
February 2018 | Volume 8 | Article 101

Original research
published: 05 February 2018

doi: 10.3389/fonc.2018.00010

Frontiers in Oncology | www.frontiersin.org

Edited by: 
William Small, Jr.,  

Stritch School of Medicine,  
United States

Reviewed by: 
Michael Wayne Epperly,  
University of Pittsburgh,  

United States  
James William Jacobberger,  

Case Western Reserve University, 
United States

*Correspondence:
Ildefonso Alves da Silva-Junior 

iasjr@usp.br

Specialty section: 
This article was submitted to 

Radiation Oncology,  
a section of the journal  

Frontiers in Oncology

Received: 23 October 2017
Accepted: 15 January 2018

Published: 05 February 2018

Citation: 
da Silva-Junior IA, Dalmaso B, 

Herbster S, Lepique AP and Jancar S 
(2018) Platelet-Activating  

Factor Receptor Ligands Protect 
Tumor Cells from Radiation- 

Induced Cell Death. 
Front. Oncol. 8:10. 

doi: 10.3389/fonc.2018.00010
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ligands Protect Tumor cells from 
radiation-induced cell Death
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and Sonia Jancar
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Irradiation generates oxidized phospholipids that activate platelet-activating factor 
receptor (PAFR) associated with pro-tumorigenic effects. Here, we investigated the 
involvement of PAFR in tumor cell survival after irradiation. Cervical cancer samples 
presented higher levels of PAF-receptor gene (PTAFR) when compared with normal 
cervical tissue. In cervical cancer patients submitted to radiotherapy (RT), the expression 
of PTAFR was significantly increased. Cervical cancer-derived cell lines (C33, SiHa, and 
HeLa) and squamous carcinoma cell lines (SCC90 and SCC78) express higher levels of 
PAFR mRNA and protein than immortalized keratinocytes. Gamma radiation increased 
PAFR expression and induced PAFR ligands and prostaglandin E2 (PGE2) in these tumor 
cells. The blocking of PAFR with the antagonist CV3938 before irradiation inhibited PGE2 
and increased tumor cells death. Similarly, human carcinoma cells transfected with PAFR 
(KBP) were more resistant to radiation compared to those lacking the receptor (KBM). 
PGE2 production by irradiated KBP cells was also inhibited by CV3988. These results 
show that irradiation of carcinoma cells generates PAFR ligands that protect tumor cells 
from death and suggests that the combination of RT with a PAFR antagonist could be a 
promising strategy for cancer treatment.

Keywords: platelet-activating factor receptor, prostaglandin e2, radiotherapy resistance, cervical cancer, head 
and neck squamous carcinoma

inTrODUcTiOn

Treatments based on cell death represent an effective way of controlling cancer growth locally, and 
radiotherapy (RT) represents the most effective postoperative treatment for cervical and head and 
neck squamous cell carcinoma (1, 2). However, they have an important drawback, which is the 
possibility of the exacerbated growth of tumor cells that survived treatment (a phenomenon known 
as tumor repopulation). Following cell death, homeostatic mechanisms are triggered within tissues, 
which favor the survival of surrounding cells. Apoptosis-induced proliferation is a physiological 
process that controls cell replacement in healthy or wounded tissue (3). However, in the tumor 
microenvironment, the apoptotic cells may promote undesirable proliferation of live radio-resistant 
tumor cells (4). Correa et al. (5) showed that the addition of apoptotic cells to a sub-tumorigenic 
dose of murine melanoma promoted tumor engraftment and growth. Later on, it was shown that this 
apoptosis-induced tumor growth was inhibited if mice were pretreated with antagonists of platelet-
activating factor receptor (PAFR) (6).
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Recently, using a mouse model to study irradiation-induced 
repopulation, we found that in both in vivo and in vitro experi-
ments, irradiated TC-1 cells stimulated tumor cell proliferation 
in a PAFR-dependent manner. Irradiation also induced prosta-
glandin E2 (PGE2) production by a human carcinoma cell line 
transfected with PAFR (KBP) (7). Huang et al. (8) demonstrated 
that irradiated tumor cells undergoing apoptosis release fac-
tors that stimulate the growth of the surviving tumor cells by a 
mechanism dependent on the activation of caspase-3 and PGE2 
secretion.

Both lipid mediators are released from membrane phospho-
lipids after the activation of cytoplasmic phospholipase A2. The 
cleavage of phosphatidylcholine (GPC) generates arachidonic 
acid (AA) and lyso-GPC. The AA can be enzymatically converted 
to prostaglandins (9), while the lyso-GPC can be converted to 
PAF (alkyl-acyl-GPC) by PAF acetyl transferase (10). Besides 
the PAF generated by the enzymatic process, several oxidized 
phospholipids are generated by non-enzymatic processes (11). 
Irradiation generates reactive oxygen species, producing a 
wide range of oxidized phospholipids that also bind to PAFR  
(12, 13). These lipids exert their actions through G-protein-
coupled receptors expressed in many cell types including some 
tumor cells. The expression of PAFR was shown in human mela-
noma SKmel-23, human breast cancer cells (MCF7, T-47D, and 
MDA-MB231), and EL4 cell lymphoma cell lines. The activation 
of PAFR in tumor cells was shown to increase proliferation  
(7, 13–15) and to induce the expression of antiapoptotic fac-
tors in B16F10 melanoma cells (16). Prostaglandin-inducible 
enzyme cyclooxygenase-2 is overexpressed in most solid tumors 
such as colorectal, liver, pancreatic, breast, and lung cancer 
(17–22), and the sustained biogenesis of PGE2 appears to play 
roles in tissue remodeling, angiogenesis, cancer cell survival, 
metastasis, and immune evasion (23–25). Thus, it seems that 
PAF and PGE2 have a pro-survival effect in tumor cells that 
express receptors for these mediators.

In the present study, we screened five carcinoma cell lines 
for the expression of PAFR, the effect of radiation on receptor 
expression, and the generation of PAF-like molecules and PGE2. 
Next, we investigated the effect of blocking PAFR or inhibiting 
prostaglandins in radiation-induced tumor cell survival.

MaTerials anD MeThODs

expression Datasets
Gene Expression Omnibus (GEO1) is an open database providing 
gene expression data and clinical data information. We retrieved 
cervical cancer datasets from the GSE9750 and GSE3578 and 
compared PAF-receptor gene expression (PTAFR) among the 
groups. Data were analyzed by non-parametric Mann–Whitney 
test to compare groups from GSE9750 and Wilcoxon test to 
compare paired samples from GSE3578. All statistical tests were 
two-sided. Datasets were analyzed for outliers using https://
graphpad.com/quickcalcs/grubbs1/. A P-value less than 0.05 was 
considered to be statistically significant.

1 http://www.ncbi.nlm.nih.gov/geo.

cell lines and culture conditions
Cervical cancer-derived cell lines (C33, SiHa, and HeLa) and 
squamous cell carcinoma cells lines (SCC78 and SCC90) were 
kindly donated by Professor Luisa Lina Villa (ICESP, Sao Paulo, 
SP, Brazil). HeLa, SiHa, and SCC90 cell lines are positive for 
HPV, while C33 and SCC78 cell lines are negative for HPV but 
have mutated p53. HaCaT, an immortalized keratinocyte used 
as control, was purchased from the American Type Culture 
Collection (Manassas, VA, USA). Cells were maintained in RPMI 
1640, supplemented with 10% FBS (fetal bovine serum), peni-
cillin (100 U/mL), and streptomycin (100 µg/mL). In addition, 
we obtained a PAFR-negative human epithelial cell line (KBM) 
and PAF-receptor-positive (KBP) cells from Dr. J. B. Travers 
(Department of Dermatology, Indiana University School of 
Medicine, Indianapolis, IN, USA). These cell lines were cultured 
in Dulbecco’s Modified Eagle’s Medium (DMEM, GIBCO, OK, 
USA) supplemented with 10% FCS, penicillin (100 U/mL), 
and streptomycin (100  µg/mL). Cells were regularly tested for 
Mycoplasma and were free of this contamination. All cell cultures 
were incubated at 37°C under a humidified atmosphere of air 
containing 5% CO2.

In Vitro irradiation of Tumor cells
Cell lines were grown on 10-cm dishes to 80–90% confluence 
and washed three times with pre-warmed (37°C) PBS and then 
cultured in RPMI medium containing 2% of fetal bovine serum 
(FBS) for short-term cultures (4 h) or 10% of FBS for long-term 
cultures (72 h) as indicated in figure legends. Tumor cells were 
irradiated with multiple doses of gamma radiation (Gy). Cell irra-
diation studies were conducted using an IBL 136 cell and animal 
gamma radiator machine (Compagnie Oris Industrie, France). 
Settings for the machine were as follows: d = 33 c and dose rate 
of 251.7 cGy/min. In some experiments, the PAFR antagonist 
CV3988 (Enzo Life Sciences, Farmingdale, NY, USA) or the 
vehicle control dimethyl sulfoxide of 0.5% was pre-incubated for 
30 min before irradiation.

Measurement of PaFr ligands after 
irradiation
Tumor cells and HaCaT cells (107  mL) were plated in 10-cm 
dishes and incubated overnight in RPMI supplemented with 10% 
FBS. Following incubation, the culture medium was replaced 
with 2 mL of pre-warmed (37°C) Hanks Balanced Salt Solution 
supplemented with 10  mg/mL fatty acid-free bovine serum 
albumin and 2  µM Pefabloc, a serine hydrolase inhibitor that 
blocks PAF degradation (Sigma-Aldrich, St. Louis, MO, USA). 
The cells were then irradiated with 4–8-Gy doses following a 
1-h incubation. The culture was quenched by the addition of 
2 mL of ice-cold methanol followed by methylene chloride, and 
lipids were extracted, as previously described [(26–28), p. 50]. 
The presence of PAFR ligands in lipid extracts was determined 
by the ability of these extracts to induce interleukin-8 (IL-8) 
production in KBP cells, as previously described (29). Briefly, 
2  ×  105 KBP cells were plated in 12-well plates and cultured 
overnight in DMEM containing 10% FBS. The cells were then 
washed with PBS and incubated with FBS-free DMEM. The cells 
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FigUre 1 | Platelet-activating factor receptor (PAFR) expression was significantly upregulated in cervical invasive carcinomas and cervical cancer-derived cell lines. 
(a) Analysis PAFR (PTAFR) was increased in invasive carcinomas when compared with normal cervical tissues (GSE9750; p = 0.0044). (B) The PTAFR expression 
was upregulated in cervical tumors from patients who underwent radiotherapy when compared with biopsies taken before treatment (GSE3578; p = 0.0208). These 
two cervical cancer datasets were retrieved from GEO web database. (c) PAFR mRNA expression was analyzed by RT-qPCR in cervical tumor cells (C33, SiHa,  
and HeLa), head and neck squamous cell carcinoma lineage (SCC90 and SCC78), and a control keratinocyte (HaCaT). Data are shown as the mean ± SD of the 
comparative delta-CT related to HaCaT of three independent experiments. (D) Median fluorescence intensity (MFI) of PAFR protein expression in the cell  
membrane. Data were obtained from three independent experiments. *P < 0.05 comparing the tumor cells with the control keratinocyte HaCaT.
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were stimulated with the lipid extracts from irradiated cells, and 
after 5 h, the supernatants were collected for IL-8 measurement. 
The concentration of IL-8 induced by the lipid extracts was 
compared with that induced by the stable PAFR agonist cPAF 
(1-hexadecyl-2-N-methylcarbamoyl glycerolphospho-choline). 
The concentration of IL-8 in the supernatants was measured 
using BD OptEIA™ ELISA sets (BD Biosciences), according to 
the manufacturer’s instructions.

rna analysis for PaFr expression
Platelet-activating factor receptor expression was analyzed 
by quantitative reverse transcription polymerase chain reac-
tion using RNA obtained from HaCaT and tumor cells. Total 
RNA was isolated using TRIzol Reagent (Life Technologies). 
For real-time RT-PCR, cDNA was synthesized using the 
RevertAid™ First Strand cDNA Synthesis Kit (Fermentas Life 
Sciences, Ontario, CA, USA), according to the manufacturer’s 
instructions. PCR Master Mix (Power SyBr® Green, Applied 
Biosystems, Warrington, UK) containing the specific primers 
was then added. Human PAF receptor forward primer: GGG 
GAC CCC CAT CTG CCT CA and reverse GCG GGC AAA 
GAC CCA CAG CA; GAPDH forward primer: GAG TCA 
ACG GAT TTG GTC GT and reverse primer: TTG ATT TTG 
GAG GGA TCT CG. Real-time PCR was performed using the 

Mx3005PTM Real-Time PCR System (Stratagene). Relative gene 
expression was calculated using the 2−ΔΔCT method, as previously 
described (30). Results are presented as a fold increase relative to 
non-irradiated cells.

Flow cytometry for PaFr expression
Tumor cells and HaCaT cells (107 mL) were incubated overnight 
in a medium supplemented with 10% FBS. Following incuba-
tion, the culture medium was replaced with 2  mL of ice-cold 
phosphate buffer solution (PBS), and the cells were removed 
with a rubber policeman cell scraper and harvested by cen-
trifugation at 250 × g for 5 min. Following centrifugation, the 
cell pellet was washed and resuspended in the staining buffer 
(PBS, FCS 1%, and sodium azide 0.1%) containing the primary 
antibody (rabbit IgG to PAFR 1:100 dilution in staining buffer; 
Cayman Chemical, Ann Arbor, MI, USA). Following a 30-min 
incubation, the cells were washed and resuspended in staining 
buffer containing Alexa Fluor 647-goat anti-rabbit IgG second-
ary antibody (1:100 dilution in staining buffer; Invitrogen 
Life Technologies, Carlsbad, CA, USA). Cells incubated with 
secondary antibody only were used to control for background 
fluorescence. The expression of the PAFR was analyzed by flow 
cytometry. During data acquisition, the doublets were excluded 
using gates in FSC-A vs. FSC-H.
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FigUre 2 | Irradiation of tumor cells increases platelet-activating factor receptor (PAFR) expression. Immortalized keratinocytes HaCaT (a), human cervical 
carcinoma cell lines C33 (B), SiHa (c), and HeLa (D) and head and neck squamous cell carcinoma lineage SCC78 (e) and SCC90 (F) were cultured in RPMI 2% 
fetal bovine serum at 37°C, and 5% CO2 was irradiated with 4 or 8 Gy. After 6 h, PAFR mRNA expression was analyzed by RT-qPCR. Data are shown as the 
mean ± SD of three independent experiments. *P < 0.05 comparing irradiated with non-irradiated groups.
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elisa Measurement of Pge2
To measure PGE2 secretion by tumor cells, 106 cells per well were 
plated in 10-cm dishes and incubated overnight. The cells were 
treated with the prostaglandin inhibitor indomethacin (Sigma-
Aldrich, St. Louis, MO, USA) or the PAFR antagonist CV3988 
for 30  min prior to Gy treatment. The supernatants from the 
cells were collected 1 h after cell irradiation, and PGE2 levels in 
the supernatants were measured by ELISA (Cayman Chemical, 
Minneapolis, MN, USA).

cell Death assay
The carcinoma cell lines (2 × 105) treated with different doses 
of radiation (4 or 8 Gy) were incubated in RPMI 10% FBS at 
37°C with 5% CO2 for 72 hs. Cell death was assessed by labe-
ling the tumor cells with annexin V FITC (5 µL per sample, 

BD Biosciences) and propionate iodide (PI) (10  µL per test, 
BD Biosciences) for 15 min and then analyzed by flow cytom-
etry using BD FACS Calibur (BD Biosciences) and FlowJo 
Version 5.0 software (Ashland, OR, USA). The cells positive 
for both annexin V and PI were considered as undergoing  
cell death.

statistical analysis
Data are represented as mean ± SD unless otherwise indicated 
and were analyzed using the Prism 5.0 statistical program 
(GraphPad Software, San Diego, CA, USA). Comparisons among 
groups were performed by analysis of variance followed by the 
Bonferroni multiple comparison test. A two-sided P < 0.05 was 
considered to be statistically significant. Each experiment was 
repeated at least three times.
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FigUre 3 | Irradiation of tumor cells induces platelet-activating factor receptor (PAFR) ligands production. Immortalized keratinocytes HaCaT (a), human cervical 
carcinoma cell lines C33 (B), SiHa (c), and HeLa (D) and head and neck squamous cell carcinoma lineage SCC78 (e) and SCC90 (F) were cultured in RPMI 2% 
fetal bovine serum at 37°C, and 5% CO2 was irradiated with 4 or 8 Gy. Lipid extracts were obtained after 1 h following treatment and then added to KBP cells. After 
6 h, interleukin-8 (IL-8) was quantified as a measure of PAFR agonistic activity. As control, PAF (100 nM) was added to KBP cells. Results are expressed as the 
percentage of IL-8 relative to amounts induced by cPAF. Mean ± SD of six experiments made in duplicate. *P < 0.05, comparing irradiated with non-irradiated 
control.
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resUlTs

irradiation of Tumor cells increases  
PaFr expression and induces PaF-like 
lipids and Pge2
We first analyzed PAFR (PTAFR) expression in two cervical 
cancer datasets retrieved from GEO web database.2 We observed 
that PTAFR expression was upregulated in invasive carcinomas 
(n  =  33) when compared with age-matched normal cervical 
tissues from hysterectomy specimens (n  =  19) (GSE9750, 
Figure 1A) (31). In the second series (GSE3578), we found that 

2 https://www.ncbi.nlm.nih.gov/gds.

the mRNA level of PTAFR was increased in cervical tumors 
(n  =  26) after the patients underwent RT treatment protocol 
(Figure  1B). Biopsies were taken before and 1 week after the 
start of therapy. For the after-treatment biopsy, the patients had 
received 9 Gy of whole pelvic irradiation, part of a 30.6-Gy RT 
protocol to the whole pelvis, plus an additional dose to parame-
tria with central shielding to complete 50.6-Gy protocol treat-
ment, along with 192Ir high-dose rate intracavitary [described 
in Ref. (32)].

To improve this observation, we also evaluate the expression 
of PAFR in three cervical carcinoma cell lines (C33, SiHa, and 
HeLa) and in two squamous carcinoma cell lines (SCC90 and 
SCC78) compared to an immortalized keratinocyte (HaCaT). 
Our results showed that all carcinoma tumor cell lines express 
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FigUre 4 | Irradiation of tumor cells induces prostaglandin E2 (PGE2) production. Immortalized keratinocytes HaCaT (a), human cervical carcinoma cell lines C33 
(B), SiHa (c), and HeLa (D) and head and neck squamous cell carcinoma lineage SCC78 (e) and SCC90 (F) were cultured in RPMI 2% fetal bovine serum at 37°C, 
and 5% CO2 was irradiated with 4 or 8 Gy. After 6 hs, the PGE2 production was evaluated in the supernatants. Data are presented as mean ± SE (standard error) of 
three independent experiments. *P < 0.05, comparing irradiated with non-irradiated control.
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higher amounts of mRNA for PAFR than the control HaCaT cell 
line (Figure 1C). We also evaluated membrane PAFR expression 
by flow cytometry and observed that C33, SiHa, HeLa, and SCC78 
cell lines express higher amounts of the receptor in relation to 
HaCaT cells (Figure 1D).

Next, we assessed whether irradiation would affect PAFR 
expression in these cell lines. As shown in Figure 2, irradiation 
of all cell lines in  vitro (4 or 8  Gy) increased PAFR mRNA 
levels. The lipid extracts from the irradiated cultures obtained 
as described in Section “Materials and Methods” were then 
assayed for their capacity to activate PAFR. For this purpose, 
we developed an assay with carcinoma cells transfected with 
PAFR (KBP) which secrete (IL-8) in response to receptor 

activation (33, 34). A concentration response curve to the 
PAFR agonist methylcarbamyl PAF was performed and used 
to calculate the concentration of PAFR-like lipids present in 
the supernatants of irradiated cells. This is a very useful assay 
as it allows the detection of the collection of PAFR ligands 
generated by irradiation. Figure  3 shows that irradiation 
induced the secretion of PAFR ligands by all carcinoma cells 
investigated. These results indicate that PAF-like molecules 
are produced by radiation and enhance PAFR expression in 
tumor cells.

Supernatants of the carcinoma cells collected 6  h after 
irradiation were measured for PGE2 levels. Figure 4 shows the 
irradiation-induced dose-dependent generation of PGE2 by all 
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FigUre 5 | Platelet-activating factor receptor (PAFR) antagonist enhances 
cell death induced by radiotherapy. C33 (a), SiHa (B), and HeLa (c) cervical 
carcinoma cell lines were treated (black bars) or not (white bars) with PAFR 
antagonist (10 µM CV3938) 30 min before irradiation with 4 or 8 Gy. After 
3 days, the cultures were trypsinized and stained with annexin V FITC and 
propidium iodide (PI). Data are shown as the mean ± SE (standard error) of 
the percentage of cells positive for PI and annexin V. #P < 0.05 irradiated vs. 
non-irradiated and *P < 0.05 treated vs. not treated with PAFR antagonist 
CV3938. n = 3 independent experiments performed in duplicate.
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tumor cells. Taken together, these results show that in the car-
cinoma cell lines screened, Gy increased PAFR expression and 
induced PAF-like molecules and PGE2 generation.

PaFr activation in Tumor cells Protects 
Them from radiation-induced Death
To investigate if PAFR-mediated mechanisms are involved in 
tumor resistance to radiation, we pretreated the C33, SiHa, and 
HeLa tumor cells with the PAFR antagonist CV3938 before 
irradiation (4 or 8 Gy) of the cells and assessed cell death after 
3 days. Death was assessed by labeling the tumor cells treated with 
annexin V and PI and analyzing by flow cytometry. Gy-induced 
tumor cell death and blockade of PAFR with CV3938 further 
increased cell death (Figure 5).

In another experimental approach, the human carcinoma 
cell line (KBM) that does not express PAFR and the same 
cells transfected with the PAFR (KBP) were irradiated, and 
the cytotoxic effect of radiation was measured. After 72  h of 
exposure to 4 or 8 Gy, the PAFR+ cells survived more than the 
PAFR− cells (Figure 6A), confirming the protective effect of PAF. 
Furthermore, the KBP cells were treated with a PAFR antagonist 
or a prostaglandin synthesis inhibitor (indomethacin) before 
irradiation. Figure 6B shows that the treatment of KBP cells with 
CV3988 significantly increased radiation-induced cell death, 
whereas indomethacin did not affect cell survival (Figure 6B). 
At the dose of indomethacin used, it abolished the PGE2 in 
the supernatants of irradiated KBP cells (data not shown). In 
PAFR− cells (Figure  6C), radiation increased cell death, and 
this was not affected by the treatments. In Figure  7A, we can 
see that KBP cells irradiated with 8 Gy produced an amount of 
PAFR ligands equivalent to 92% of 100 nM of cPAF. KBM did 
not respond to PAF or to irradiation, although they did respond 
to phorbol 12-myristate 13-acetate stimulation. Irradiated KBP 
cells produced PGE2, and this was almost abolished by CV3988 
(Figure 7B). These results suggest that PAFR ligands produced 
during irradiation are more relevant for the radio resistance of 
tumor cells than prostaglandins.

DiscUssiOn

Previous studies have shown that PAFR activation results 
in accelerated proliferation, angiogenesis, and metastasis in 
different models of melanoma, breast, ovarian, and prostate 
tumors (9, 35, 36). The association of PAFR antagonists with 
chemotherapy agents leads to increased tumor cell death and 
improved treatment effectiveness (14, 37–39). We have recently 
found similar effects with the association of PAFR antagonists 
and RT (7, 13, 40). The present study provides additional sup-
port for the functional significance of the PAF/PAFR system in 
tumor RT. Our results show that PTAFR expression was upreg-
ulated in cervical cancer clinical samples when compared to 
normal cervical tissue. Also, PTAFR mRNA level was increased 
in cervical tumors after RT treatment. In the carcinoma cell 
lines screened, Gy increased PTARF expression and induced 
PGE2- and PAF-like lipids. The activation of PAFR by these 
lipids protects tumor cells from radiation-induced cell death. 

Moreover, it seems that the PAFR ligands are more relevant for 
tumor cell’s radio resistance than prostaglandins.

The expression of PAFR is elevated in different types of cancer, 
such as human hepatocellular carcinoma (41), gastric adenocar-
cinoma (42), and by several human tumor lineages [e.g., Kaposi’s 
sarcoma cells (43), endometrial cancer cell line HEC-1A (44), 
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FigUre 7 | Irradiation of tumor cells transfected with PAFR: the production 
of PAFR agonists and PGE2. Human carcinoma cells transfected with PAFR 
(KBP) and negative for PAFR (KBM) were cultured in high density (106 cells/
mL) and were treated or not with gamma irradiation (8 Gy). (a) Interleukin-8 
(IL-8) concentration in cell supernatants 6 h after irradiation was quantified by 
ELISA as a measure of molecules with agonist activity on the PAF receptor. 
As control, cPAF (100 nM) or phorbol 12-myristate 13-acetate (PMA) 
(1,000 nM) was added to cells. (B) PGE2 concentration in cell supernatants 
1 h after irradiation. Results are expressed as the median ± SE (standard 
error) of three experiments made in duplicate. P < 0.05 KBM vs. KBP cells; 
#P < 0.05 treated vs. not treated with PAFR antagonist CV3938.

FigUre 6 | Platelet-activating factor receptor (PAFR) expression protects 
carcinoma cells from radiation-induced cell death. Human carcinoma cells 
transfected with PAFR (KBP) and negative for PAFR (KBM) were irradiated 
with 4 or 8 Gy and incubated for 3 days. (a) Cells were stained with annexin 
V FITC and propidium iodide (PI), and the percentage of death of cells 
(annexin/PI-positive cells) was determined (*P < 0.05 KBM vs. KBP cells; 
#P < 0.05 irradiated vs. non-irradiated). A similar protocol was applied in  
(B) KBP and (c) KBM cells treated or not with the COX-inhibitor 
indomethacin (15 µM) or PAFR antagonist (10 µM CV3938) 30 min before 
irradiation. Results are shown as percentage of apoptotic cells (*P < 0.05).
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epidermoid carcinoma (A431 cells) (45), stomach cancer cell 
line JR-St (46), and N1E-115 neuroblastoma cells (47)]. Our data 
show that PAFR is also overexpressed in cervical and head and 
neck squamous cell carcinoma lineages, which suggest that it may 
have a role in the pathogenesis and progression of these types of 
tumors.

Previous studies from our laboratory showed that the stimula-
tion of a cell line positive for PAFR (KBP) with cPAF increased 
cell proliferation; however, this did not occur in PAFR- (KBM) 
control cells (7). Also, the activation of PAFR induces the phos-
phorylation of ERK and p38 MAP kinase in KBP cells, which 
stimulates cell proliferation (48). PAF seems to have a role in 
tumor growth in normal conditions, since transgenic mice 
overexpressing PAFR exhibited increased local cell growth in the 
skin, characterized by dermal and epidermal hyperthickening 
with dermal melanosis, and in some aged mice, spontaneous 
development of melanocytic tumors (48) occurred.

Some previous studies have also linked the PAF/PAFR axis 
with cellular responses to stress and cellular damage. Different 
stimuli including cytokines (49), cigarette smoke (27), ultraviolet 
B (28), and gamma irradiation (13) resulted in significant levels 
of PAF synthesis by tumors cells. The approach used in this study 
was to induce irradiation stress in tumors cells after the inhibition 
of PAFR to enhance the sensitivity of cancer cells toward radia-
tion. The present study was performed with a gamma irradiator 
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