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Peckoltia is widely distributed genus in the Amazon and Orinoco basins and the Guiana
Shield, containing 18 valid species, and distinct morphotypes still needing description in
the scientific literature due to its great taxonomic complexity. This study performed a
comparative chromosomal analysis of two undescribed Peckoltia species (Peckoltia sp. 3
Jarumã and Peckoltia sp. 4 Caripetuba) from the Brazilian Amazon using conventional
chromosome bands methods and in situ localization of the repetitive DNA (5S and 18S
rRNA and U1 snRNA genes and telomeric sequences). Both species presented 2n � 52
but differed in their karyotype formula, probably due to inversions or translocations. The
nucleolus organizer regions (NORs) showed distal location on a probably homeologous
submetacentric pair in both species, besides an extra signal in a subtelocentric
chromosome in Peckoltia sp. 4 Caripetuba. Heterochromatin occurred in large blocks,
with different distributions in the species. The mapping of the 18S and 5S rDNA, and U1
snDNA showed differences in locations and number of sites. No interstitial telomeric sites
were detected using the (TTAGGG)n probes. Despite 2n conservationism in Peckoltia
species, the results showed variation in karyotype formulas, chromosomal bands, and
locations of repetitive sites, demonstrating great chromosomal diversity. A proposal for
Peckoltia karyotype evolution was inferred in this study based on the diversity of location
and number of chromosomal markers analyzed. A comparative analysis with other
Peckoltia karyotypes described in the literature, their biogeography patterns, and
molecular phylogeny led to the hypothesis that the derived karyotype was raised in the
left bank of the Amazon River.
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INTRODUCTION

The Loricariidae is one of the most specious family of catfish
within the order Siluriformes, containing 1,016 valid species
(Fricke et al., 2021). They are endemic to the Neotropical
region, distributed throughout South America and part of
Central America, and occur in a great diversity of habitats
(Armbruster, 2004; Armbruster, 2008; Armbruster and Lujan,
2016). Analyzes based on morphological and molecular data
support the recognition of six subfamilies: Lithogeninae,
Delturinae, Hypoptopomatinae, Neoplecostominae,
Loricariinae, and Hypostominae grouped in the tribes:
Corymbophanini, Rhinelepini, Hypostomini,
Pterygoplichthyini and Ancistrini (Armbruster, 2004; Lujan
et al., 2015).

Peckoltia Miranda Ribeiro, 1912 (sensu Lujan et al., 2015),
comprises 18 valid species, in addition to distinct morphotypes
that still lack description in the scientific literature. They are
widely distributed in the Amazon and Orinoco basins and the
Guiana Shield (Armbruster et al., 2015; Lujan et al., 2015;
Armbruster and Lujan, 2016). According to phylogenetic
analyzes proposed for Loricariidae, Peckoltia genus receive
strong support as monophyletic lineage (Lujan et al., 2015;
Lujan et al., 2017; Roxo et al., 2019); however, a complex
taxonomic identification procedure at a specific level related to
a wide geographic distribution and morphological similarity is
observed for these species (Armbruster et al., 2015; Armbruster
and Lujan, 2016). For example, representatives of Peckoltia vittate
(the type species of the genus) collected in the Amazon region
(Xingu, Madeira and Orinoco rivers) presented polyphyletic
lineages in molecular phylogeny by Lujan et al. (2015).
Armbruster and Lujan (2016), analyzed morphological and
molecular characters of samples collected in the Orinoco basin
associated with P. vittate by Lujan et al. (2015) and described a
new species, Peckoltia wernekei. These recent analyses agree that
the diversity of Peckoltia species can be underestimated for the
Amazon region.

Cytogenetic markers are important tools to analyze fish
species possessing complex taxonomy (Bertollo et al., 2000;

Centofante et al., 2003; Mariotto and Miyazawa, 2006) or to
understand evolutionary features in groups with highly
rearranged karyotypes (Nagamachi et al., 2010; Deon et al.,
2020). Cytogenetic data are available for eight lineages of the
genus Peckoltia, including valid species and unidentified
morphotypes, collected at different points in the Amazon
region. Despite all Peckoltia species share 2n � 52
chromosomes, variations in chromosome morphology, the
number and position of NORs, distribution of the constitutive
heterochromatin (CH) regions, and the presence of B
chromosomes are observed among species of this genus
(Table 1). Therefore, in Peckoltia species, many unique
karyotypic features are observed that can be useful in
recognizing distinct taxonomic units.

Repetitive DNAs are found in most eukaryotic genomes,
representing important markers for molecular diversity
analysis at the chromosomal level; they are organized in
blocks (e.g., satellites and multigene families) or dispersed
(e.g., transposons and retrotransposons). The contribution of
the repetitive DNA for fish genome evolution has been
evidenced (Vicari et al., 2010; Schemberger et al., 2019). The
eukaryotic ribosomal DNA (rDNA) represents two multigene
families with an organization in tandem: 45S ribosomal RNA (18S
+ 5.8S + 28S genes) and 5S ribosomal RNA (Long and Dawin,
1980). These genes are widely used in chromosomal studies in
several organisms, including Peckoltia species (Pety et al., 2018),
showing great molecular chromosomal diversity involving these
sequences.

Small nuclear RNA genes (snDNA) represent another
multigene family involved in the splicing and maturation
process of messenger RNA encoded by the U1, U2, U4, U5
and U6 snRNA genes (Busch et al., 1982). The snDNA
sequences have been used as chromosomal markers for
detailed comparative chromosome analysis in several groups of
organisms, including fish, reptiles and arthropods (Cabral-
de-Melo et al., 2012; Almeida et al., 2017; Cavalcante et al.,
2020; Dulz et al., 2020).

In this study, we describe the karyotypes of two undescribed
Peckoltia species, first time sampled in the Tocantins River basin

TABLE 1 | Chromosomal diversity available in the literature and obtained in the present study for Peckoltia genus.

Species Classic cytogenetics Molecular cytogenetics Loc. Ref.

2n KF Nor 18S rDNA 5S rDNA U1 snDNA Tel.

Peckoltia sp. 1 52+1B 44m/sm+6st+2a+1B multiple - - - - A 1
Peckoltia sp. 2 52 32m/sm+18st+2a multiple - - - - A 1
P. vittata 52 36m/sm+14st+2a simple - - - - B 1
P. vittata 52 34m/sm+18st simple simple multiple - - B 2
P. sabaji 52 38m/sm+14st multiple multiple multiple - - B 2
P. oligospila 52 38m/sm+14st multiple multiple simple - - C 2
P. cavatica 52 38m/sm+14st simple multiple multiple - - C 2
P. multipinis 52 28m/sm+24st simple Simple simple - - B 2
Peckoltia sp. 3 Jarumã 52 46m/sm+6st simple simple multiple simple distal D 3
Peckoltia sp. 4 Caripetuba 52 40m/sm+12st multiple multiple simple multiple distal D 3

Locality: A—Monte Dourado, Pará state, Brazil; B—Altamira, Pará state, Brazil; C—Ourém, Pará state, Brazil; D—Abaetetuba, Pará state, Brazil. References: 1—de Souza et al., 2009;
2—Pety et al., 2018; 3—Present Study. Abbreviations: Diploid number (2n); Karyotype Formula (KF); Nucleolus Organizing Regions (NOR); Ribosomal RNA gene (rDNA); Small nuclear
RNA gene (snDNA); Telomere (tel.); Supernumerary ou B chromosome (B); long arm (q); short arm (p); metacentric (m), submetacentric (sm), subtelocentric (st), acrocentric (a); Locality
(Loc.); References (Ref.); (−) Data no available.
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in Brazil, and compare them with cytogenetic data available in the
literature. From this, we discuss the possible mechanisms of
karyotypic diversification, biogeography and their evolutionary
implications for this genus.

MATERIALS AND METHODS

Samples
Samples of the twomorphologically different but still undescribed
species of Peckoltia named Peckoltia sp. 3 Jarumã and Peckoltia
sp. 4 Caripetuba, after the rivers they were collected in different
hydrographic points in the Tocantins River basins of northern
Brazil were analyzed (Figure 1). The taxonomic identification of
the sample was checked using the identification key proposed by
Armbruster and Lujan (2016), Armbruster (2008). The results
show that the specimens do not fit into any of the species already
Figure 1described. The collection points, number of individuals,

sex, and voucher of deposits in the zoological collection are
shown in Table 2. The samples were obtained under a
permanent field permit obtained by JCP (number 13248 from
“Instituto Chico Mendes de Conservação da Biodiversidade”).
The Cytogenetics Laboratory from UFPA has permit number 19/
2003 from the Ministry of Environment for sample transport and
permit 52/2003 to use the samples for research. The Ethics
Committee (Comitê de Ética Animal da Universidade Federal
do Pará) approved this research (Permit 68/2015). The specimens
have been deposited in the ichthyological collection of the Museu
Paraense Emílio Goeldii (MPEG) (Belém, Brazil).

Chromosomal Analysis
Mitotic chromosomes were obtained from kidney cells after in
vivo colchicine treatment as described (Bertollo et al., 1978). The
animals were anesthetized with eugenol and subsequently
sacrificed for the removal of kidney cells. Metaphases were
analyzed by conventional Giemsa, C-banding (Sumner, 1972)

FIGURE 1 | Geographical location of sampling sites for Peckoltia sp. 3 Jarumã (square) and Peckoltia sp. 4 Caripetuba (triangle) in the present study. The
coordinates of the sampling sites for Peckoltia vittata (diamond), Peckoltia sp. 1, and Peckoltia sp. 2 (circle) reported by de Souza et al. (2009) are also shown. The map
was made using QUANTUM-GIS (Q-GIS) v. 3.4.5. The database was obtained from Instituto Brasileiro de Geografia e Estatística—IBGE. An Peckoltia specimen is
shown below. Scale bar: 1 cm. Photo by KSS.
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and AgNO3 staining (Howell and Black, 1980). Fluorescence in
situ hybridization (FISH) was undertaken as described (Martins
and Galetti, 1999) using a general telomere probe for vertebrates,
18S rDNA, 5S rDNA, and U1 snDNA probes.

Probes Labeling and in situ Localization
DNA extraction was performed using PureLink Genomic DNA
Mini Kit (Invitrogen) following the manufacturer’s instructions.
The probes were obtained from a PCR using genomic DNA of
Peckoltia sp. 3 Jarumã and Peckoltia sp. 4 Caripetuba with
primers previously described for 18S rDNA (Hatanaka and
Galetti Jr, 2004), for 5S rDNA (Suarez et al., 2017) and U1
snDNA (Cabral-de Melo et al., 2012). These probes were labeled
by nick-translation with biotin or digoxigenin. Telomeric probes
were obtained from PCR using the set of primers F-
5′(TTAGGG)5-3′ and R-5′(CCCTAA)5-3′ followed by labeling
with Digoxigenin-11-dUTP (Roche Applied Science®) (Ijdo et al.,
1991). Fluorescence in situ hybridization (FISH) was performed
as described by Martins and Galetti (1999) using the following
stringency conditions: 2.5 ng/μL of each probe, 50% formamide, 2
x SSC, 10% dextran sulfate, and hybridization at 42°C for 16 h.
Fluorescent signals were detected using Streptavidin Alexa Fluor
488 (Molecular Probes, Carlsbad, CA, United States) and anti-
digoxigenin rhodamine Fab fragments (Roche Applied Science,
Penzberg, Germany). Chromosomes were counterstained with
0.2 μg/ml of 4′6-diamidino-2-phenylindole (DAPI) in
Vectashield mounting medium (Vector, Burlingame, CA,
United States).

Microscopic Analysis and Image Capture
At least 30 metaphases Giemsa-stained per individual were
analyzed for confirming the diploid number, karyotypic
structure, and chromosomal markers. Cytogenetic images of
Giemsa-stained chromosomes were obtained using an
Olympus BX41 microscope (bright field/phase) with a digital
camera CCD 1300QDS and analyzed using GenASIs software
version 7.2.7.34276 from ASI (Applied Spectral Imaging). FISH
images were obtained using a Nikon H550S microscope and
analyzed using the Nis-Elements software. Images were adjusted
using Adobe Photoshop CS6 software. Chromosomal
morphology was classified according to literature (Levan et al.,
1964), with adaptations.

RESULTS

Peckoltia sp. 3 Jarumã and Peckoltia sp. 4 Caripetuba species
presented 2n � 52 chromosomes and karyotype formulas (KF)
46m/sm + 6st, and 40m/sm + 12st, respectively. Heteromorphic

sex chromosomes were not identified in the karyotypes described
here (Figures 2A,C).

In Peckoltia sp. 3 Jarumã, heterochromatin occurred in the
interstitial region of the short arm (p) of pairs 1p, 5p and 11p; in
large blocks in the long arm (q) in pairs 9q with size
heteromorphism and 12q; and in the pericentromeric and
interstitial region of the 24q pair (Figure 2B). In Peckoltia sp.
4 Caripetuba, heterochromatin occurred in the interstitial region
of pairs 1p, 14p, 19p and 20p; in the centromeric region of par 4;
in large blocks in pairs 11q, 12q and 13q and in the
pericentromeric and distal region of pair 21q, in which there
is a marked heteromorphism in size between the homologues
(Figure 2D). The Ag-NORs were located distal at pair 9q adjacent
to the heterochromatin block in Peckoltia sp. 3 Jarumã (Figure 2
in box), and at pair 11q, coincident with heterochromatin and in
one of the homologues in pair 21q in Peckoltia sp. 4 Caripetuba
(Figure 2 in box).

Telomeric sequences occurred in the distal region of all
chromosomes in both species, with no evidence of ITS vestiges
(Figures 3A,C). The 18S rDNA, 5S rDNA, and U1 snDNA
probes hybridized at the distal position of the chromosomes in
the karyotypes of both species. In Peckoltia sp. 3 Jarumã, both 18S
and 5S rDNA are colocalized in the 9q pair, in addition to a 5S
rDNA site in one of the homologues in the 24q pair, and U1
snDNA is located in the distal region of the pair 13q (Figure 3B).
In Peckoltia sp. 4 Caripetuba, 18S rDNA is located in pair 11q, in
an additional site in one homologue of pair 21q; 5S rDNA is
located in pair 1p; and U1 snDNA is located in the distal position
of the pair 17q, with an additionnal site in one homologue of pair
21q colocalized with heterochromatin and 18S rDNA site
(Figure 3D).

DISCUSSION

Karyotype Diversity in Peckoltia
Cytogenetic information for the species of Peckoltia is described
in Table 1 and, despite the occurrence of 2n � 52 chromosomes,
all species of Peckoltia show different KF. These differences can be
explained by inversions or translocations, which represent
important mechanisms of karyotypic diversification in
Loricariidae (Kavalco et al., 2005; Mariotto et al., 2011).
Alternatively, centromeric repositioning has also been
proposed to cause variations in chromosome morphology with
no change in diploid number (Montefalcone et al., 1999; Rocchi
et al., 2012). However, the occurrence of this mechanism in
Loricariidae karyotypes still needs deep investigation.

The Loricariidae has extensive chromosomal diversity, with
variation in diploid number from 34 to 96 chromosomes, with a

TABLE 2 | Samples and collection sites for Peckoltia species analyzed in this study.

Species Sex River City/State Voucher Coordinates

Peckoltia sp. 3 2_ 4\ Jarumã River Abaetetuba-PA MPEG 38949 01°42′41.9″S 48°51′45.9″W
Peckoltia sp. 4 1_ 1\ Caripetuba River Abaetetuba-PA MPEG 38950 01°37′23.49″S 48°55′33″W

MPEG—Museu Paraense Emilio Goeldi.
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FIGURE 2 | Karyotypes of Peckoltia species. In (A) conventional staining and (B) C-banding of Peckoltia sp. 3 Jarumã; in (C) conventional staining and (D)
C-banding of Peckoltia sp. 4 Caripetuba. In box the Nucleolus Organizing Regions (NORs).

FIGURE 3 | Fluorescent in situ Hybridization indicating the physical location of the Telomeric probes, 18S rDNA, 5S rDNA and U1 snDNA probes in Peckoltia
species. In Peckoltia sp. 3 Jarumã: (A) Telomeric sequence (green) and (B) 18S rDNA (red), 5S rDNA (red) and U1 snDNA (red). In Peckoltia sp. 4 Caripetuba: (C)
Telomeric sequence (green) and (D) 18S rDNA (red), 5S rDNA (green) and U1 snDNA (red).
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putative ancestral karyotype showing 2n � 54 chromosomes
(Artoni and Bertollo, 2001). The reduction to 2n � 52 was
probably due to a Robertsonian fusion in an ancient common
ancestor in Ancistrini representatives with no ITS manutention
(Bueno et al., 2018).

In Loricariidae, it is expected the presence of heterochromatic
regions distributed in blocks on few chromosomes (Ziemniczak
et al., 2012). Interestingly, in Peckoltia, extensive heterochromatic
blocks are observed, some occupying a large part of the long arms
of submetacentric/subtelocentric chromosomes (de Souza et al.,
2009, present study). The presence of large heterochromatic
blocks on morphologically similar chromosomes may suggest
a shared character in Peckoltia karyotypes, as proposed previously
(de Souza et al., 2009). However, it is known that heterochromatic
regions are characterized by great diversity in highly repetitive
DNA content (Dimitri et al., 2009) and may not reflect
chromosomal homologies in Peckoltia species, as visualized
among the species analyzed here by FISH with repetitive
sequences. Noteworthy, the distribution of heterochromatin,
and different repetitive sequences, observed in pairs 24 in
Peckoltia sp. 3 Jarumã and 21 in Peckoltia sp. 4 Caripetuba,
makes these chromosomes good cytotaxonomic markers, and
both represent unique characteristics in each of these species.

Other plesiomorphic conditions for Loricariidae include the
18S and 5S rDNA sequences in a single pair of meta/
submetacentric chromosomes (Ziemniczak et al., 2012).
However, in the Ancistrini tribe, both the synteny and non-
synteny between the 18S and 5S sequences are commonly
observed (Mariotto et al., 2011; Ribeiro et al., 2015; Favarato
et al., 2016; Prizon et al., 2016; Pety et al., 2018), showing the huge
chromosome sites variation in the karyotypes of this group
(Pansonato-Alves et al., 2013; Bueno et al., 2014; Pety et al.,
2018). The mapping of 18S and the 5S sequences in the
karyotypes here described is in agreement with that observed
in other species of Peckoltia; in which extensive dispersion of
these genes is observed (Pety et al., 2018) (Table 1). This
dispersion of rDNA in the genomes of Loricariidae can be
explained either by the association of these genes with other
repetitive sequences, including transposable elements or by the
evolutionary breakpoint regions close to rDNA sites promoting
chromosome rearrangements (Barros et al., 2017; Glugoski et al.,
2018, 2020; Deon et al., 2020). Furthermore, the heterochromatic
condition involving clusters of rDNA suggests that other
repetitive DNA classes, around 45S and 5S rDNA sequences,
may promote their chromosomal dispersion in the Peckoltia
species analyzed here, as shown for other species of
Loricariidae (Glugoski et al., 2018; Deon et al., 2020).

In fish, the snRNA genes have shown great diversity of the
pattern of chromosomal localization (Úbeda-Manzanaro et al.,
2010; Cabral-de-Melo et al., 2012; Scacchetti et al., 2015; Yano
et al., 2017). In this work, the U1 snDNA sequence was mapped
for the first time in Loricariidae species, showing location in a pair
of submetacentric chromosomes in both species, in addition to an
extra site in one of the homologues of pair 21 of Peckoltia sp. 4
Caripetuba (Figure 3D). The snDNA sequences are considerably
more stable at the chromosomal level when compared to rDNA
(Cabral-de-Melo et al., 2012). However, we observed that among

the karyotypes of Peckoltia analyzed here, the U1 snDNA probes
show variation in the number of chromosomal sites similar to
that observed for the rDNA (Table 1). These data indicate that
these gene families can be equally dynamic in the genomes of
species of Peckoltia. Several chromosomal sites of rDNA and
snDNA sequences are observed in different groups of fish, such as
species of the Loricariidae, Cichlidae and Anostomidae families;
the emergence of new chromosomal sites is related to the
association of these sequences with active mobile elements in
these organisms (Kapitonov and Jurka, 2006; Cabral-de-Melo
et al., 2012; Dulz et al., 2020). Future analyzes of rDNA and
snDNA nucleotide sequences will be essential to verify the
possible involvement of transposable elements in the
movement of these sequences in the genomes of Peckoltia species.

Biogeography Hypothesis in Peckoltia
The putative ancestral karyotype for Loricariidae has 2n � 54, a
single NOR and gene synteny for 5S and 18S rDNA sequences
(Ziemniczak et al., 2012). The tribes belonging to the
Hypostominae subfamily share a common ancestor
(Armbruster, 2004; Lujan et al., 2015) that possibly had a 2n
� 52 chromosomes (Bueno et al., 2018). Thus, variations in the
2n, multiple NOR and synteny break between 5S and 18S would
represent derived characteristics that can be apomorphic or
homoplasic. Analyses involving 18S and 5S rDNA and U1
snDNA show the importance of these sequences as markers of
karyotype diversification in the Peckoltia genus.

Phylogenetic analyzes support the monophyly of the Peckoltia
genus (Lujan et al., 2015, 2017; Roxo et al., 2019). A phylogeny for
the Peckoltia clade proposed by Lujan et al. (2017), based on the
concatenated sequences of two mitochondrial genes (16S, Cyt b)
and three nuclear genes (RAG1, RAG2, MyH6), has two well-
defined branches, which are sister groups and two branches with
non-defined relationships. One of the defined branches presents
P. vittata (single NOR, synteny of the 5S with 18S) (Pety et al.,
2017), P. compta, P. braueri and P. lineola (karyotypes not
described); and the other branch with P. sabaji (multiple
NORs, non-synteny of the 5S with 18S) (Pety et al., 2018), P.
furcata and P. relictum (karyotypes not described). Noteworthy,
most of the specimens from the branch with P. vittata are on the
right bank of the lower Amazon River, and those from the branch
with P. sabaji are on the left bank. The karyotype of Peckoltia sp. 4
Caripetuba would be more similar to that of Peckoltia sp. 1 and 2
previously described (de Souza et al., 2009), collected on the left
bank of the Amazon River and with karyotypic characteristics
derived from the ancestral karyotype proposed for Loricariidae.
Thus, it is possible that these derived features, such as multiple
rDNA and NORs sites, have arisen in this region (Figure 4).

In the present work, the karyotype of Peckoltia sp. 4
Caripetuba has several derived characteristics, being found on
the right bank of the Amazon River. This fact can be explained if
we consider the paleogeography of the region. The continental
portion of Abaetetuba (Rio Jarumã) comprises the Barreiras
Formation (Miocene). In turn, the Post-Barreiras Formation
(Plio-Pleistocene) filled the paleovale of the Tocantins River,
diverting this river (which originally crossed Marajó Island to
its northern portion) and thus splitting Marajó Island from the
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mainland, originating Rio Pará and the islands in front of the city
of Abaetetuba-PA (Figure 4), where the Caripetuba River is
found (Rossetti and Valeriano, 2007). Therefore, the rivers
where the karyotype of Peckoltia sp. 4 Caripetuba is found are
in islands considerably newer than the one where Peckoltia sp. 3
Jarumã is found. These islands are covered by the Post-Barreiras
Formation, being connected to the western portion of Marajó
Island (Tatumi et al., 2007), not related with the continental
region where the Jarumã River is located. The Marajó Island, in
turn, is a communication corridor, connecting biodiversity on the
left bank of the Amazon River with biodiversity on the right bank
(Fernandes et al., 1995). This fact may explain why the most
recent karyotype (Peckoltia sp. 4 Caripetuba) is located in this
region. It will be important to test by molecular markers whether
the Peckoltia-associated morphotypes analyzed in this study and
by de Souza et al. (2009), which have derived karyotypes, belong
to the P. sabaji branch.

This study describes the karyotypes of two undescribed
species of Peckoltia and compares them with available
chromosomal data for the genus. The maintenance of the
same 2n in the species of Peckoltia may suggest that this
genus has conserved karyotypes; however, the variations
observed in the KF, NOR, heterochromatin and 18S and
5S rDNA sequences between the karyotypes of the species
in this study compared to those previously described suggest
great interspecific diversity in the genus. Furthermore, the

differential localization of the U1 snDNA sequence among
the karyotypes described here corroborates the involvement
of repetitive sequences in the diversification of the genomes
of these species. Therefore, due to the considerable
cytogenetic diversity, species-specific characters were
observed, showing great potential for identifying distinct
taxonomic lineages in Peckoltia, in addition to
demonstrating that the karyotypic variation in this genus
is much greater than conventional staining suggests. Future
analyzes considering the geographic distribution of Peckoltia
species with primitive versus derived karyotypic
characteristics compared to molecular phylogenies may
provide relevant information about its evolutionary history.
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