tbr1, a marker specific for cortical glutamatergic neurons

(Figure 4).

F IGURE 1 CTX cells significantly improve the behavioral deficits
induced by quinolinic acid (QA) lesioning of the striatum. Marked
improvement of locomotor activity was observed in the QA-lesioned rats
transplanted with CTX between 8 and 12 weeks post-transplantation
(**P < .001 Sham vs CTX; ##P < .001 Fibroblast vs CTX) on rotarod
(A) and stepping (B) tests. In the staircase test (C), significant behavioral
improvement was observed in the QA-lesioned rats with CTX between
8 and 12 weeks after transplantation (*P < .05 Sham vs CTX; #P < .05
Fibroblast vs CTX). Prescore represents the animals before receiving QA
and the baseline score represents 7 days after QA lesioning. Subsequent
scores represent animals after CTX transplantation
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3.3 | Neuronal connection between transplanted
CTX cells and FG+ host brain cells

Microscopic analysis revealed that CTX cells in the striatum showed

uptake of FG, which had been injected into the globus pallidus

(Figure 4), indicating that CTX cells have established striatal-pallidal

connections.

3.4 | Reduction of gliosis and host immune
responses following transplantation of CTX cells

First, we investigated glial scar formation. Brain sections of three rep-

resentative animals from each experimental group were subject to

GFAP immunohistochemistry to demonstrate glial scar formation.

GFAP staining, quantified by image analysis in the lesioned striatum,

F IGURE 2 CTX cells can survive and
differentiate into striatal neurons in the striatum
of quinolinic acid (QA)-lesioned brain 13 weeks
after transplantation. A, Widespread distribution
of survived CTX cells were detected using a
human nuclei antibody (hNu) and visualized with
DAB (3,30-diaminobenzidine) in the QA-lesioned
striatum. Scale bar = 50 μm. B-E, Neuronal
differentiation of CTX cells transplanted into the
striatum (arrows) was identified by hNu
colocalized with neuronal markers, including
DARPP-32 (B), GABA (C), GAD 65/67 (D), and
BDNF (E). Scale bar = 50 μm
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was shown to be significantly reduced in CTX-implanted brains com-

pared with Sham (Media) and Fibroblast treatment (Figure 5A),

although we observed small portions of grafted CTX cells turned into

GFAP-positive cells (Supporting Information Figure S2). Second, we

examined the microglial response. Brain sections from all three treat-

ment groups were subject to IBA-1 immunohistochemistry and it was

significantly reduced in the CTX-implanted brains compared with

Sham (Media) and Fibroblast treatment (Supporting Information

F IGURE 3 CTX cells implanted in the cortex can differentiate into cortical neurons. Colocalization (yellow) of hNu and Trb1 demonstrates
neuronal differentiation of CTX cells in the cortex 13 weeks after transplantation (arrows). Scale bar = 50 μm

F IGURE 4 CTX cells can establish striato-pallidal connection in the quinolinic acid (QA)-lesioned striatum. Colocalization (yellow) of Fluoro-
Gold (FG) and human nuclei in CTX cells (arrows) within the stratum suggests some restoration of local circuitry. Scale bar = 50 μm
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Figure S3). Finally, we quantified the macrophage response to the

lesion and graft. Brain sections from all three treatment groups were

subject to double-label immunohistochemistry using a cocktail of anti-

ED1 and anti-iNOS or anti-ED1 and anti-CD206 antibodies to detect

pro- and anti-inflammatory macrophage phenotypes, respectively.

Quantification of these cell types in the lesioned striatum showed a

significant reduction and increase in iNOS/ED1 (M1 proinflammatory)

and CD206/ED1 (M2 anti-inflammatory) cells, respectively, compared

with the Sham (media) and Fibroblasts groups (Figure 5B,C).

3.5 | Increased endogenous neurogenesis
following transplantation of CTX cells

Brain sections collected from animals (ie, all three treatment groups)

previously administered with BrdU were subject to double-label

immunohistochemistry with anti-BrdU and anti-DCX antibodies.

Quantification of BrdU+, DCX+, and DCX+/BrdU+ cells showed an

increase in all these phenotypes in the SVZ of CTX-implanted brains

compared with those of the Sham (media) and Fibroblast groups

(Figure 6).

3.6 | Increased endogenous angiogenesis following
transplantation of CTX cells

Brain sections from all treatment groups were subject to RECA-1

immunohistochemistry to examine vascularization. RECA-1 staining,

quantified by image analysis, and counts of branch point and

microvessels in the lesioned striatum were shown to be significantly

increased in the CTX-implanted brains compared with the Sham

(Media) and Fibroblast treated brains (Figure 7).

4 | DISCUSSION

In this study, we explored the therapeutic effect of CTX, a condition-

ally immortalized GMP-manufactured human NSC, in the QA model

of HD using various behavioral and IHC analyses. Injection of QA, an

intrinsic neuroactive metabolite of the kynurenine pathway, can

induce degeneration of striatal GABAergic projection neurons while

preserving striatal afferents, which resembles the neuropathologic

condition in HD patients.21,22 QA-lesioned rats is one of the most

well-characterized HD models for motor and cognitive symptoms,

F IGURE 5 CTX cells decrease gliosis and proinflammatory responses in the quinolinic acid (QA)-lesioned striatum. A, GFAP staining was
significantly reduced in CTX-implanted brains compared with Sham (Media) and Fibroblast (FB) injected brains (CTX vs Sham P = .004; CTX vs FB
P = .014). Scale bar = 50 μm. B, CTX cells reduce a M1 proinflammatory phenotype of macrophage in the QA-lesioned striatum. The percentage
of iNOS/ED1 was reduced in CTX treated brains compared with Sham (Media) and Fibroblast grafted brains (CTX vs Sham P < .001, CTX vs FB
P = .017). C, CTX cells increase an M2 anti-inflammatory phenotype in the QA-lesioned striatum. CD206/ED1 increased in CTX treated brains
compared with Sham (Media) and Fibroblast injected brains (CTX vs Sham P < .001, CTX vs FB P < .001). Scale bar = 50 μm
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F IGURE 6 CTX cells promote neurogenesis in the quinolinic acid (QA)-lesioned brain. Compared with Sham (Media) and Fibroblast injected
brains, the proportion of both BrdU and DCX stained cells was increased markedly in the SVZ of CTX treated brains (BrdU/DAPI CTX vs Sham
P < .001, CTX vs FB P < .001; DCX/DAPI CTX vs Sham P < .001, CTX vs FB P = .002). The percentage of DCX expressing cells in BrdU-positive
cells in the SVZ was also significantly increased in CTX treated brains (DCX/BrdU CTX vs Sham P = .025, CTX vs FB P = .029). Scale bar = 100 μm

F IGURE 7 CTX cells promote angiogenesis in the quinolinic acid (QA)-lesioned brain. RECA-1 staining demonstrates that the number of
branch points and microvessels was all significantly increased in CTX-implanted brains compared with Sham (Media) and Fibroblast injected
brains (P < .001 CTX vs Sham; P < .001 CTX vs FB; branch points P = .019 CTX vs Sham; P < .001 CTX vs FB; microvessels P < .001 CTX vs Sham;
P < .001 CTX vs FB). Scale bar = 50 μm
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including decreased spontaneous locomotion, profound impairment in

paw reaching test and place-learning deficit in the Morris water

maze,23-25 and have been used as a useful model to evaluate the effi-

cacy of stem cell transplantation in terms of behavioral and pathologi-

cal changes.26

Rotarod, stepping, and staircase tests were employed to assess

motor coordination, akinesia, and fine motor reaching skills, respec-

tively, and the pre- and post-lesioning behavioral deficits following

CTX cell transplantation were analyzed compared to those following

sham and fibroblast transplantation. The effect of CTX transplantation

was also evaluated in terms of cell survival, differentiation, and con-

nectivity as well as their effects on innate regenerative processes such

as angiogenesis and neurogenesis and the inflammatory response. As

for the target sites for CTX transplantation, the cerebral cortex in

addition to the striatum was selected because cortical cell loss can

also contribute to motor symptoms, which has been ascribed primarily

to the striatum in HD patients.27,28 At the same time, the in vivo

potential of CTX cells to differentiate into the region-specific neurons

can be evaluated through this approach.

Behaviorally, we found that the QA-lesioning–induced behavioral

deficits were partially reversed between 8 and 12 weeks after CTX

implantation (Figure 1). Although non-QA-lesioned animals would be

useful as an intertrial test to demonstrate the behavior of “normal” rats,

CTX-implanted rats performed significantly better on all three different

behavioral tests employed at these time points, when compared with

sham (media) and fibroblast transplants. This delay in benefits is in line

with what has been reported previously with CTX transplantation in

chronic stroke model.29 This suggests that the capability of CTX may be

attributed to progressive replacement of injured neurons and/or modu-

lation of the host environment to promote regenerative mechanisms

rather than through some direct lesion modifying effect.

As shown from IHC analyses, CTX cells can survive, express

BDNF, and differentiate into the region-specific neurons in the stria-

tum (DARPP-32, GAD65/67) (Figure 2) and in the cortex (Tbr1,

Figure 3) in vivo at 13 weeks after transplantation. The presence of

FG within the surviving CTX also suggests that these cells can form

local circuits (Figure 4). It will be very useful to perform electrophysi-

ology in the future, to confirm the neuronal integration and action

potentials of the transplanted cells. All these results suggest that CTX

cells have a significant potential as a cell replacement therapy for HD.

Previous reports demonstrated that BDNF-overexpressing NSCs

are neuroprotective in the MCAO model of stroke.19 Likewise, the

current CTX-transplanted HD model also expressed BDNF, suggesting

that production of BDNF from CTX provided neuroprotective effects

in HD. This may also explain some of the other changes we observed

in the host brain following transplantation.

In neurodegenerative diseases, including HD, the astrocytic and

microglial responses are thought to have a role in driving the disease

process.30,31 In the present study, we found that CTX cells can modu-

late a broad spectrum of host cellular responses in a positive way to

promote regeneration and repair. In particular, both astrocyte and

microglia responses were significantly reduced in brains implanted with

CTX. Astrocytes are known to form a glial scar to isolate injured tissue

for protecting neurons from contact-induced apoptosis, and microglia

clean up the site of injury by phagocytosis of cellular debris and dead

neurons.32,33 We found that CTX transplantation can lead to a signifi-

cant decrease of glial scar formation (Figure 5A). Interestingly, we also

observed small portions of grafted CTX cells turned into GFAP-positive

astroglia cells (Supporting Information Figure S2), suggesting a contribu-

tion of graft-derived glial cells to the rescue of HD phenotypes.34 CTX

transplantation was also shown to modulate macrophages in the

lesioned striatum. Macrophages can change their characteristics in

response to environmental changes, which result in a dual role in the

response to injury.35 The phagocytic M1 phenotype functions like

microglia to remove the post-injury cellular debris, while the M2 type

anti-inflammatory phenotype secretes a cocktail of anti-inflammatory

mediators that promote wound repair. In the chronic inflammatory

environment, the persistent M1 phenotype leads to increased secretion

of proinflammatory mediators and enzymes that cause further tissue

destruction and injury. Importantly, polarization of M1 to an M2 pheno-

type is a key event for the resolution of inflammation and the initiation

of reparative mechanisms.36 We found that CTX led to an M1 to M2

polarization as demonstrated by a predominance of a CD206 M2 phe-

notype and a reduction in the inflammatory iNOS M1 phenotype in the

lesioned striatum implanted with CTX (Figure 5B,C). Taken together, it

is evident that CTX implantation can not only replace lost cells and

make connection but also has the ability to reduce the responses of

several cell types involved in neuroinflammation.

Finally, we were able to show that CTX implantation promotes

other reparative mechanisms in the brains of HD model. IHC staining

using BrdU combined with DCX (a marker of migrating neuroblasts)

showed a significant increase in the subventricular zone (SVZ) of CTX-

transplanted brains (Figure 6), which is in line with a previous report

showing that there is a significant increase in DCX/Ki67 neuroblasts

in CTX-implanted MCAO brains.37 In addition, we found that blood

vessel formation is significantly increased, as seen with Reca1

staining, in CTX-transplanted brains (Figure 7), again in line with what

is seen with these cells in stroke models.11

5 | CONCLUSION

We have shown that CTX implantation is an effective treatment in

the QA model of HD and works through multiple mechanisms, includ-

ing cell replacement. Transplantation of CTX cells improved lesion-

associated behavioral deficits on the rotarod, stepping, and staircase

tests. Characterization of transplanted CTX demonstrated that they

could undergo region-specific differentiation in the striatum and the

cortex and establishment of striato-pallidal connections with the host

tissue. Moreover, CTX transplantation reduced the local host inflam-

matory responses and promoted regenerative mechanisms such as

angiogenesis and neurogenesis. Although additional analysis using

transgenic HD mouse models will be useful,38 given all these current

results and the fact that the cell has already been subject of clinical tri-

als in stroke, CTX offers great potential as treatment for patients

with HD.
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