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Fluid-jet-based indentation is used as a noncontact excitation technique by systems measuring the mechanical properties of soft
tissues. However, the application of these devices has been hindered by the lack of theoretical solutions. This study developed a
mathematical model for testing the indentation induced by a fluid jet and determined a semianalytical solution.The soft tissue was
modeled as an elastic layer bonded to a rigid base. The pressure of the fluid jet impinging on the soft tissue was assumed to have
a power-form function. The semianalytical solution was verified in detail using finite-element modeling, with excellent agreement
being achieved. The effects of several parameters on the solution behaviors are reported, and a method for applying the solution to
determine the mechanical properties of soft tissues is suggested.

1. Introduction

Indentation is one of the most commonly used methods to
measure the mechanical properties (e.g., Young’s modulus
and Poisson’s ratio) of biological soft tissues in situ or in
vivo, such as articular cartilage [1, 2], the liver, human skin
[3], and residual limbs [4], as it does not require special
preparation for the specimens. Rigid cylindrical flat-ended or
spherical indenters are often employed in both conventional
and ultrasound indentation-based measurement techniques
[5–9]. Once the loading force has been measured with a
force sensor and the tissue deformation together with tissue
thickness is recorded with an ultrasound transducer (in
ultrasound indentation), Young’s modulus and Poisson’s ratio
of a soft-tissue sample can be calculated from the relationship
reported by Hayes et al. and other investigators [10–12].

However, the direct contact associated with the use of a
stiff mechanical indenter may cause tissue damage, especially
when the tissue has been in the degenerative conditions,
and/or those organs, such as cornea, are not suitable for direct
touch. Therefore, the use of noncontact devices is desirable
whenever possible.

Systems based on fluid-jet-induced indentation have
been developed by many researchers for measuring the
mechanical properties of soft tissues. The key idea of such
systems is to use a fluid jet as an indenter that exerts
a mechanical load on the soft tissues so as to avoid the
shortcomings associated with direct contact between a rigid
measurement instrument and soft tissues. Water and air
are commonly used as the fluid mediums. Duda et al. [13]
developed a device based on water-jet-induced indentation
with optical modality to quantify the cartilage stiffness and
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demonstrated a strong correlation with standard indenta-
tion measurements. However, it cannot provide the tissue
thickness which is a critical parameter to calculate Young’s
modulus of soft tissue from the indentation load-deformation
curve. Lu et al. [14, 15] developed a noncontact indentation
system utilizing the compression induced by a water jet and
high-frequency ultrasound to measure the properties of soft
tissues. They utilized high-frequency ultrasound to measure
the initial thickness and dynamic deformation of tissues
under water-jet loading.Their tests on phantoms showed that
the system was able to quantify the elastic properties of soft
tissues and had the capability for elasticity mapping of the
tissues in a C-scan test. The system has also been employed
to assess degeneration of articular cartilage [1]. Huang and
Zheng [16] further designed a miniaturized water-jet- and
ultrasound-based indentation system. Their results showed
that the indentation system produced results comparable to
those obtained using the conventional one and that it was
able to characterize the integrity of articular cartilage under
arthroscopic control.

Prompted by the inconvenience of water spillage when
using a water jet to induce indentation inside the body,
Huang et al. [17] developed an air-jet-based indentation sys-
tem based on optical coherence tomography for measuring
the mechanical properties of soft tissues. They performed
experiments both on silicone phantoms and on the human
hand in vivo, with the results demonstrating the capacity of
the system to detect biomechanical changes in soft tissues.
The air-jet-based indentation system was subsequently used
by Chao et al. to characterize the biomechanical properties
of the forefoot plantar soft tissue of different ages [18] and to
measure the stiffness of the healing wounds in rat skin [19].
However, they found that the stiffness measured by the air-
jet system differed greatly from those mechanical properties
measured by the tensile testing machine.

Inmost of the above-reviewed researches, a stiffness coef-
ficient (SC) was defined to interpret the loading-deformation
data of the soft tissues:

SC = 𝐹𝑑 ⋅
𝐿0𝐴 , (1)

where 𝐹 is the total force applied on the specimen by the
fluid jet, 𝐴 is the area of the outlet of the fluid nozzle, and𝐿0 and 𝑑 are the initial thickness and deformation of the
specimen, respectively. The definition looks very similar to
the compressive Young’s modulus of soft tissue measured by
unconfined axial compression. However, it should be noted
that the total force in (1)was calculated from the fluid pressure
in the pipe supplying the fluid because the distribution of
the impacting pressure of the fluid jet upon the specimen
is complicated and difficult to measure directly. Moreover,
the deformation of the specimen induced by a fluid jet also
varies spatially across the sample surface, and the sensitivity
depends on the lateral resolution of the ultrasound beam.The
values of 𝑑 and 𝐴 are both ambiguous to some extent, and
hence the calculated stiffness coefficient is essentially only a
nominal value.The relationship among SC, Young’s modulus,
and Poisson’s ratio is also not obvious. In general, obtaining
Young’s modulus and Poisson’s ratio from the indentation

induced by an impinging fluid jet would require a calibration
to be performed based on the conventional contact indenta-
tion. This requirement would be highly inconvenient when
a fluid jet is used to induce indentation in vivo. Therefore,
quantifying the mechanism of soft-material deformation due
to compression caused by an impinging fluid jet will benefit
the application of fluid-jet-induced indentation to clinical
diagnosis.

The classical problem of an elastic half-space indented by
a rigid indenter was investigated using theoretical analysis
and finite-element simulation. Exact solutions in the form
of force-indentation relationships, contact pressure distribu-
tions, and stress and displacement fields exist for axisym-
metric indenter geometries (e.g., cylinder, sphere, and cone)
[12, 20, 21]. The effects of many other parameters, including
friction between the indenter and the soft tissue, model
geometry, substrate deformability, and curvature, on the
calculation of Young’s modulus from indentation response of
soft tissue were also studied [10, 22–25].

From a mathematical point of view, the indentation
induced by contact with a conventional stiff object (e.g.,
cylinder or sphere indenter) differs significantly from that
induced by a fluid jet. In the former, the deformation where
the specimen touches the cylindrical flat-ended or spherical
punch can be easily measured and it is always treated as a
known condition in a theoretical analysis. However, in the
latter, even the deformation of the specimen can bemeasured
by an ultrasound transducer; the distribution of the impact-
ing load applied by the fluid jet is unknown. In fact, the wall
pressure (i.e., the fluid pressure on the surface of specimen)
induced by the fluid jet is greatly affected by the scale (i.e.,
Reynolds number) as well as the boundary conditions (e.g.,
the nozzle geometry and the distance from the nozzle outlet
to the target surface) [26]. Generally, the wall pressure follows
a Gaussian profile for a two-dimensional jet but not for a
three-dimensional jet [27]. Boyer et al. [3] applied classical
contact mechanics to model the wall pressure by a function
with a power form and achieved excellent agreement between
the theoretically calculated pressure and the experimentally
measured pressure on a rigid plate.Their solutions were used
to assess the effects of ageing on the mechanical properties
of skin in vivo with their air-jet-based indentation system.
However, the solutions they used are derived from elastic
materials with infinite thickness, and hence they might not
be valid in most clinical applications where the thickness
of the soft tissues is finite (and sometimes very small). This
means that it is important to determine the analytical solution
for the deformation of elastic materials with finite thickness
compressed by an impinging fluid jet.

This study employed a semianalytical method to solve the
equation describing the indentation induced by a fluid jet.
The soft tissue was assumed to be a homogeneous, isotropic
elastic layer with finite scale in thickness and infinite size in
extent. It was overlaid on a rigid foundation.Thewall pressure
was modeled by a power-form function as reported by Boyer
et al. [3]. To validate the solutions, finite-element modeling
(FEM) was performed using a static structural module in the
ANSYS software. The results of the analytical solutions and
FEM were compared in detail.
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Figure 1: Schematic diagram of the deformation of an elastic layer
under an axisymmetrically distributed load.

2. Mathematical Analysis

For homogeneous, isotropic materials, when the body forces
and inertial effects are neglected and the deformation is small,
the equilibrium equations of the linear theory of elasticity can
be expressed in terms of the displacement vector as

(1 − 2]) ∇2u + ∇ (∇ ⋅ u) = 0, (2)

where u is the displacement vector, ] is Poisson’s ratio of soft
tissue, and ∇ is the gradient operator.

Considering the equilibrium of an infinite elastic layer
with thickness ℎ adhering to an immovable rigid base, the
layer deformation under an axisymmetrically distributed
load from the impingement of a circular fluid jet is axisym-
metric and so can be analyzed in a cylindrical coordinate
system. A schematic diagram of this problem is shown in
Figure 1.

The considered problem can be solved conveniently by
using the Boussinesq-Papkovich potential functions for the
components of the displacement vector; that is,

2𝐺𝑢𝑟 = − 𝜕𝜕𝑟 [Φ0 + 𝑧Φ1] ,
2𝐺𝑢𝑧 = −𝜕Φ0𝜕𝑧 − 𝑧

𝜕Φ1𝜕𝑟 + (3 − 4]) Φ1,
(3)

where 𝐺 = 𝐸/2(1 + ]) is the elastic shear modulus,𝐸 is Young’s modulus, (𝑟, 𝜃, 𝑧) are the radial, tangential,
and axial coordinates in a cylindrical coordinate system,(𝑢𝑟, 0, 𝑢𝑧) are the radial, tangential, and axial components
of the displacement vector, respectively, and Φ0 and Φ1 are
harmonic functions, which are written in the form

Φ0 = ∫
∞

0

[𝐴 (𝜆) 𝑠ℎ𝜆 (ℎ − 𝑧) + 𝐵 (𝜆) 𝑐ℎ𝜆 (ℎ − 𝑧)]
⋅ 𝐽0 (𝜆𝑟) 𝑑𝜆,

Φ1 = ∫
∞

0

[𝐶 (𝜆) 𝑠ℎ𝜆 (ℎ − 𝑧) + 𝐷 (𝜆) 𝑐ℎ𝜆 (ℎ − 𝑧)]
⋅ 𝐽0 (𝜆𝑟) 𝑑𝜆,

(4)

where A, B, C, and 𝐷 are functions of 𝜆 to be determined,𝐽0(𝜆𝑟) is the Bessel function of the first kind of order zero, and

axial-direction coordinate 𝑧 in the elastic layer ranges from 0
to h.

The normal and tangential stress components are given in
terms of the potentials as

𝜎𝑧𝑧 = 2 (1 − ]) 𝜕Φ1𝜕𝑧 −
𝜕2Φ0𝜕𝑧2 − 𝑧

𝜕2Φ1𝜕𝑧2 ,
𝜎𝑟𝑧 = 𝜕𝜕𝑟 [(1 − 2]) Φ1 −

𝜕Φ0𝜕𝑧 − 𝑧
𝜕Φ1𝜕𝑧 ] .

(5)

The elastic layer is indented on by a prescribed normally
distributed load at the surface and the layer adheres to
an immovable rigid base, and so the following boundary
conditions apply:

(a) At the surface, z = 0:
𝜎𝑧𝑧 = 𝑝 (𝑟) ,
𝜎𝑟𝑧 = 0,

(0 ≤ 𝑟 ≤ ∞) ,
(6)

where 𝑝(𝑟) is a prescribed load function of radial
coordinate, r.

(b) At the bottom, z = h:
𝑢𝑟 = 𝑢𝑧 = 0, (0 ≤ 𝑟 ≤ ∞) . (7)

By using (3)–(5) and boundary conditions (6) and (7) and
following the same procedures as described by Hayes et al.
[12], the following integral equation can be obtained:

∫∞
0

𝐶󸀠 (𝜆) 𝐽0 (𝜆𝑟) 𝑑𝜆 = 𝑝 (𝑟) , (0 ≤ 𝑟 ≤ ∞) . (8)

The axial component of the displacement at the layer
surface (𝑧 = 0), which is a parameter of interest in many
situations, can be given by
𝐺
1 − V𝑢𝑧 (𝑟, 0) = ∫

∞

0

𝐶󸀠 (𝜆)𝑀 (𝜆) 𝐽0 (𝜆𝑟) 𝑑𝜆,
(0 ≤ 𝑟 ≤ ∞) ,

(9)

where

𝑀(𝜆) = 1𝜆 [
(3 − 4]) 𝑠ℎ (𝜆ℎ) 𝑐ℎ (𝜆ℎ) − 𝜆ℎ

(𝜆ℎ)2 + 4 (1 − ])2 + (3 − 4]) 𝑠ℎ2 (𝜆ℎ)] . (10)

When𝑝(𝑟) is known, (8)may be used to determine𝐶󸀠(𝜆),
and then displacement 𝑢𝑧 at the layer surface (z = 0) can be
obtained using (9).

In practical applications, it is convenient to introduce
the dimensionless variables 𝛼 = 𝜆ℎ and 𝑟󸀠 = 𝑟/ℎ. After
nondimensionalizing the load function by an appropriate
constant 𝑃 as 𝑝󸀠(𝑟󸀠) = 𝑝(𝑟)/𝑃, (8) and (9) become

∫∞
0

𝑄 (𝛼) 𝐽0 (𝛼𝑟󸀠) 𝑑𝛼 = 𝑝󸀠 (𝑟󸀠) , (0 ≤ 𝑟󸀠 ≤ ∞) , (11)

𝐺
1 − V

𝑢𝑧 (𝑟󸀠, 0)
ℎ𝑃 = ∫∞

0

1
𝛼𝑄 (𝛼)𝑀󸀠 (𝛼) 𝐽0 (𝛼𝑟󸀠) 𝑑𝛼,

(0 ≤ 𝑟󸀠 ≤ ∞) ,
(12)
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where

𝑄 (𝛼) = 𝐶󸀠 (𝜆)ℎ𝑃 ,
𝑀󸀠 (𝛼) = (3 − 4]) 𝑠ℎ𝛼𝑐ℎ𝛼 − 𝛼

𝛼2 + 4 (1 − ])2 + (3 − 4]) 𝑠ℎ2𝛼.
(13)

In the study of Boyer et al. [3], the pressure of an
impinging circular fluid jet was modeled by a function of the
power form

𝑝 (𝑟) = {{{
𝑝0𝑎−2(𝑚−1/2) (𝑎2 − 𝑟2)𝑚−1/2 (0 ≤ 𝑟 < 𝑎) ,
0 (𝑟 ≥ 𝑎) , (14a)

where 𝑎 is the radius of the area over which jet is impinging,𝑝0 is the pressure at the center point of that area, and 𝑚
is an integer. These three parameters depend on the nozzle
geometry, the Reynolds number of the fluid jet, and the
distance between the nozzle outlet and the tissue surface.
There are two reasons why this form of pressure distribution
was chosen: (i) this distribution fits the pressure of an
impinging circular fluid jet with acceptable accuracy and
(ii) according to Boussinesq theory there exist analytical
solutions for the deformation of an elastic half-space under
this form of load [28].

As mentioned above, function (14a) is convenient for
deriving the analytical solution for the deformation of an
elastic half-space (with infinite thickness), but it is not
convenient for the deformation problem of an elastic layer
with finite thickness. To derive the analytical solution for
the deformation of an elastic layer, the pressure function is
modified slightly as

𝑝 (𝑟) = {{{
𝑝0𝑎−2(𝑚−1) (𝑎2 − 𝑟2)𝑚−1 (0 ≤ 𝑟 < 𝑎) ,
0 (𝑟 ≥ 𝑎) . (14b)

Integer 𝑚 may in general be sufficiently large (e.g., m ≥ 28)
[3] for the difference between (14a) and (14b) to be small.
Figure 2 shows the fitted curves based on (14a) and (14b) and
the experimental data that correspond to the case with a flow
rate of 20 Ln/min and a = 8mm [3].The figure illustrates that
the difference is acceptably small.

Introducing the dimensionless variable 𝑟󸀠 = 𝑟/ℎ, (14b)
becomes

𝑝 (𝑟)

=
{{{{{{{
𝑝0 (ℎ𝑎)

2(𝑚−1) [(𝑎ℎ)
2 − 𝑟󸀠2]𝑚−1 = 𝑃𝑝󸀠 (𝑟󸀠) , (0 ≤ 𝑟󸀠 < 𝑎ℎ) ,

0 (𝑟󸀠 ≥ 𝑎ℎ) ,
(15)

where

𝑃 = 𝑝0 (ℎ𝑎)
2(𝑚−1) ,

𝑝󸀠 (𝑟󸀠) = [(𝑎ℎ)
2 − 𝑟󸀠2]𝑚−1 , (0 ≤ 𝑟󸀠 < 𝑎ℎ) .

(16)
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Figure 2: Comparison of the fitted curves and experimental data
[3].

Using the Heaviside unit step function [29], namely,

𝐻(𝑎ℎ − 𝑟󸀠) =
{{{{{
1 (0 ≤ 𝑟󸀠 < 𝑎ℎ)
0 (𝑟󸀠 ≥ 𝑎ℎ) ,

(17)

and inserting (16) into (11) yield

∫∞
0

𝑄 (𝛼) 𝐽0 (𝛼𝑟󸀠) 𝑑𝛼

= [(𝑎ℎ)
2 − 𝑟󸀠2]𝑚−1𝐻(𝑎ℎ − 𝑟󸀠) .

(18)

Letting 𝑄󸀠(𝛼) = 𝑄(𝛼)/𝛼, (18) becomes

∫∞
0

𝛼𝑄󸀠 (𝛼) 𝐽0 (𝛼𝑟󸀠) 𝑑𝛼

= [(𝑎ℎ)
2 − 𝑟󸀠2]𝑚−1𝐻(𝑎ℎ − 𝑟󸀠) .

(19)

Using theHankel integral transform [29],𝑄󸀠(𝛼) can be solved
as

𝑄󸀠 (𝛼) = 2(𝑚−1)Γ (𝑚) (𝑎ℎ)
𝑚 𝛼−𝑚𝐽𝑚 (𝑎ℎ𝛼) , (20)

and then

𝑄 (𝛼) = 𝛼𝑄󸀠 (𝛼) = 𝛼2(𝑚−1)Γ (𝑚) (𝑎ℎ)
𝑚 𝛼−𝑚𝐽𝑚 (𝑎ℎ𝛼) , (21)

where Γ(𝑚) = (𝑚−1)! is the factorial function and 𝐽𝑚((𝑎/ℎ)𝛼)
is the Bessel function of the first kind of orderm.
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Inserting (21) into (12) and rearranging it yield

𝑢𝑧 (𝑟󸀠, 0) = 𝑝0ℎ (1 − ]
2)

𝐸 𝐹(V, 𝑚, 𝑎ℎ , 𝑟󸀠) ,
(0 ≤ 𝑟󸀠 ≤ ∞) ,

(22)

where

𝐹(V, 𝑚, 𝑎ℎ , 𝑟󸀠) = (
𝑎
ℎ)
2−𝑚 2𝑚Γ (𝑚)

⋅ ∫∞
0

1
𝛼𝑚𝑀󸀠 (𝛼) 𝐽𝑚 (

𝑎
ℎ𝛼) 𝐽0 (𝛼𝑟󸀠) 𝑑𝛼.

(23)

This equation is a function of Poisson’s ratio ], fitted integer
m, the ratio of the radius of the area over which the jet
is impinging to the thickness of the elastic layer (a/h), and
dimensionless radius 𝑟󸀠. Equation (22) indicates that the axial
displacement is proportional to the pressure at the center
point of the fluid jet and inversely proportional to Young’s
modulus of the elastic layer, while it varies nonlinearly with
other quantities. The infinite integral on the right-hand side
of (23) includes the product of two Bessel functions of the
first kind with different orders, and it can be integrated
numerically using the adaptive Gaussian quadrature [30].
However, we found that if the Bessel functions are calculated
sufficiently accurately, Gauss-Laguerre quadrature is also
sufficiently accurate and efficient when 𝑚 is not too small
(e.g.,m > 3) because the integrand in the infinite integral goes
rapidly to zero as the argument increases.

The Bessel function can be calculated using its integral
representation

𝐽𝑚 (𝑥) = 1𝜋 ∫
𝜋

0

cos (𝑚𝜃 − 𝑥 sin 𝜃) 𝑑𝜃. (24)

This integral can be calculated usingGauss-Legendre quadra-
ture. However, the integral will be unstable when 𝑚 is large
(e.g., m > 10) for small x, leading to an incorrect value of the
infinite integral on the right-hand side of (23), which is also
calculated using Gauss-Laguerre quadrature. Alternatively,
the Bessel function can be calculated using its infinite-power-
series expansion form

𝐽𝑚 (𝑥) = 1
Γ (𝑚 + 1) (

𝑥
2)
𝑚

⋅ [1 − 𝑍1 (1 − 𝑍2 (1 − 𝑍3 (1 − ⋅ ⋅ ⋅)))] ,
(25)

where

𝑍𝑘 = 1
𝑘 (𝑘 + 𝑚) (

𝑥
2)
2 , (𝑘 = 1, 2, 3, . . .) . (26)

The Bessel function calculated using (25) is stable when 𝑚
is large and 𝑥 is small, but it may be incorrect for large 𝑥
because in practice only finite terms can be considered, so
that the truncation error becomes nonnegligible with large 𝑥.
Additionally, it is also limited by the machine precision when𝑚 and 𝑥 are both large due to the presence of xm term.

r
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Figure 3: Geometry and boundary conditions for finite-element
modeling (FEM).

We used a combination algorithm to calculate Bessel
function 𝐽𝑚(𝑥); namely, (25) with 50 terms was used for 𝑥 ≤𝑚/2, while (24) with Gauss-Legendre quadrature was used
for 𝑥 > 𝑚/2. It was found that this combination algorithm
works well over wide ranges of the values of 𝑚 and x, and it
was sufficiently accurate for our purposes.

In applications involving using a fluid jet to apply inden-
tation on an elastic layer, the maximum axial displacement,
which generally occurs at the center point on the layer surface(𝑟󸀠 = 0; 𝑧 = 0), is more useful and easier to obtain by
various measurement techniques, such as ultrasound, optical
coherence tomography, and other contactmethods. Using the
property of 𝐽0(0) = 1, it can be derived that

𝑢𝑧max = 𝑢𝑧 (0, 0) = 𝑝0ℎ (1 − ]
2)

𝐸 𝜅 (V, 𝑚, 𝑎ℎ) , (27)

where

𝜅 (V, 𝑚, 𝑎ℎ)
= (𝑎ℎ)

2−𝑚 2𝑚Γ (𝑚)∫∞
0

1
𝛼𝑚𝑀󸀠 (𝛼) 𝐽𝑚 (

𝑎
ℎ𝛼) 𝑑𝛼

(28)

is a scaling factor that depends on Poisson’s ratio of the elastic
layer ], fitted integerm, and aspect ratio a/h.

3. Finite-Element Modeling

To verify the validity of the analytical solutions obtained
above, an axisymmetric finite-element model was established
using a static structural module in ANSYS. The material
was assumed to be linear, homogeneous, and isotropic (with
constant Young’s modulus and Poisson’s ratio), and both the
deformation and strain were assumed to be small. Themodel
geometry and boundary conditions are shown in Figure 3.
The computational domain is a rectangle with dimension 10a
in the radial direction and ℎ in the axial direction. The left
side of the domain is an axis boundary, the bottom side has
a fixed boundary, a normal pressure according to (14b) acts
upon the top surface at 0 ≤ r ≤ a, and the other boundaries
are free. Since the stresses aremuch larger near a contact point
[3], distance 10a is sufficiently far from the lateral boundary
condition to ensure that its effects can be neglected.

Block-meshing technology was applied to ensure the
accuracy of the FEM and reduce the computational costs.
Uniformly distributed meshes with a grid size of 0.01a were
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applied in the radial direction at 0 ≤ r ≤ a, and bias-type
distributedmeshes with a bias factor of 30 and a total number
of 200 were used elsewhere. Uniform meshes with a grid size
of 0.01a (the total number of meshes varied with the layer
thickness, h) were used in the axial direction. It was verified
that mesh-independent solutions were obtained when using
this mesh density.

4. Results and Discussion

This section analyzes the solution of the model described
above and discusses its applications in a fluid-jet-based
indentation system. To facilitate our analyses, we decided to
select one case as a base for further comparisons.The param-
eters for this case were as follows, which were comparable
with those experimental values from the ultrasound water-
jet indentation system [14]: thickness of the elastic layer (h),
0.004m; radius of the area of the impinging fluid jet (a),
0.01m; Young’s modulus (E), 1.0 × 106 Pa; and Poisson’s ratio
(]), 0.3.The pressure at the center point (𝑝0) was 2.0 × 104 Pa,
and fitted integer𝑚 was 30.

The axial displacements at the surface (z = 0) obtained
from the analytical solution using (22) and FEM are com-
pared in Figure 4. It is obvious that excellent agreement was
achieved.

To further verify the validity of the analytical solutions,
more cases were calculated with a wide range of param-
eters. For simplicity, we report here only the maximum
axial displacement, 𝑢𝑧max. Equation (27) indicates that the
relationships among 𝑢𝑧max, 𝑝0, and𝐸 are very simple; namely,𝑢𝑧max is proportional to 𝑝0 and inversely proportional to 𝐸.
However, the relationships among 𝑢𝑧max, a, h, m, and ] are
complex and need to be considered inmore detail. Table 1 lists

the values of 𝑢𝑧max computed using (27) and simulated using
FEMwith constant a= 0.01m and different h,m, and ] values.
The table indicates that the analytical solutions agree very
well with results from FEM over a wide range of parameters.
Generally, the difference between analytical and simulated
results increases with increasing fitted integer𝑚 and Poisson’s
ratio ] and decreasing ℎ. The maximum difference was no
more than 0.07%, which occurred for h = 0.001m, m = 40,
and ] = 0.5.

To show how different parameter values affect the axial
displacements, the nondimensional indentation, defined as
the ratio of the nondimensional maximum axial displace-
ment to nondimensional pressure (𝑢𝑧max/h)/(𝑝0/E) [12], is
plotted against a/h for different 𝑚 and ] values in Figure 5.
It is obvious from the figure that when the aspect ratio (a/h)
is small, the indentation varies markedly with this ratio,
whereas Poisson’s ratio has no significant effect. In contrast,
when the aspect ratio is large, Poisson’s ratio has a marked
effect, while the aspect ratio has only a slight effect. It can
be predicted that the indentation for each Poisson’s ratio will
tend to a limit as the aspect ratio increases, because this
is similar to the problem of a thin layer being compressed
by a large indenter, which means that the edge effects
will be negligible. The indentations have similar features
irrespective of the value of 𝑚. For small Poisson’s ratios,
the indentation increases with a/h, while for large Poisson’s
ratios the indentation first increases and then decreases as a/h
increases further.

In fluid-jet-based indentation applications, (27) can be
used to calculate Young’smodulus. Rearranging that equation
yields

𝐸 = 𝑝0ℎ (1 − ]
2)

𝑢𝑧max
𝜅 (V, 𝑚, 𝑎ℎ) , (29)

where parameters𝑝0, a, and𝑚 only depend on characteristics
of the fluid-jet instrument, namely, the nozzle geometry, the
Reynolds number of the fluid jet, and the distance from the
nozzle outlet to the target surface. These characteristics can
be determined before the indentation tests are performed
through mechanical measurements. Tissue thickness ℎ can
also be measured before indentation tests using ultrasound
nondestructively or a needle punch which is a destructive
method after indentation. Poisson’s ratio of soft tissue is
often considered to be constant in indentation tests or can
be measured by ultrasound or mechanical methods [14].
The maximum axial displacement at the surface of the
elastic layer, 𝑢𝑧max, can be recorded during the tests by
various approaches such as spatial sensors or ultrasonically.
Knowledge of these parameters allows scaling factor 𝜅 to
be calculated using (28), and then Young’s modulus of the
material can be calculated directly using (29).

Most soft tissues, such as articular cartilage, liver, and
human skin, are viscoelastic materials, and so, in general,
dynamic analysis should be used. However, as predicted by
Hayes et al. [12], the theory based on elastic materials can
be used in some limited cases, such as in creep tests, to
predict the instantaneous elastic response under a step load.
With the closed-form solution (e.g., the scaling factor) in the
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Table 1: Maximum axial displacement (𝑢𝑧max, ×10−5m) values obtained from the analytical solution and FEM with different parameters.

h (m)
] 0.001 0.01 0.02

Analytical FEM Analytical FEM Analytical FEM
m = 10

0.1 1.9303 1.9301 8.8642 8.8638 10.019 10.019
0.2 1.7795 1.7794 8.5055 8.5052 9.6679 9.6677
0.3 1.5035 1.5034 7.9206 7.9202 9.0892 9.0890
0.4 1.0574 1.0573 7.0899 7.0895 8.2731 8.2730
0.5 0.3691 0.3690 5.9795 5.9791 7.2017 7.2016

m = 20
0.1 1.8959 1.8955 6.6904 6.6899 7.2850 7.2847
0.2 1.7529 1.7525 6.4408 6.4403 7.0400 7.0398
0.3 1.5021 1.5017 6.0317 6.0313 6.6354 6.6351
0.4 1.1104 1.1102 5.4532 5.4527 6.0660 6.0657
0.5 0.5261 0.5259 4.6875 4.6871 5.3227 5.3225

m = 30
0.1 1.8602 1.8597 5.6252 5.6247 6.0257 6.0255
0.2 1.7247 1.7242 5.4230 5.4425 5.8269 5.8267
0.3 1.4924 1.4920 5.0909 5.0904 5.4981 5.4978
0.4 1.1366 1.1362 4.6219 4.6214 5.0357 5.0354
0.5 0.6153 0.6149 4.0043 4.0038 4.4338 4.4334

m = 40
0.1 1.8250 1.8244 4.9577 4.9572 5.2598 5.2595
0.2 1.6963 1.6957 4.7835 4.7830 5.0882 5.0879
0.3 1.4788 1.4783 4.4969 4.4963 4.8041 4.8038
0.4 1.1498 1.1493 4.0926 4.0920 4.4050 4.4046
0.5 0.6732 0.6727 3.5617 3.5611 3.8861 3.8857

present analysis, a parametric analysis of the tests of fluid-jet-
induced indentation can be easily carried out. Unfortunately,
direct comparisons between the present theory and the
experimental measurements reported in the literature [3,
13, 14, 17] are not possible, since the effects of applying a
distributed pressure to the specimen surface using a fluid jet
have not beenmeasured. Future studies should investigate the
behaviors of fluid jets and their effects on soft tissues.

5. Conclusions

To measure or image the mechanical properties of tissues
has been attracting increasing research efforts during the
recent decades.The stiffness of soft tissues may change under
different pathologic situations, such as sclerosus cancer,
edema, degeneration, fibrosis [31]. Normal tissues may also
have different stiffness, which is important information for
tissue characterization. The mechanical properties of tissues
can have different values depending on whether they are
measured in vivo or in vitro and in situ or as an excised
specimen [32, 33]. During recent decades, ultrasound tech-
niques together with compression, vibration, or indentation
have been successfully used for the measurement or imaging
of the mechanical properties of soft tissues, especially for the
musculoskeletal tissues [34–39].

Our group previously developed a noncontact ultrasound
indentation system for quantitative measurement of tissue
stiffness [14]. The advantage of this technique is that it
utilized water jet as a “soft indenter” instead of a rigid
indenter to compress the soft tissue so as to avoid potential
damage caused by a rigid indenter which may result in stress
concentration at the edge of the indenter [10]. However,
the loading during the water-jet indentation is not easy to
measure directly; therefore the intrinsic Young’s modulus of
soft tissue cannot be derived during the water-jet ultrasound
indentation, which hinders the application of this technique.

In this study, a mathematical model for testing fluid-jet-
induced indentation has been developed, and its semiana-
lytical solution was determined. After detailed verification
with FEM was carried out, the effects of altering the values
of several parameters on the solution behavior were further
analyzed. The following conclusions can be drawn from the
results obtained:

(1) The axial displacement of the elastic layer, 𝑢𝑧, is
proportional to the pressure at the center point
of the fluid jet, 𝑝0, and inversely proportional to
Young’s modulus of the elastic layer, E, while it varies
nonlinearly with other quantities.

(2) When a/h is small, Poisson’s ratio has only a slight
effect on the nondimensional indentation; however,
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Figure 5: Nondimensional indentation versus aspect ratio for different Poisson’s ratios with𝑚 values of (a) 10, (b) 20, (c) 30, and (d) 40.

when a/h is large, Poisson’s ratio has a significant
effect.

(3) Parameters 𝑝0, a, m, h, and ], can be determined
before performing tests of fluid-jet-induced inden-
tation. Combining with 𝑢𝑧max recorded during the
indentation tests, Young’smodulus ofmaterials can be
calculated directly by the analytical solution. It should
be noted that the pressurized area a would need
to be determined beforehand for various injection
velocities and separation distance. In this study, it is
assumed to be the same as the radius of the fluid-
jet nozzle, ranging from 1.5mm to 2mm, based on
our previous experimental experiences. We usually
keep the distance between the fluid-jet nozzle and
the tissue surface at around 5mm, and the injection
velocity changes from 0 to 15m/s within 1 second

for an indentation test on soft tissue. However, the
pressurized area 𝑎 would be largely different from the
nozzle radius when the nozzle is far from the tissue
surface, especially when the injection velocity is low.

It wound be of interest to comment on the tissue model
used in our analysis.The soft tissue in this study wasmodeled
as a thin layer of linear elastic, homogeneous, and isotropic
material bonded to a rigid fixed substrate to simulate the
boundary conditions of articular cartilage. However, the
nonlinear and viscoelastic properties of soft tissues have not
been addressed. Furthermore, instead of single-phase model
to describe the soft tissue, the nonlinearity and viscoelasticity
of soft tissues have been investigated using biphasic and
triphasic models [40, 41]. In these models, the intrinsic fluid
load support during indentation has been verified during
the indentation by a rigid indenter. Whether the fluid-jet
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indentation would have significant effect on the soft tissue
when the soft tissue is modeled as multiphasic material is a
critical issue to be further analyzed.
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