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ABSTRACT

Identifying rare variants that contribute to complex
diseases is challenging because of the low statis-
tical power in current tests comparing cases with
controls. Here, we propose a novel and powerful
rare variants association test based on the devia-
tion of the observed mutation burden of a gene in
cases from a baseline predicted by a weighted recur-
sive truncated negative-binomial regression (RUN-
NER) on genomic features available from public data.
Simulation studies show that RUNNER is substan-
tially more powerful than state-of-the-art rare vari-
ant association tests and has reasonable type 1 er-
ror rates even for stratified populations or in small
samples. Applied to real case-control data, RUNNER
recapitulates known genes of Hirschsprung disease

and Alzheimer’s disease missed by current methods
and detects promising new candidate genes for both
disorders. In a case-only study, RUNNER success-
fully detected a known causal gene of amyotrophic
lateral sclerosis. The present study provides a power-
ful and robust method to identify susceptibility genes
with rare risk variants for complex diseases.

INTRODUCTION

Rare genetic variants, typically defined as variants with
a minor allele frequency <1% in the population, play an
important role in the etiology of complex diseases (1–3).
They may explain a nontrivial fraction of ‘missing heri-
tability’ reported by genome-wide association studies based
on common genetic variants (4). Recent advances in high
throughput sequencing (HTS) technologies have made it
feasible to perform genome-wide association analyses of
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rare genetic variants in large samples. For example, the UK
Biobank exomes project highlighted the significant con-
tribution of rare variants to common diseases (5). The
UK10K project has uncovered highly penetrant rare vari-
ants for cardiometabolic traits (6), and the Trans-Omics for
Precision Medicine (TopMed) project will examine contri-
butions of rare variants to heart, lung, blood and sleep dis-
orders (7). Rare susceptibility variants have also been linked
to many chronic diseases, including type 2 diabetes, my-
ocardial infarction, osteoporosis, and Alzheimer’s disease
(3). Compared to common variants, rare variants are more
likely to be evolutionarily new and deleterious. They are
also more likely to have a larger effect on disease risk and
thus provide a stronger basis for discovering new biological
mechanisms or drug targets, e.g. the lipoprotein pathway
gene PCSK9 for low-density lipoprotein cholesterol levels
(8).

Despite these promising early findings, studies on rare
susceptibility variants suffer from low statistical power (2).
As testing rare variant association at a single site generally
has little power, most current methods aggregate all rare
variants within a gene or genomic region to test for asso-
ciation with a disease (2). Such tests typically compare rare
variant burden between patients and controls in terms of
the mean (9,10) and variance (11) of rare variant counts.
Despite the gain in power over single variant tests, exist-
ing aggregate-based association tests still require very large
samples (12), which are difficult and costly to collect. To
increase study efficiency, researchers have proposed to use
publicly available sequencing data to boost the number of
controls (13,14). However, since rare variants exhibit greater
population differences than common variants (15), the use
of publicly shared controls may exacerbate the challenge of
hidden population stratification, leading to more spurious
associations.

Here, we propose a novel statistical method to detect rare
susceptibility variants in genes or genomic regions. The pro-
posed method uses a novel strategy for association testing,
which models the baseline mutation burden across genes
by considering multiple genomic features as predictors and
then evaluates the deviation of the observed mutation bur-
den in a particular gene against its predicted baseline value.
After characterizing the type 1 error rate, power, and ro-
bustness to population stratification of the method using
simulated data, we applied it to real data sets to examine
its ability to detect disease-related associations.

MATERIALS AND METHODS

The proposed recursive truncated negative-binomial regres-
sion (RUNNER)

The truncated negative-binomial regression model. We ex-
tended the negative-binomial regression model to evalu-
ate the burden for revealing potential susceptibility genes
or loci of complex diseases, assuming that a gene with ex-
cessive rare mutation burden in patients is more likely to
confer disease risk. The burden is measured by an excess
of observed mutation counts relative to expected baseline
mutation counts. Let a gene i have mi rare variants (in-
cluding single nucleotide variants and InDels with allele

frequency ≤1% in reference populations) in sequenced pa-
tients. Preferably, when there are control samples, one can
further remove variants with d (>1) times smaller allele fre-
quency in patients than in controls. The d approximately
corresponds to the effect size of rare variants. As the odds
ratio of most rare variants of complex diseases is over 2
(16), we recommend a 2 or larger value for d. The d helps
remove variants with high minor allele frequency in a lo-
cal sample but rare in a reference population and leads to
the baseline estimation specifically among subset variants
with higher frequency in patients. Let the rare variant j of
gene i have ni,j (ni,j = 0, 1, 2, . . . ) minor alleles among all pa-
tients. Assume an integer weight (wi, j ) can further amplify
the impact of minor alleles, i.e., ci, j = ni, j × wi, j . The in-
teger weight is converted from a bioinformatics prediction
score (see details in the following section), si, j ∈ [0, 1] by the
least integer function, wi, j = [ si, j

b ]. The b ∈ (0, 1] is a score
bin length parameter to determine the weight scale (See de-
tails in the below grid-search algorithm). A special scenario
is that all variants has equal weight 1. According to our pre-
vious study on cancer somatic mtations (17), the total num-
ber of weighted rare minor allele counts in gene i, yi, can be
assumed to approximately follow a negative binomial (NB)
distribution:

yi =
mi∑
j=1

ci, j ∼ NB (μi , θ ) , (1)

where μi is the expected number of minor allele count in
gene i, and θ is a dispersion parameter. The probability
mass function (PMF) of NB distribution is f (yi |μi , θ ) =
�(yi +θ )
�(θ)yi !

μ
yi
i θθ

(μi +θ)yi +θ , where �() is the gamma function and yi=
0, 1, 2, . . . .

However, in a sample of typical size, many genes may have
no rare variants. As a result, there would be an inflation of
genes with zero or a low number of minor alleles (Figure
1A), which distorts the NB distribution. Therefore, we pro-
pose to model the mutation counts by a truncated negative
binomial distribution. The PMF of the distribution with a
truncated point parameter t is:

g (yi |μi , θ, t) = f (yi |μi , θ )

1 − ∑t
j=0 f ( j |μi , θ )

,

yi = t + 1, t + 2, · · · . (2)

Meanwhile, the number of minor allele counts in a gene is
affected by multiple local factors. For instance, a long gene
(say TTN, ∼305 kb) tends to have more minor alleles than a
short gene (Say GJB1, ∼10 kb). In the present study, we con-
sidered eight predictive factors at coding regions of genes to
estimate the expected minor allele counts,

η= log (μi ) =β0+β1 × [
x1,i , length of coding regions

]+β2 × [
x2,i , frequency score

] +β3×[
x3,i , length of coding regions × frequency score

] + β4×[
x4,i , observed over expected ratio for missense variants

] + β5×[
x5,i , mutation rate summed across all possible missense variants

] + β6×[
x6,i , observed over expected ratio for LOF variants

] + β7×[
x7,i , mutation rate summed across all possible LOF variants

] + β8 × [
x8,i , GC content

]
.

(3)

The frequency score, x2, is produced by accumulating al-
lelic frequencies of the same types of rare variants in a ref-
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Figure 1. The distribution features of genes’ rare mutation counts and the proposed framework. (A) The histogram of rare mutation counts. (B) The scatter
plot of rare mutation counts of genes with different coding region length. (C) The relationship between mutation counts and accumulated allele frequency
in genes with short (<1.5 kb), middle and long (>3 kb) coding region length. (D) The diagram of RUNNER procedure. The 493 sequenced controls of
Hirschsprung disease were used to make the plots A, B and C.

erence database (e.g. 1000 Genomes Project or gnomAD)
after matching allele-frequency and ancestry of the same
gene (see details below). A gene with a higher frequency
score tends to have more rare mutations. The interaction
factor, x3, is motivated by observing that genes of different
coding region lengths may show different correlations be-
tween the minor allele counts and allele frequencies (Figure
1C). The fourth to seventh predictors are genes’ observed
over expected ratios and mutation rates for missense and
loss-of-function (LOF) variants in canonical transcripts
from gnomAD (18,19). A gene with a higher ratio and mu-
tation rate also tends to have more rare mutations. The
eighth predictor is the GC content of exon regions because
the mutation rate tends to be higher in the GC-rich areas
(20).

Optimization of parameters. The regression coefficients
(β0, · · · , β8) and dispersion parameter (θ ) are estimated by
maximum likelihood approaches under the truncated nega-
tive binomial distribution in the above model. We derived
the mathematical formulas of the first derivatives of the
log-likelihood function, l (yi |μi , θ, t) = ln[g(yi |μi , θ, t)] =
li , for the maximum likelihood estimation (See details
in the Supplementary Methods). We extended the source
codes of the zero-truncated negative-binomial regression

model in the ‘countreg’ R package (https://r-forge.r-project.
org/R/?group id=522) to estimate the above parameters.
The Broyden–Fletcher–Goldfarb–Shanno (BFGS) algo-
rithm optimized the estimation iteratively. Because RUN-
NER only performed the parameter estimation once for
all genes in the entire genome without permutation, its ex-
pected runtime is insensitive to sample size (Supplementary
Table S1). Thus, the parameter estimation can be finished
in several minutes for an exome sequencing dataset.

When fitting the coefficients, the score bin length b and
truncation point t are constant. Given b, t, and the fitted
coefficients, the expected mutation count of gene i was esti-
mated by:

μ̂i = eβ̂0+β̂1xi,1+...+β̂8xi,8 . (4)

In the truncated negative binomial model, the deviance
residual of the model at gene i is:

ei = sign (yi − μ̂i )

×
√

2 × |l (
yi |μ∗

i , θ̂ , t
) − l(yi |μ̂i , θ̂ , t)|, (5)

where sign(x) is the sign function of the raw residual, the μ∗
i

is the estimated mean given the observed count yi and esti-

https://r-forge.r-project.org/R/?group_id=522
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mated θ̂ in a saturated model (See details in the Supplemen-
tary Methods).

The deviance residuals are further standardized by the es-
timated mean μ̂e,i and standard deviation σ̂e,i ,

éi = ei − μ̂e,i

σ̂e,i
. (6)

The standard normal distribution is used to approximate
the corresponding P-value of éi :

pi = 1 − � (éi ) , (7)

where �(x) is the cumulative distribution function of the
standard normal distribution. Using simulated data, we
showed that the truncation at negative binomial distribu-
tion led to an approximately uniform distribution of the P-
values (Supplementary Figure S1).

We built a grid-search algorithm to explore the optimal
values of b and t under their reasonable ranges. The bin
length b is assumed to range from 0.05 to 1. The trunca-
tion point t is assumed to range from 0 to 5. The search
intervals of b and t are 0.05 and 1, respectively. Therefore,
the grid-search has 120 (=20 × 6) b – t combinations in to-
tal. We adopted the mean log fold change (MLFC) (21) of
P-values to quantify the departure from the uniform dis-

tribution, MLFC = (1/n)
n∑

i = 1
|log2( P(i )

q(i )
)|, where P(i) = ith

smallest P value among n genes and q(i) = i/n. Values of
MLFC near zero indicate smaller discrepancies between ob-
served and theoretical p values under the uniform distribu-
tion. A large MLFC, say 0.3, indicates a high discrepancy.
The 120 combinations are ranked according to MLFC of
potential background genes in ascending order and num-
ber of significant genes (false discovery rate, FDR > 0.05)
in descending order respectively, denoted as (rj,b, rj,t) and
j∈[1,120]. The optimal b and t are defined as the ones result-
ing in the minimal summation rank, i.e. min(rj,b+ rj,t), which
balances the uniform distribution departure of P-values and
the number of significant genes.

The recursive procedure. Note that the truncated negative
binomial regression is proposed to model the distribution of
rare mutations at background genes, i.e. the null hypotheses.
However, the excessive mutations in real susceptibility genes
may harm the model fitting. Therefore, we propose a recur-
sive procedure to approximate the null hypothesis of gene
mutations by removing significant and suggestively signifi-
cant genes. This would also remove some outlier genes with
high technical artifacts as well. The following are the main
steps of the recursive regression procedure (also see the en-
tire diagram in Figure 1D):

1. Perform the truncated negative binomial regression on all
genes in a genome and calculate the P-value of mutation
burden for each gene by RUNNER.

2. Exclude significant genes according to a loose P-value
cutoff, say, FDR of 0.1.

3. Re-perform the truncated negative binomial regression
on the remaining genes.

4. Repeat steps 2 and 3 until no genes are excluded for ob-
taining a converged model.

5. Calculate the deviance residuals and P-values of all genes
by the converged model.

Here is an intuitive explanation of why RUNNER’s ex-
pected mutation count strategy could be potentially more
powerful than a typical case-control association strat-
egy. Consider a hypothetical example where the preva-
lence of a disease is 0.01. The frequency of rare vari-
ants in a genomic region is 0.001 per individual in con-
trols but 0.01 per individual in cases. The overall fre-
quency of rare variants in the population is, therefore,
0.001×0.99 + 0.01×0.01 = 0.00109. In a sample size of 500
cases and 500 controls, the expected number of rare variants
in the cases and controls would be 10 and 1, respectively. If
these expected values were observed, then the pooled rare
variant frequency would be 0.0055, while the Pearson chi-
squared statistic would be approximately (10 – 5.5)2/5.5 +
(1 – 5.5)2/5.5 = 7.37, producing a two-tailed P-value of
0.0067. However, through statistical modeling, if we could
infer correctly that the population frequency of minor alle-
les at the rare variant in the genomic region is 0.00109, the
expected number of rare variants in 500 cases would be 1.09.
The probability of observing ten or more variants assuming
a negative binomial distribution is 2.52E-7. Note that a pre-
requisite of the expected mutation count strategy is an ac-
curate estimation of the expectation, which is the aim of the
recursive truncated negative-binomial regression model.

Preparation of functional scores at mutations

As mutations do not function equally on a gene, it is rea-
sonable to use prior weights to amplify minor alleles with
higher functional implications. We adopted our previous
ensemble score model by logistic regression (22,23) to gen-
erate a combined weight with 19 prediction scores (see
the tools’ names and descriptions in Supplementary Table
S2). The primary rationale of these predictions is that vari-
ants that are evolutionarily conserved and have large effects
on physical-chemical properties and protein structure may
have a higher damaging impact on a gene product (24). The
posterior probability values are further normalized within
the range of 0 and 1. A larger posterior probability indi-
cates a higher functional impact of the minor allele on the
gene’s function. For variants with missing posterior prob-
ability, the average one in the gene is used. The procedure
of generating posterior probabilities has been implemented
into KGGSeq for the truncated negative binomial regres-
sion.

Preparation of frequency scores

The above frequency score in formula (3) is created by accu-
mulating allelic frequencies at variants in a large reference
population after matching allele frequency, variant type,
and population ancestry. For example, define a gene i with
k rare variants in a reference sample. Let a rare variant j
of the gene i has allele frequency fi,j and the above inte-
ger functional weight wi,j. The frequency score of gene i
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is then equal to:

x2,i =
k∑

j=1

fi, j × wi, j . (8)

When there is more than one reference sample, the aver-
aged allele frequencies of multiple samples are used for the
frequency score. In the present paper, we adopted the al-
lele frequencies of variants from the 1000 Genomes Project
and in the Genome Aggregation Database (gnomAD, V2.1)
as reference samples. Alternatively, one can also use the
frequency scores calculated in other reference samples and
even large local control samples. For the 1000 Genomes
Project, the variant sites and allelic counts (Phase3 V6)
of five different ancestry panels (African, Mixed Ameri-
can, East Asian, European and South Asian) were down-
loaded at ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/
20130502/. For gnomAD, the variant sites and allelic fre-
quencies of seven ancestrally different panels (East Asian,
South Asian, African/African American, Latino, Finnish,
Non-Finnish European, and Ashkenazi Jewish) were down-
loaded from http://gnomad.broadinstitute.org/downloads.
In gnomAD, we only included the variants and allelic fre-
quencies from subjects labeled as controls. The variants
were mapped onto genes according to physical positions
in two gene models (RefGene and GENCODE) and anno-
tated with gene features by KGGSeq (Version 1.2) (25).

Alternative gene-based association tests for rare mutations

We compared the performance of RUNNER with four
widely-used association tests for rare mutations, which used
different models to evaluate the mutation burden between
cases and controls.

• Combined Multivariate and Collapsing (CMC) method
(9): The CMC method is a type of direct burden test for
case-control samples. The variants were divided into mul-
tiple groups according to the allele frequencies. Within
a group, mutations at multiple variants were collapsed.
Then, a multivariate test (Hotelling’s T2 test) was em-
ployed to test whether all groups’ collapsed mutations
were associated with case-control status.

• The sequence kernel association test (SKAT) (11): SKAT
assumed the effects of rare variants on disease risk fol-
lowed an arbitrary distribution with a mean of zero
and an unknown variance. The variants without ef-
fect would have zero genetic variance. A score-based
variance-component test in a mixed model was then con-
structed to examine whether the variance was equal to
zero. SKAT was further extended to improve power for
detecting variants with the same or different directions,
SKATO (26). For power comparison, we also assigned
the same weights as RUNNER to perform the weighted
version of SKAT.

• The kernel-based adaptive clustering model (KBAC)
(27): KBAC considered genotypes of all rare variants in
a gene as multi-site genotype vectors. The disease risk for
a multi-site genotype was modeled using a mixture distri-
bution. An adaptive weighting procedure was then used
to produce each genotype’s weights for their causality or

susceptibility to a disease based on a known component
called a kernel.

The four methods were implemented into a user-
friendly tool, RVTESTS (Version 20190205) (28). For
the weighted SKAT, the R package of SKAT (https://
cran.r-project.org/web/packages/SKAT/, version 2.0.1) was
adopted. Our high-throughput sequencing data analy-
sis platform, KGGSeq (http://pmglab.top/kggseq/, Version
1.2, source codes, https://github.com/pmglab/KGGSeq),
has integrated RVTESTS and SKAT as the third-party
analysis components.

Computer simulations investigate type 1 error and power

To keep the distribution of rare background mutations, we
used a semi-simulation procedure to investigate the statis-
tical type 1 error and power of RUNNER. We first re-
moved variants in 3 known causal or significant genes in the
Hirschsprung whole-genome sequencing sample and used
all the 936 subjects for the simulation (29). We randomly
drew m (=150, 300, 600 and 900) subjects to form a new
sample with half pseudo-cases and half controls. RUNNER
was used to calculate the P-values of genes in the new sam-
ple. The quantile-quantile (QQ) plot of −log10 (P-value)
under uniform distribution was used to check the distribu-
tion of P-values, particularly at the tail of small P-values.
The MLFC was also adopted to quantify the deviation of
P-values from a uniform distribution in general (21). To
investigate the statistical power, we made an artificial pa-
tient sample by randomly inserting several causal muta-
tions (simulated according to pre-set frequencies) into the
genomes of pseudo-cases. Two genes (TCF4 and TIE1) were
set as the targeted susceptibility genes in the simulations.
Either gene was assumed to have 4–5 non-synonymous sus-
ceptibility variants (See the variants in Supplementary Ta-
ble S3). Each variant had an expected frequency of 1.0–
1.5% at the risk alleles in the artificial patient sample. The
allele frequency at the assumed susceptibility variants in a
control sample was equal to the alternative allele frequency
in cases divided by a random odds ratio ranged from 2 to 5.
The case-control samples were analyzed for power compari-
son. We produced t case–control samples for the association
tests. Assume a test had genome-wide significant P-values
at a tested gene in k samples. The power was estimated as
k/t at this gene.

We also used subjects from the 1000 Genomes (1KG)
Project to check how the methods were sensitive to popu-
lation stratification. Using all the 5 ancestry panels (East
Asian, South Asian, European, American and African),
we constructed 20 population-mixed samples. We randomly
drew (sampling without replacement) 66.6% of a panel’s
subjects to constitute pseudo-cases in each sample. The re-
maining 33.4% of subjects in the same panel and an equal
number of subjects randomly drawn (sampling without re-
placement) from each of the four other panels constituted
the controls. The samples were analyzed by RUNNER and
four alternative methods for gene-based association at rare
variants. No genes were assumed to be related to the case-
control membership, mimicking the null hypothesis. Thus,

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/
http://gnomad.broadinstitute.org/downloads
https://cran.r-project.org/web/packages/SKAT/
http://pmglab.top/kggseq/
https://github.com/pmglab/KGGSeq
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all significant associations would be spurious, mainly due to
population stratification.

The third sample we used for the semi-simulation-
based power comparison contained 4810 whole-genome-
sequenced subjects from the Singapore 10K (SG10K)
Genome Project (30). we conducted a down-sampling anal-
ysis in the SG10K dataset to investigate how the sample size
influences the detection of significant genes discovered in
a larger sample. Ten artificial susceptibility genes with 30
rare susceptibility variants (See the variants and minor al-
lele frequencies in Supplementary Table S4) were inserted
into genomes of 2405 pseudo-patients and 2405 controls
according to the pre-set allele frequencies. The subset of
samples with sizes 500, 1000, 1500 and 2000 was randomly
drawn and analyzed by RUNNER one by one. We repeated
the down-sampling procedure ten times at each sample size
to obtain an averaged number of re-discovered genes to re-
duce stochastic sampling errors.

Real high-throughput sequencing datasets

Three real high-throughput sequencing datasets were used
to validate the performance of the proposed method. Sup-
plementary Table S5 summarizes the disease names and
sample information. All the sequencing samples were ob-
tained with Institutional Review Board approval in either
Hong Kong or mainland China. The short reads produced
by Illumina HiSeq 2000 were mapped onto the reference
genome (HG19) by BWA v0.7.17 (31). The redundant reads
were removed by Picard (https://broadinstitute.github.io/
picard/). The sequence variants were called by GATK v3.8
(32). Stringent quality control (QC) procedure at the vari-
ants was performed on KGGSeq V1.2 (http://pmglab.top/
kggseq/). The variants or genotypes failing to pass the fol-
lowing QC criteria were excluded: Hardy-Weinberg test P-
value ≤ 0.001, genotyping quality Score (Phred Quality
Score) <20, read depth per genotype <8, having more than
four alleles, genotyping rate <90% in a sample. Supplemen-
tary Table S5 also lists the initial and retained sequence vari-
ants in each dataset.

Detection of susceptibility genes with rare variants by the pro-
posed methods and four alternative methods

All analyses for detecting susceptibility genes with rare
variants were carried out on our KGGSeq platform (http:
//pmglab.top/kggseq/). After QC, common variants were
then filtered out according to their alternative allele fre-
quency (allele frequency > 0.01) in two databases, gnomAD
exomes and gnomAD genomes from East Asian panels. Ac-
cording to two gene models (RefGene and GENCODE),
the variants were mapped onto genes and annotated with
gene features (missense, synonymous, splicing, etc.). In the
uncommon scenario that a variant was in overlapped re-
gions of multiple genes, the variants were assigned to each
of the overlapped genes. Gene-based tests were then per-
formed to detect the diseases’ potential susceptibility genes
with the rare variants. The present study considers mutation
types of missense, start-loss, stop-loss, stop-gain, splicing,
frameshift and non-frameshift. For the gene-based associa-
tion test by the four alternative methods [CMC (9), KBAC

(27), SKATO (26) and SKAT (11)], KGGSeq produced in-
put of these tools and automatically called RVTESTS (Ver-
sion 20190205) for the analysis in parallel. For the baseline
mutation burden test by RUNNER, KGGSeq (Version 1.2)
directly ran its Java codes to perform the analysis. The func-
tional weights to amplify minor allele counts in RUNNER
were also produced by KGGSeq.

RESULTS

Overview of RUNNER

Our proposed method is built on the deviation of the ob-
served rare mutation burden at a genomic region (typically
a protein-coding gene) in patients against its baseline expec-
tation in the population (see the method’s workflow in Fig-
ure 1D). A weighted recursive truncated negative-binomial
regression estimates the baseline expectation based on the
genomic region’s characteristics. The truncated negative-
binomial model was proposed to respond to two distribu-
tion features: the negative binomial distribution allows for
over-dispersion of rare mutation counts compared to the
Poisson distribution, and truncation allows for inflated zero
or low mutation counts (Figure 1A and B). With the fit-
ted regression model, the deviance residuals of weighted
rare mutation count burden at all genes are calculated,
standardized to z-scores, and then converted to P-values.
Thus, RUNNER is fundamentally different from conven-
tional rare-variants methods, e.g. CMC (9) and SKAT (11),
which are based on case-control differences in rare variant
counts. Intuitively, the power gain of RUNNER compared
to typical case-control studies depends on the extent that
the weighted recursive truncated negative binomial regres-
sion can accurately model the variation in rare mutational
burden across the genome and on the size of the control
sample available for conventional case-control comparison.
However, unlike SKAT (11), RUNNER cannot directly ad-
just for confounding factors. We build a logistic regression
model for a disease phenotype affected by environmental
factors to calculate the residual given the environmental
factors. Patients with a low residual can be precluded be-
fore RUNNER analysis. Moreover, because RUNNER es-
sentially assesses the relative mutation burden only in pa-
tients, allele frequencies in controls will not significantly in-
fluence the test as it does for the case-control test. So, spu-
rious association due to population stratification in a typ-
ical case-control analysis may no longer be a serious issue
for RUNNER (See more illustration in the Discussion sec-
tion). RUNNER was implemented in our high-throughput
sequencing data analysis platform KGGSeq (Version 1.2)
(22,23) (http://pmglab.top/kggseq/).

Type 1 error of the proposed and alternative methods for
genome-wide association screening

To check whether RUNNER is valid for statistical infer-
ence, we first investigated its genome-wide statistical type
1 error for detecting susceptibility genes with rare muta-
tions by a random sampling approach. Similar to the sim-
ulated negative binomial data (Supplementary Figure S1),
the distribution of P-values produced by RUNNER for mu-
tation counts in real samples was also very close to a uni-

https://broadinstitute.github.io/picard/
http://pmglab.top/kggseq/
http://pmglab.top/kggseq/
http://pmglab.top/kggseq/
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form distribution U[0,1] (Figure 2). The uniform distribu-
tion was unchanged when the sample size was as small as
150 (half cases and half controls). The uniform distribution
departure indexes, MLFC, for RUNNER were < 0.05 for
all the four different sample sizes (n = 150, 300, 600 and
900). As expected, in the particular circumstance of equal
weights (weight = 1) at variants, RUNNER1 also gener-
ated approximately uniformly distributed P-values. To men-
tion it concisely, this equal weight (weight = 1) version of
RUNNER is called RUNNER1 in this manuscript. In con-
trast, the four widely-used gene-based association methods
(CMC (9), SKAT (11), SKATO (26) and KBAC (27)) for
case-control analysis showed deflated P-value distribution
when the sample size was small, say <300. The MLFC of
the four methods was >0.3, indicating a severe departure
from the uniform distribution. The time-consuming permu-
tation (n = 106) in KBAC did not rescue the deflation at
small sample sizes. The result was consistent with the con-
sensus that existing statistical association methods for rare
variants had invalid approximation in their test statistics,
generally in small or even moderate samples (33). The P-
values produced by CMC deviated from uniform distribu-
tion less than that produced by three alternative methods.
SKAT was more conservative than SKATO at small sam-
ple sizes. The deflation of the four methods became smaller
as sample sizes increased to 900. The suitable type 1 error
of RUNNER ensures a valid interpretation of RUNNER’s
P-values for statistical inference even at small sample sizes.

We also compared the type 1 error of the truncated neg-
ative binomial model with a truncated Poisson model. The
latter is also widely used for rare variant analysis, e.g. (26)
(34). In a randomly drawn dataset (300 cases and 300 con-
trols) under the null hypothesis, the generalized linear re-
gression under the truncated Poisson distribution showed
severe type 1 error inflation (Supplementary Figure S2).
Many long genes (e.g. TTN) had very significant P-values.
In contrast, RUNNER’s truncated negative binomial re-
gression model showed no inflation of type 1 error in the
same dataset. This comparison implied that the negative bi-
nomial model could better fit the rare mutation counts than
the Poisson distribution. Probably, this was because the for-
mer can consider the overdispersion of mutation counts bet-
ter than the latter.

Robustness of RUNNER to population structure

We also found RUNNER had much less type 1 error in-
flation to population stratification than conventional case-
control association tests. It showed no inflation trend for
the baseline mutation burden test in almost all 20 ances-
trally admixed samples. The inflation indexes, MLFC, in
all the 20 samples were less than 0.195, and there was no
systematic type 1 error inflation in most samples (Figure
3 and Supplementary Figure S3). In some samples (say
European pseudo-cases vs. half South Asian controls), a
small fraction of genes had significant P-values (≤2.5E-
6). Some local sample-specific common variants caused the
significant P-values. Almost all significant P-values disap-
peared when variants with minor allele frequency ≥1.5%
were excluded (Supplementary Figure S4). Similarly, the
equal-weight version RUNNER1 also showed uniformly

distributed P-values in most 20 samples (Supplementary
Figure S3). In contrast, all the four alternative association
tests showed inflation of type 1 error rates in most sam-
ples with 50% population stratification in controls. Fig-
ure 3 also shows their P-value QQ plots in four differ-
ent samples in which the pseudo-patients were East Asian,
European, American, and African, respectively. Over 200
genes had P-values < 2.5E-6 by CMC, SKAT and SKATO
in all four samples. Among the four alternative meth-
ods, KBAC had less inflation than the other three, while
its sensitivity to population stratification was apparent in
most samples. These results suggested RUNNER can be
the priority method for samples with large population
stratification.

However, we noticed that it is necessary to use ances-
trally matched references to filter out common variants in
patient samples for RUNNER. In another artificial experi-
ment, we investigated this issue also by using the gnomAD
exomes data. As shown in Supplementary Figure S5a, when
the East Asian reference population was used for pseudo-
patient samples from the European panel of the gnomAD
database, RUNNER showed P-value inflation among genes
with low-frequency (MAF < 3%) variants enrichment. The
issue was similar when the European reference population
was used for pseudo-patient samples from the East Asian
panel (Supplementary Figure S5b). With unmatched refer-
ence populations, many population-specific common vari-
ants would be retained after allele frequency-based filtra-
tion. As RUNNER is sensitive to the enrichment of mu-
tation counts in a gene, genes having multiple population-
specific common variants would have significant P-values.
In the software platform KGGSeq, we integrated refer-
ence allele frequencies of seven ancestries from the gno-
mAD database (19). Although gnomAD might not provide
a complete match for a local sample, the correct type 1 er-
rors in the present paper’s simulations and real applications
suggested that a crude ancestry match may be acceptable
for RUNNER.

The statistical power of the proposed and alternative methods
for genome-wide association screening

We further compared the statistical power of RUNNER
with the four widely-used rare variant tests by semi-
simulation analysis. The diseased samples were simulated by
randomly inserting susceptibility alleles into real genomes.
Multiple rare missense mutations in TCF4 and TIE1 genes
(See the variant list in Supplementary Table S3) were as-
sumed in the simulation. TCF4 was repeatedly validated as
a susceptibility gene for schizophrenia (35), and TIE1 was
implicated with vascular development and pathogenesis of
vascular diseases (36). As shown in Figure 4, RUNNER had
a much higher power to detect TCF4 than the other four al-
ternative methods. When the sample size was 600 (300 cases
and 300 controls), RUNNER achieved 98% power while all
the other four alternative methods had <35% power accord-
ing to an exome-wide P-value cutoff of 2.5E-6. RUNNER’s
power increased to 100% when the sample size increased
to 900. In contrast, among the alternative methods, KBAC
had the highest power (only 12%) at the sample size of 600.
When the sample size increased to 900, the most powerful
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Figure 2. The QQ plots of P-values produced by different methods in random samples When the sample size of cases is (A) 75; (B) 150; (C) 300; (D) 450
and equal numbers of controls. RUNNER: the proposed approach; RUNNER1: the equal weight (weight = 1) version of RUNNER which uses original
mutation counts at variants. CMC, SKAT, SKATO and KBAC are four widely-used approaches for gene-based association tests with rare variants in
case-control samples. The values behind the model name denote its corresponding inflation index, MLFC.

alternative test was SKATO, with a power of 34%. Other
alternative tests had nearly zero power to detect TCF4 with
300 cases and 300 controls. The weighted version of SKAT
and SKATO even had lower power to detect this gene. This
is consistent with previous studies in which existing meth-
ods for rare variants generally had very low power in small
or moderate samples (12). When equal weight 1s were im-
posed at all variants (denoted as RUNNER1), the power
of RUNNER slightly decreased, 92% and 97%, at the sam-
ple sizes of 600 and 900. Therefore, RUNNER was much

more powerful than the other four alternative methods for
detecting TCF4.

As for the other gene, TIE1, all methods had lower power
to detect it when the sample size was <600. RUNNER had
69% higher power while the other four alternative meth-
ods had <15% at the sample size of 600. When the sam-
ple size increased to 900, RUNNER achieved 90% power
while all other alternative methods had < 53% power. The
higher power at TCF4 than TIE1 was because TCF4 had
more assumed causal mutations (5 versus 4), shorter cod-
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Figure 3. The P-value QQ plots of different tests in a stratified population. (A) African pseudo-cases vs half American controls; (B) American pseudo-cases
vs half East Asian controls; (C) East Asian pseudo-cases versus half European controls and (D) European pseudo-cases vs American controls from the
1000 Genomes Project. The values behind the model name denote its corresponding inflation index, MLFC.

ing region (2.83 kb versus 3.64 kb), and lower accumu-
lated allelic frequency in reference populations. Neverthe-
less, RUNNER achieved the best power to detect genes
with rare susceptibility mutations compared to alternative
methods.

We also used the pilot study of the SG10K Genome
Project (30) sample (n = 4810) to investigate how the sam-
ple size influenced the detection of genes significant in a
large sample. Ten artificial susceptibility genes (See details
in Supplementary Table S4) were set in a large sample of

2405 pseudo-cases and 2405 controls. RUNNER and RUN-
NER1 detected seven and five genes out of the ten, re-
spectively (P ≤ 2.5E-6). In sub-samples of the large sam-
ple, the number of significant genes was generally related to
sample sizes (Supplementary Figure S6). For example, in a
sub-sample of 500, 1000, 1500 and 2000 pseudo-cases, the
weighted version of RUNNER detected 3.2, 5, 6.2 and 6.8
significant genes on average, respectively. RUNNER1 de-
tected fewer significant genes than the weighted one at all
the sub-samples.
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Figure 4. Performance comparison of different methods. (A) Power of methods for detecting gene TCF4. (B) Power of methods for detecting TIE1 gene.
For each scenario, 100 datasets were simulated. The assumed rare susceptibility variants can be seen in Supplementary Table S3. SKATw and SKATOw
are the weighted SKAT and SKATO by using the same functional prediction scores adopted by RUNNER, respectively.

Validation of RUNNER in real datasets of complex diseases

We further validated the performance of RUNNER at
three different complex diseases (Hirschsprung disease,
Alzheimer’s disease, and amyotrophic lateral sclerosis) with
high throughput sequencing data (See summary descrip-
tion in Supplementary Table S5). Genes were tested for a
rare mutation burden in patients by RUNNER. Besides, we
also compared RUNNER’s results to four widely-used rare
mutation association tests, including CMC (9), KBAC (27),
SKAT (11) and SKATO (26).

Hirschsprung disease (HSCR). HSCR, also known as
congenital megacolon or intestinal aganglionosis (37), is a
highly heritable disorder with significant phenotypic het-
erogeneity. Our dataset comprised 443 Asian HSCR pa-
tients and 493 Asian control individuals assayed by whole
genome sequencing (29). According to the QQ plots (Sup-
plementary Figure S7a), the P-values of RUNNER, CMC,
KBAC and SKATO approximately followed the uniform
distribution while SKAT showed slight deflation. Table 1
lists the top 10 genes detected by RUNNER. The well-
known HSCR susceptibility gene, RET (38,39), was prior-
itized as the top gene by both RUNNER (P = 8.58E-8)
and the equal weight version RUNNER1 (P = 7.01E-8).
In these cases, RET had 61 rare nonsynonymous minor al-
leles (See frequencies in Supplementary Table S7). How-
ever, none of the alternative methods prioritized RET as
a significant gene in the same set of rare variants. The top
gene by CMC, SKATO, and KBAC was OGG1 (P = 2.01E-
6, 5.03E-6 and 1.0E-4), while SKAT ranked ZNF276 as
the top gene (P = 2.97E-4). But we failed to find litera-
ture to support these genes’ contribution to the develop-
ment of HSCR. A more remarkable instance can be seen
in EDNRB, another well-known HSCR susceptibility gene
(39,40). EDNRB was the 4th most significant gene by RUN-
NER (P = 2.39E-5, top 0.27‰ in all tested genes). Un-

fortunately, CMC, KBAC, SKAT and SKATO nearly ne-
glected this gene, with a rank of 53, 61, 200 and 351 (top
2.2‰, 2.5‰, 8.4‰ and 14.8‰ in all tested genes), respec-
tively. The EDNRB only had 15 rare nonsynonymous mu-
tations. RUNNER1 just ranked it at 30th (top 1.99‰) in all
tested genes. It was the weight that boosted the significance
of EDNRB.

Besides the two known susceptibility genes, RUNNER
also detected another gene, NXPE4, with a significant
rare mutation burden in the HSCR patients, P = 1.67E-
6. NXPE4 has specifically high expression in colons (see
details in database REZ, http://pmglab.top/rez/) (41), and
is known to be associated with ulcerative colitis (42). The
high expression of NXPE4 also had a significantly improved
prognosis of colorectal cancer regarding patients’ overall
survival (43).

All the eight predictors in the fitted RUNNER model
significantly contributed to predicting minor allele counts
at background genes (Supplementary Table S6a). As ex-
pected, the coding region length and frequency scores were
positively related to the rare mutation counts of genes
(P = 8.35E-15 and 4.99E-192), which meant longer cod-
ing regions and higher mutation frequency genes tended
to have more rare nonsynonymous mutations. Consistent
with previous studies (20), genes with higher GC content
also tended to have more rare nonsynonymous mutations
(P = 1.68E-8). The genes’ observed over expected ratio
for missense variants had a much higher significance level
than for LOF variants (P = 1.29E-44 versus 1.69E-5). Con-
versely, a slightly greater contribution could be seen in the
genes’ mutation rate summed on LOF variants than on
missense variants (P = 2.03E-15 versus 4.27E-10). Interest-
ingly, the interaction term between the coding region length
and gene frequency score negatively affected the mutation
counts (−0.212 ± 0.004) and had the most significant level
according to its z-score, −53.61. The negative interaction

http://pmglab.top/rez/
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suggested that frequency score had a smaller effect for large
genes than for short genes. This meant that the genome
might show local variation in mutation frequency. For a
large gene, the local variation was averaged out so that the
length mattered the most. For short genes, the local infor-
mation was important, and the frequency score captured
this. The varied tendency is visualized among genes in three
gene groups of different coding region lengths (Figure 1C).

Alzheimer’s disease (AD). AD is a progressive neurode-
generative disorder characterized by memory loss and cog-
nitive impairments among older people. This dataset con-
tained 246 APOE ε4-negative Chinese AD patients and
172 healthy elderly controls sequenced at exomes (44). In
this small sample, RUNNER still showed approximately
uniformly-distributed P-values at most of the genes for the
rare variant mutation burden test, while all the four alter-
native tests showed deflation (Supplementary Figure S7b).
RUNNER1 detected a significant gene, NAT1 (P = 1.24E-
7), which had 27 rare nonsynonymous mutations in the
AD patients (See details in Supplementary Table S8). It en-
codes an arylamine N-acetyltransferase, which helps func-
tion in folate catabolism. Multiple studies have suggested
that low folic acid levels may be risk factors for AD (45,46).
A recent study indicated that reduced expression of NAT1
contributes to cerebral endothelial necroptosis and A� ac-
cumulation in AD (47). The 2nd most significant gene
by RUNNER1 was PIF1 (P = 9.10E-6), which was also
the fourth most significant gene detected by RUNNER
(P = 5.22E-5, see more in Supplementary Table S9a). Pif1
functions as a 5’-3’ DNA helicase present in all eukary-
otes. It is an important factor for maintaining mitochon-
drial DNA, regulating DNA replication and resolving G4-
DNA, and might be a promising therapeutic target for age-
associated neurodegenerative disorders (48). DPH1 was an-
other suggestively significant gene by both RUNNER (sec-
ond rank, P = 3.99E-6) and RUNNER1 (fourth rank,
P = 2.73E-5). DPH1 encodes an enzyme involved in the
biosynthesis of diphthamide, a unique hidtidine residue
found only in elongation factor-2 (EF2). Eukaryotic EF2
pathway is a major regulator of protein synthesis, synap-
tic plasticity and memory consolidation and has been im-
plicated in AD pathogenesis (49,50). The estimated coeffi-
cients of the predictors of RUNNER in this dataset were
similar to that in HSCR (Supplementary Table S6b). The
interaction predictor also showed the highest statistical sig-
nificance.

In contrast, the four alternative methods detected no
significant genes. The smallest P-values by CMC, KBAC,
SKAT and SKATO were 2.87E-4 (AMOTL2), 3.0E-4
(ELN), 4.57E-4 (C3orf35) and 2.4E-4 (C3orf35), respec-
tively. None of these genes has been implicated in AD by
published studies.

Amyotrophic lateral sclerosis (ALS). ALS is a progressive
nervous system disease that affects nerve cells in the brain
and spinal cord, which causes loss of muscle control (51).
Besides 46 unrelated sporadic ALS patients, this dataset
includes eight related ALS patients, all of which were se-
quenced at exomes (52). We applied RUNNER to evalu-
ate the rare mutation burden at genes among unrelated and
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all patients, respectively. As shown in Supplementary Fig-
ure S8a, even in such a small sample of 46 unrelated pa-
tients, the P-value QQ plot still followed a uniform distri-
bution U[0,1], and the MLFC was only 0.047. The inclu-
sion of 8 related ALS patients from the same family did
not significantly disturb the distribution, MLFC = 0.039
(Supplementary Figure S8b), suggesting that RUNNER
might also work for samples with partial relatedness, al-
though it is subject to validation in more real datasets.
However, RUNNER became slightly inflated when equal
weights of 1 were used in this small sample (Supplementary
Figure S8c and d). Probably the weight introduced more
variation to construct a stable baseline estimation model in
RUNNER.

RUNNER detected one significant gene among all the
54 patients, SOD1 (P = 8.70E-9) (see more in Supplemen-
tary Table S9b). SOD1, encoding an isozyme responsible
for destroying free superoxide radicals in the body, is a
well-known causal gene of familial ALS (53). All 8 related
ALS patients shared a rare missense mutation (c.449T > C,
p.I150T) in SOD1. Although there were only nine missense
mutations in all the patients of this gene, the ultra-rare al-
lele frequencies, deleteriousness functional prediction and
gene’s lower tolerance to missense or LOF mutation, made
RUNNER produce a highly significant P-value for mu-
tation burden at this short gene (coding region length is
0.5KB). When eight related samples were removed, the most
significant gene detected by RUNNER was ARHGEF6
(P = 5.20E-5, see more in Supplementary Table S9c), which
was also the sixth significant gene by RUNNER on all 54
cases. ARHGEF6, encoding a guanine nucleotide exchange
factor for Rho GTPases. Though there has been no direct
reference linking this gene with ALS, aberrations in Rho
signaling have been suggested to contribute to the disease
of ALS (54).

DISCUSSION

The present study proposed a novel approach, RUNNER,
to evaluate deviation from baseline rare mutation burden
across genes in whole-genome or -exome sequencing stud-
ies. To our knowledge, this is the first statistical test for ge-
netic mapping based on baseline mutation burden at genes.
In contrast, conventional alternative methods were devel-
oped based on the deviation of mutation burden between
cases and controls. We showed that RUNNER was much
more powerful than four widely-used methods based on
mutational burden differences between cases and controls
(CMC, SKAT, SKATO and KBAC) for genetic associa-
tion tests at rare variants in simulation studies. Intuitively,
the greater power of RUNNER can be attributed to the
use of genome-wide mutational burden information to pro-
vide more accurate estimates of local mutational burden
in the population, especially when the control sample size
is small. We also demonstrated that RUNNER was much
more robust to population structure than the case-control
methods. The enhanced power was reaffirmed by detecting
more known or promising candidate susceptibility genes in
real data analysis of multiple complex diseases. To facilitate
the application of this powerful approach, we have imple-
mented RUNNER as one of the modules on our compre-

hensive software platform for high throughput sequencing
data analysis, KGGSeq (http://pmglab.top/kggseq/).

Besides the burden comparison strategy, the enhanced
power of RUNNER is also attributed to multiple method-
ological innovations. First, the truncated negative bino-
mial distribution fitted mutation counts well. The trun-
cation kept the model-fitting from potential harm by the
genes with no or low mutation counts in a small or mod-
erate sample. It also has a data-driven algorithm to deter-
mine the appropriate truncation points for the model fit-
ting. Besides, the negative binomial distribution modeled
the overdispersion of the mutation counts properly. When
the model was replaced with the truncated Poisson distri-
bution, we found that the P-values by the regression model
became inflated under the null hypothesis (Supplementary
Figure S2). Second, RUNNER had a recursive procedure
to purify the background gene list. A pure background will
lead to a more accurate estimation of the baseline mutation
burden. Otherwise, significant genes may introduce an over-
estimation of the baseline mutation, which will decrease
the deviation and thus reduce the power of RUNNER. Fi-
nally, RUNNER has the advantage of optimizing a scale
for prior weights at variants to boost the power further. A
too large scale may introduce type 1 error inflation, while a
too small scale will not enhance the power. RUNNER had
an algorithm to automatically explore an optimal scale that
minimizes inflation and maximizes the number of signifi-
cant genes simultaneously. Based on the optimal scale, we
showed that the prior weights were able to increase up to
30% or more power in simulation studies while keeping the
correct type 1 error rate (Figures 2 and 4). The deviation
from the baseline mutation burden has been used for cancer
somatic mutations analysis (21). However, it is seldom used
for germline rare mutations analysis because of the chal-
lenges in modeling the distribution of mutation counts of
rare variants. These methodological innovations provide ef-
ficient solutions to these challenging issues.

The insensitiveness of RUNNER to population stratifi-
cation can be explained by its analysis strategy in principle.
Instead of comparing allelic frequency between cases and
controls as conventional case-control association analyses
do, RUNNER essentially calculates the relative difference
between the observed rare mutation burden and the esti-
mated baseline rare mutation burden at a gene in patient
samples. So, the different ancestry of controls will not af-
fect the calculation (See validations in Figure 3 and Sup-
plementary Figure S3). However, when the cases are from
admixed populations with different background mutation
rates (say East Asian and African), it would be difficult to
select a matched reference population to filter out popula-
tion private variants and model the gene frequency scores.
The use of an unmatched reference population can lead to
a significant P-value at a gene with the population’s private
variants (Supplementary Figure S5). This advantage is in-
triguing for genetic association analysis in rare variants be-
cause it is more challenging to correct population stratifi-
cation in rare variant analysis than in the common variant
analysis (15).

RUNNER was originally proposed for unrelated sam-
ples. However, in the ALS dataset, we showed that it suc-
cessfully detected causal genes even when 8 (∼15%) sub-

http://pmglab.top/kggseq/
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jects were from the same family, and it did not show system-
atic inflation of P-values (Supplementary Figure S8b). The
insensitiveness to subject relatedness is also because both
the observed and the estimated baseline mutation burden
would increase simultaneously, and their relative difference
(i.e. the deviation) was not affected largely. To investigate
how the proportion of sample relatedness influences the per-
formance of RUNNER, we expanded the ALS family by
mimicking random mating in another simulation experi-
ment based on ALS dataset. As shown in Supplementary
Figure S9, when the relatedness in over 30%, multiple genes
with private mutations of this family became significant, al-
though there remained no systematic inflation of type 1 er-
ror. Therefore, RUNNER should be applied with caution
when subjects from a large family dominate a sample.

Besides the systematic simulation studies, the real data
application further demonstrated the effectiveness of RUN-
NER for the genetic mapping of rare variants. In a
proof of principle example, RUNNER successfully recap-
tured (P < 2.5E-6) the known causal gene RET (38,39),
and prioritized another known gene EDNRB (39,40) of
Hirschsprung disease. These genes were ignored by the four
widely-used alternative tests, CMC, SKAT, SKATO and
KBAC. In the AD dataset, RUNNER1 showed a signif-
icant P-value at a very promising candidate susceptibility
gene, NAT1 (P = 1.24E-7) (47). In the ALS dataset con-
taining familiar patients, RUNNER successfully detected a
causal gene, SOD1 (P = 8.70E-9) (53), in a case-only anal-
ysis. However, RUNNER may have decreased power for
highly polygenic diseases in which many genes contribute
to the phenotype with mild effects. This is because the too
many mildly-burdened genes, if not excluded by the recur-
sive procedure, will be considered into the background, el-
evate the expected mutation counts, and decrease the rel-
ative difference between observed and expected mutation
counts. In the hypothetical example for intuitive explana-
tion, the P-value increased from 2.52E-7 to 0.0021 if the
background mutation frequency was biased to be tripled.
However, this would only happen when the proportion of
mildly-burdened genes with rare mutations is very large.
Unfortunately, the proportion is generally unknown. The
success of RUNNER in three complex diseases suggests the
mildly-burdened genes may not substantially decrease the
power for a number of complex diseases.

We used eight predictors under the RUNNER model
for the background mutation count of genes in the present
study. Although most of the eight predictors were signifi-
cant and led to the approximately uniform distribution of
P-values, it did not exclude the usage of other predictors.
For example, the sequencing coverage of a gene would also
be a potential predictor. However, the sequencing cover-
age may be data-dependent. When sequencing depth is high
enough, almost all genes have enough reads to call reli-
able genotypes. In this scenario, its impact on the predic-
tion will be small and contribute little to the baseline mu-
tation burden. Besides, it has been noted that the mutation
rate tends to be lower in highly expressed genes (46) due
to a process termed transcription-coupled repair (55). On
the other hand, the mutation rate tends to be higher in re-
gions with late DNA replication timing (56), probably due
to the depletion of free nucleotides (57). Studies have sug-

gested that mutation rates may also be associated with epi-
genomic features (58). However, these features may be cell-
type and developmental stage-dependent. It is often chal-
lenging to obtain the right cell type at the right time for
a type of disease in practice. Note that the gene frequency
score in the model may also be related to the gene expression
and replication timing. The former’s usage in the regression
may partially account for the latter’s impact on the mutation
counts.

The model of RUNNER is independent of mutation
types. Due to abundant data available for validation, we
focus on coding and splicing mutations in this paper. It,
however, does not preclude its potential extension to rare
noncoding mutations. However, additional future work is
needed for the extension to noncoding variants. As the evo-
lution selection and genomic features of noncoding vari-
ants may differ from coding variants (59), different pre-
dictive factors may be needed for the mutation counts in
noncoding regions. The biological interpretation of signifi-
cant results is also more difficult for noncoding genomic re-
gions. A possible way is to analyze sub-noncoding regions
separately, e.g. upstream and first intronic regions. Besides,
the functional prediction at noncoding variants is less ad-
vanced than that at coding variants generally. How the prior
weight based on less accurate prediction at noncoding vari-
ants influences the power will also be an interesting future
work. We performed a preliminary extension of the pro-
posed framework for rare variants in upstream and down-
stream regions. Although only the gene-frequency score was
used, the P-values only slightly departed from the uniform
distribution (Supplementary Figure S10). This preliminary
investigation suggested that the framework RUNNER is ex-
tendable for noncoding regions with more effective predic-
tors.

Two limitations should be noted in the present paper.
First, the analysis framework does not directly consider
covariates to adjust for confounding factors of diseases,
e.g. sex and age. For a disease with strong confounding fac-
tors, one could exclude patients with a large posterior prob-
ability of being a case according to logistic regression with
the confounding factors (22). The calculation of posterior
probability can be seen in our previous method. However,
it should also be noted that RUNNER does not directly
detect the association between mutation counts and case-
control status. Therefore, it might not be sensitive to the co-
variates. In a quick investigation, we deliberately misspec-
ified 50 controls as the patients in the Hirschsprung dis-
ease dataset to mimic the scenario that genetic factors did
not primarily cause 10% of patients. The P-values of RUN-
NER still followed uniform distribution, and the known
causal gene RET also achieved a significant P-value (Sup-
plementary Figure S11 and Supplementary Table S9d). In
the AD dataset, RUNNER results for age-adjusted and
original phenotypes were also quite similar (Supplementary
Table S10). Second, RUNNER will not work in the associ-
ation analysis only at a few available genes. RUNNER re-
sorts to hundreds of genes to build a baseline model at a
time. Therefore, the substantially enhanced power of RUN-
NER does not mean that it will be a universal replacement
of the conventional case-control tests for genetic mapping.
However, it may be an effective complementary analysis ap-
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proach when well-matched control samples are unavailable
or case-control analyses are underpowered.

In summary, we proposed a novel and powerful statisti-
cal approach, RUNNER, to detect susceptibility genes with
rare mutations. Its baseline mutation burden estimation and
advanced weighted truncated negative binomial regression
may motivate many follow-up methodological studies for
genetic mapping from a new angle. As we demonstrated
in the applications, the enhanced power of RUNNER may
save multiple susceptibility genes missed by widely-used
case-control association tests.
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