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Simple Summary: Adrenal cortical carcinoma (ACC) is an extremely rare disease with a variable
prognosis. Current prognostic markers have limitations in identifying patients with a poor prognosis
and who require adjuvant therapy. We developed the prognostic biomarker candidates of ACC using
mass-spectrometry-based proteomics and machine learning algorithm. We further validated them
in The Cancer Genome Atlas data and performed the survival analysis according to the expression
levels of each protein. In addition, HNRNPA1, the protein identified as a prognostic marker of ACC
based on proteomics, was validated in the immunohistochemistry staining. The prognostic protein
biomarkers of ACC found in this study are expected to help determine the appropriate treatment
plan for patients.

Abstract: Adrenal cortical carcinoma (ACC) is an extremely rare disease with a variable prognosis.
Current prognostic markers have limitations in identifying patients with a poor prognosis. Herein,
we aimed to investigate the prognostic protein biomarkers of ACC using mass-spectrometry-based
proteomics. We performed the liquid chromatography–tandem mass spectrometry (LC–MS/MS)
using formalin-fixed paraffin-embedded (FFPE) tissues of 45 adrenal tumors. Then, we selected
117 differentially expressed proteins (DEPs) among tumors with different stages using the machine
learning algorithm. Next, we conducted a survival analysis to assess whether the levels of DEPs were
related to survival. Among 117 DEPs, HNRNPA1, C8A, CHMP6, LTBP4, SPR, NCEH1, MRPS23,
POLDIP2, and WBSCR16 were significantly correlated with the survival of ACC. In age- and stage-
adjusted Cox proportional hazard regression models, only HNRNPA1, LTBP4, MRPS23, POLDIP2,
and WBSCR16 expression remained significant. These five proteins were also validated in TCGA data
as the prognostic biomarkers. In this study, we found that HNRNPA1, LTBP4, MRPS23, POLDIP2,
and WBSCR16 were protein biomarkers for predicting the prognosis of ACC.
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1. Introduction

Adrenal cortical carcinomas (ACCs) are rare tumors with an annual incidence of
0.7–2.0 cases per million [1,2]. The overall prognosis of ACC is poor, with a 5-year survival
rate of less than 40% [2,3]. However, the prognosis of ACCs varies: resectable tumors
have a good prognosis, while metastatic and unresectable tumors have a poor prognosis.
The European Network for the Study of Adrenal Tumors (ENSAT) tumor staging and
tumor grading, such as Ki-67 proliferation index or mitotic count, have been suggested
as prognostic factors [4–7]. However, up to 70% of patients with the localized disease
based on TNM staging experienced recurrence within 3 years after surgery [3], while the
survival duration of patients with metastatic ACCs ranges from several months to 10 years
or more [8]. Therefore, these prognostic factors still have limitations in predicting the
prognosis of ACCs.

Several efforts were made to assess the molecular prognostic markers for ACC [9–12].
Comprehensive pan-genomic characterization of ACCs using the ENSAT network and
The Cancer Genome Atlas (TCGA) led to the identification of new distinct molecular
subtypes [13,14]. However, the use of pan-genomic measures in clinical practice is limited
as they are complex and expensive. In addition, a recent meta-analysis of pan-genomic
studies showed that molecular classification could be helpful in distinguishing localized
ACCs, but its performance in metastatic ACCs remained questionable [15].

The proteomic approach has rarely been used to study ACCs. In The Cancer Pro-
teome Atlas (TCPA) database, the protein expression of 46 ACCs was measured using the
reverse-phase protein array (RPPA), which is an antibody-based quantitative method for
assessing multiple protein markers [16]. Our group obtained proteomics data from the
TCPA database and demonstrated that overexpression of cyclin B1, transferrin receptor
1, and fibronectin is associated with poor prognosis of ACCs [12]. However, the RPPA
method identified only 198 proteins.

Liquid chromatography–tandem mass spectrometry (LC–MS/MS) is a cutting-edge
technology that analyzes several thousand proteins rapidly and accurately with high
sensitivity [17]. To the best of our knowledge, only one study has performed an LC–
MS/MS analysis to distinguish the differentially expressed proteins (DEPs) of eight ACCs
from six adrenal cortical adenomas (ACAs) [9]. However, this study did not elucidate the
prognostic factors of ACCs.

Fresh frozen samples are often preferred for molecular profiling, as macromolecules
are preserved without cross-links [18], but the availability of fresh frozen samples is often
limited because their collection is laborious, is expensive, and requires special logistics.
Hence, most human tissue specimens archived in hospitals for routine diagnostic pur-
poses are formalin-fixed paraffin-embedded (FFPE) blocks, which are stored for a long
time at room temperature without quality reduction and are usually associated with rich
clinical and phenotypic data, including histology, diagnosis, treatment history, response,
and outcome [19]. Recent technical developments in MS-based proteomics methods and
protein extraction protocols have enabled the in-depth proteomic analysis of FFPE tumor
tissues [20]. Previous studies reported that FFPE tissues show qualitative and quantita-
tive proteomic properties similar to those of fresh frozen tissues, further highlighting the
potential of FFPE tissue analysis for biomedical research [21].

Here, we aimed to use LC–MS/MS to analyze FFPE tumor tissues and to elucidate the
protein markers for predicting the prognosis of ACCs.

2. Materials and Methods
2.1. Study Design

The Seoul National University Hospital (SNUH) cohort was comprised of 37 patients
with ACC and 8 with benign adrenal adenomas. We included patients aged 18 years
or older who underwent adrenalectomy at SNUH between January 2000 and December
2019 and with available FFPE tumor tissues samples. Patients consented to donate tumor
tissues, and their medical records were collected. Among the obtained tissues, those that
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had metastasized to sites other than the adrenal gland were not included in the analysis. In
addition, cancers that metastasized to the adrenal gland, other than primary ACC, were
excluded. Proteomics analysis was performed on the adrenal gland tissues of patients
included in this cohort, and proteins related to the prognosis of ACC were identified by
comparing benign adrenal adenoma and ACC, stages 1–2 and 3–4, ACCs, and stages
1–3 and 4 ACCs, respectively.

To validate the prognostic protein marker of ACC, we used the mRNA expression data
from TCGA Pancancer Atlas database of the National Cancer Institute (https://portal.gdc.
cancer.gov, accessed on 8 April 2021). The gene expression profile and clinical information
of patients with ACC were downloaded from the TCGA database. The proteins associated
with the prognosis of ACC were analyzed using TCGA data to validate the prognostic
effect of the proteins.

2.2. Sample Preparation for Proteomics Analysis

Sample preparation for proteomic analysis of FFPE samples was performed as previ-
ously described [22,23]. Briefly, FFPE sections were incubated twice in xylene for 5 min,
followed by 100% (v/v) ethanol twice for 3 min. The sections were then hydrated twice
in 85% (v/v) ethanol for 1.5 min and distilled water for 5 min. Extraction buffer (4% SDS,
1 mM TCEP, and 0.3 M Tris pH 8.0) was added to deparaffinized tissue samples. After
sonication, the samples were incubated at 95 ◦C for 2 h to ensure the most efficient de-
crosslinking. The extracted proteins were precipitated by adding chilled acetone at a buffer to
acetone volume ratio of 1:5, followed by incubation at −20 ◦C for 16 h. The protein (50 µg per
sample) was digested following the filter-aided sample preparation procedure as previously
described [22]. All peptides were acidified with 10% trifluoroacetic acid (TFA; Thermo Fisher
Scientific, Waltham, MA, USA). Then, a three-fractionation strategy was applied to increase
the proteome depth. The acidified peptides were loaded in homemade styrenedivinylbenzene
reversed-phase sulfonate StageTips (3M, St. Paul, MN, USA), following previously described
procedures [24]. Briefly, the peptides were washed three times with 100 µL of 0.2% TFA and
sequentially eluted with three elution buffers with gradually increasing ACN concentration.
The eluate was vacuum-centrifuged to dryness and stored at −80 ◦C.

2.3. LC–MS/MS and MS Data Analysis

All LC–MS/MS analyses were performed using Quadrupole Orbitrap mass spec-
trometers, Q-Exactive HF-X (Thermo Fisher Scientific, Waltham, MA, USA) coupled to
an Ultimate 3000 RSLC system (Dionex, Sunnyvale, CA, USA) via a nanoelectrospray
source, as described previously with some modifications [24,25]. The peptide samples were
separated on a two-column setup with a trap column (PepMap 100, 0.3 mm I.D × 5 mm,
C18 5 µm, Thermo Fisher Scientific, Waltham, MA, USA) and an analytical column (EASY-
Spray™ PepMap RSLC C18, 50 µm I.D. × 50 cm, C18 1.9 µm, 100 Å, Thermo Fisher
Scientific, Waltham, MA, USA) with a 90 min gradient from 8% to 26% acetonitrile at
300 nL/min and analyzed by mass spectrometry. The column temperature was maintained
at 60 ◦C using a column heater. MaxQuant.Live (version 1.2; Max-Planck-Institute of Bio-
chemistry, Planegg, Germany) was used to perform data-dependent acquisition (DDA) [26].
Survey scans (350 to 1650 m/z) were acquired with a resolution of 70,000 at m/z 200. A
top 15 method was used to select the precursor ions with an isolation window of 1.2 m/z.
The MS/MS spectra were acquired at an HCD-normalized collision energy of 28, with a
resolution of 17,500, at m/z 200. The maximum ion injection times for the full scan and
MS/MS scans were 20 and 100 ms, respectively.

Mass spectra were processed using MaxQuant version 1.6.1.0 [27]. The MS/MS
spectra were searched against the Human Uniprot protein sequence database (December
2014, 88,657 entries) using the Andromeda search engine [28]. Primary searches were
performed using a 6 ppm precursor ion tolerance to analyze the total protein levels. The
MS/MS ion tolerance was set at 20 ppm. Cysteine carbamide methylation was set as a
fixed modification. n-terminal acetylation of proteins and oxidation of methionine were

https://portal.gdc.cancer.gov
https://portal.gdc.cancer.gov
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set as variable modifications. Enzyme specificity was set to complete tryptic digestion.
Peptides with a minimum length of six amino acids and up to two missed cleavages were
considered. The minimal scores for unmodified and modified peptides were 0 and 40,
respectively. The minimal delta scores for unmodified and modified peptides were 0 and
6, respectively. The minimum of unique and razor peptides for identification was set
to 1. The peptide identifications across different LC-MS runs and the spectral library were
matched by enabling the “match between runs” feature in MaxQuant. The required false
discovery rate (FDR) was set to 1% at the peptide, protein, and modification levels. The
mass spectrometry proteomics data were deposited to the ProteomeXchange Consortium
via the PRIDE [29] partner repository with the dataset identifier PXD027404.

2.4. Label-Free Quantification and Bioinformatics Analysis

For label-free quantification, the intensity-based absolute quantification (iBAQ) al-
gorithm [30] was used as part of the MaxQuant platform. Pair-wise comparisons were
performed using the Perseus software [31]. For quantitative analysis of iBAQ data, we
performed log2-transformation of iBAQ values. After filtering out proteins with at least 70%
valid values in each group, missing values were imputed, assuming a normal distribution
of 0.5 widths and 1.8 downshifts to simulate signals of low-abundance proteins. Finally,
the data were normalized using the width adjustment function in the Perseus software.
Student’s t-tests were performed for pair-wise comparisons of proteomes to detect DEPs
with significant filtering criteria (p-value < 0.05, |fold-change| > 2).

To determine the important features, we employed three different algorithms: Re-
lief [32], Information Gain [33], and analysis of variance (ANOVA) F-value [34] using the
open-source software ORANGE (version 3.26; University of Ljubljana, Ljubljana, Slove-
nia). These feature selection models are well known for identifying features with good
classification performance [35,36].

Canonical pathways, diseases, and functions were evaluated by Ingenuity Pathway
Analysis (IPA, QIAGEN, Hilden, Germany) based on the annotated DEPs with matched
gene names. The analytical algorithms embedded in IPA used the lists of DEPs to predict
the biological processes and pathways. The statistical significance of both the gene ontology
classification and enrichment analysis was determined using Fisher’s exact test. All statisti-
cal tests were two-sided, and a p-value of <0.05 was considered statistically significant.

2.5. Immunohistochemistry Staining

The protein identified as a prognostic protein marker of ACC in this study was verified
by immunohistochemistry (IHC) staining in ACC and benign adrenal adenoma tissue.
IHC was performed using anti-hnRNP A1 antibody (mouse monoclonal [9H10] to hnRNP
A1 diluted in 1:100, Anti-hnRNP A1 antibody [9H10], AB5832, Abcam, Cambridge, UK),
Ventana BenchMark XT Staining Systems, and OptiView DAB IHC Detection Kit (Ventana,
Oro Valley, AZ, USA; #760-700). The 4 µm FFPE sections were dried at 60 ◦C for 1 h and
deparaffinized by treatment with EZ Prep (Ventana #950-102) at 76 ◦C for 4 min. Antigen
retrieval was performed by treatment with pH 8.4 Cell Conditioning 1 (CC1, Ventana
#950-124) at 100 ◦C for 24 min. OptiView Peroxidase Inhibitor (3% hydrogen peroxide;
Ventana) was treated at 37 ◦C for 4 min, and primary antibody was treated at 37 ◦C for
16 min. After treatment at 37 ◦C in OptiView HQ Universal Linker (Ventana) for 8 min,
OptiView HRP Multimer (Ventana) at 37 ◦C for 8 min, and in OptiView DAB (Ventana)
at 37 ◦C for 8 min. Hematoxylin (Ventana #760-2021) was treated at 37 ◦C for 8 min for
counterstaining, and Bluing Reagent (Ventana #760-2037) was treated for 4 min at 37 ◦C for
post counterstaining, followed by drying and mounting. The antibody dilution ratio was
1:100. IHC scoring was performed by a blinded pathologist (K.C.J.). The degree of nuclear
staining was scored on an ordinal scale: 0, 1+, 2+, and 3+. The percentage of cells with
nuclear staining was determined by visual assessment. The final IHC score was calculated
using the following formula: 1 × (% of 1+ cells) + 2 × (% of 2+ cells) + 3 × (% of 3+ cells);
the expression level ranged from 0 to 300.
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2.6. Statistical Analysis

The baseline characteristics were presented as mean ± standard deviation for continu-
ous variables and as number (%) for categorical variables. Kaplan–Meier analyses with
log-rank tests and Cox proportional hazard regression models were performed for survival
analyses of DEPs from feature selection. The above-median DEP expression levels were
used for survival analyses. For multivariate Cox regression analyses, age per 10-year incre-
ment and clinical stages 1–2, 3, and 4 were used due to the small number of samples with
stages 1 and 2. To evaluate the improvements in predicting the performance of significant
DEPs, the C-index and category-free net reclassification index (NRI) were calculated, and
the age and staging models were used as the reference. Statistical significance was set at
p-value < 0.05. Statistical analyses were performed using R (version 3.6.1; R Foundation;
Vienna, Austria; https://www.r-project.org, accessed on 8 April 2021).

2.7. Ethical Statement

This study was conducted in accordance with the principles of the Declaration of
Helsinki and was reviewed and approved by the Institutional Review Board (IRB) of SNUH
(IRB no. H-1912-139-1091). The requirement for obtaining patient consent was waived due
to the retrospective nature of the study, and analyses were performed using de-identified
data. This study was also conducted following TCGA Human Subject Protection and Data
Access Policies.

3. Results
3.1. Baseline Characteristics of the Study Participants

The baseline characteristics of 37 ACC and 8 benign patients are shown in Table 1. The
mean age of patients with ACC was 48.5 ± 12.9 years, and 40.5% were men. The mean age
of benign patients was 51.9 ± 10.5 years, and 50.0% were men.

Table 1. Baseline characteristics of patients with adrenal cortical carcinoma (n = 37) and benign
adrenal adenoma (n = 8).

Variable ACC (n = 37) Benign (n = 8)

Age 48.5 ± 12.9 51.9 ± 10.5

Male 15 (40.5) 4 (50.0)

Initial Stage (ENSAT)
I 2 (5.4) -
II 7 (18.9) -
III 17 (45.9) -
IV 11 (29.7) -

Death 19 (51.4) -

Follow-up, years (IQR) 4.0 (1.3–8.1) -

Cortisol Secretion a

Yes 18 (48.6) -
No 9 (24.3) -

Mitosis Count b

≥20/HPF 7 (18.9) -
<20/HPF 22 (59.5) -

Ki67 c

≥20% 11 (29.7) -
10–19% 4 (10.8) -
<10% 7 (18.9) -

Values are expressed as mean ± standard deviation, number (%), or median (IQR). a The available number was
27 because of missing values; b The available number was 29 because of missing values; c The available number
was 22 because of missing values. ACC—adrenal cortical carcinoma; ENSAT—European Network for the Study
of Adrenal Tumor; HPF—high power field; IQR—interquartile range.

https://www.r-project.org
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Approximately 5.4% of ACC patients had stage 1 disease, 18.9% had stage 2 disease,
45.9% had stage 3 disease, and 29.7% had stage 4 disease. The average follow-up duration
was 4.0 (1.2–8.3) years, and 51.4% died during the follow-up period. Among patients with
ACC, 48.6% presented hypercortisolism, and 18.9% and 29.7% exhibited a mitotic count of
20/HPF or higher and a Ki67 index of 20% or higher, respectively.

3.2. Results of Proteomic Analysis

To find the prognostic biomarker of ACC, MS-based label-free quantification was
performed using a formalin-fixed paraffin-embedded tissue of the primary adrenal gland
tumor obtained through adrenalectomy (Figure 1A). In combination with a matching library
consisting of FFPE pooling samples as well as ACC frozen tissues, a total of 8261 proteins
and 95,541 unique peptides were identified with a false discovery rate (FDR) <1% at PSM
and protein level (Table S1 and Figure S1A). Among them, 7812 proteins and 7669 pro-
teins were identified and quantified in the individual samples, respectively. On average,
5563 proteins and 24,867 unique peptides were quantified in each independent sample
(Figure S1B,C).

Figure 1. Overall workflow and results of proteomic analysis. (A) Overall workflow for proteomic
analysis of adrenal cortical carcinoma FFPE tissues with respect to ENSAT staging is presented.
This figure was created with Biorender.com (accessed on 10 June 2021) and exported under a paid
subscription; (B) The number of total proteins expressed in benign adrenal adenomas and ACC,
stages 1–2 and 3–4 ACCs, and stages 1–3 and 4 ACCs are expressed, respectively. The overlapping
part of the circle indicates the number of proteins expressed in both groups; (C) The intensity of
the expression of well-known proteins in the ACC. ACC—adrenal cortical carcinoma; FASP—filter
aided sample preparation; FFPE—formalin-fixed paraffin-embedded; ENSAT—European Network
for the Study of Adrenal Tumors; LS-MS/MS—liquid chromatography–tandem mass spectrometry;
PPT—precipitation.
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A total of 6908 common proteins were identified in both benign adrenal adenomas
and ACCs. A total of 7156 proteins were commonly observed in stages 1–2 and 3–4 ACCs,
while 7132 proteins were commonly observed in stages 1–3 and 4 ACCs (Figure 1B).

The signal intensities of all proteins were plotted along with several well-known
markers of ACC (Figure 1C).

3.3. Analysis of Differentially Expressed Proteins

Volcano plots were presented to show DEPs. The differences in the protein expression
levels of benign adrenal adenomas and ACC and the stages of ACC were compared
using Student’s t-test (p < 0.05; fold-change ≥ 2.0) (Figure 2). Compared with benign
adrenal adenomas, 452 proteins were downregulated, and 554 proteins were upregulated
in ACC. Compared to stages 1–2 ACCs, 222 proteins were downregulated, and 317 proteins
were upregulated in stages 3–4 ACCs. Moreover, 243 proteins were downregulated, and
168 proteins were upregulated in stage 4 ACCs compared with stages 1–3 ACCs.

Figure 2. Volcano plots for differential expression of proteins. Volcano plots showed significantly differentially abundant
proteins. The −log10 (p-value) is plotted against log2 (fold-change). The non-axial vertical lines denote a two-fold difference
in expression, while the non-axial horizontal line denotes p = 0.05, which is our significance threshold. The differential
expression of proteins in (A) benign adrenal adenomas and ACC, (B) stages 1–2 and 3–4 ACCs, and (C) stages 1–3 and
4 ACCs is expressed, respectively. ACC—adrenal cortical carcinoma.

To identify proteomic signatures with diagnostic power, we selected TOP20 featured
DEPs using feature selection algorithms including ReliefF, infoGain, and ANOVA (Table 2).
DEPs with high rankings in all algorithms are displayed as overlapping circles in Figure 3.
We assessed the signal intensity of high-ranked DEPs in two or more feature selection
methods (Figure S2).
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Table 2. Top 20 proteins of machine learning analysis.

Rank

Benign vs. ACC Stage 1–2 vs. 3–4 Stage 1–3 vs. 4

InfoGain ANOVA ReliefF InfoGain ANOVA ReliefF InfoGain ANOVA ReliefF

Gene
Name Score Gene

Name Score Gene
Name Score Gene

Name Score Gene
Name Score Gene

Name Score Gene
Name Score Gene

Name Score Gene
Name Score

1 H2AFY2 0.787 PDE4D 62.944 MUSTN1 0.321 EPG5 0.681 EPG5 24.961 NUDC 0.239 WBSCR16 0.658 WBSCR16 52.070 WBSCR16 0.303
2 ABLIM1 0.654 SYNE1 60.441 ARMC8 0.298 GNPAT 0.531 NUDC 24.001 GNPAT 0.226 CCDC12 0.658 CCDC12 31.394 NOSIP 0.234
3 DNPH1 0.654 H2AFY2 60.114 SNX15 0.296 DECR2 0.531 GNPAT 23.111 FAM160B2 0.217 PDHA1 0.658 PDHA1 31.002 CCDC12 0.196
4 ACIN1 0.531 MUSTN1 53.536 SYNE1 0.291 PPIF 0.531 STRIP1 22.252 SNX8 0.191 LYRM1 0.581 PDHB 28.034 GHITM 0.188
5 RPS24 0.531 ARMC8 48.449 PDE4D 0.276 SPR 0.531 A1BG 21.073 NGEF 0.182 RRM2 0.581 RBM26 24.492 MRPL32 0.184
6 FUBP3 0.526 CAB39L 44.931 CAB39L 0.275 SLC25A32 0.531 NDUFAF2 20.221 CTSA 0.170 NCEH1 0.519 MTIF2 21.829 PDHB 0.179
7 SYNE1 0.526 PPM1G 42.526 RALGAPB 0.270 COG3 0.531 CHMP6 19.245 A1BG 0.166 ARSA 0.519 CSNK1D 21.478 SNCG 0.171
8 ARMC8 0.526 MTA2 41.666 SNRNP70 0.251 ISOC1 0.531 SNX8 18.413 ATM 0.164 CAV1 0.519 SNCG 20.043 PDHA1 0.170
9 HSD17B13 0.526 SLC37A2 40.937 AAR2 0.245 TTC1 0.522 ALDH3B1 17.218 PTK2B 0.163 RABL3 0.519 LYRM1 19.369 RBM26 0.167
10 PDE4D 0.526 UBE2M 39.877 MZB1 0.239 MRPS5 0.522 CTSA 17.069 STRIP1 0.160 MRPS23 0.510 NCEH1 17.250 NCEH1 0.153
11 UBE2M 0.526 DNPH1 39.713 H2AFY2 0.237 AGRN 0.478 TTC1 17.034 CHMP6 0.158 TPBG 0.499 NOSIP 17.024 PNMA3 0.152
12 SKIV2L2 0.526 XPOT 38.513 NIFK 0.230 FBLN2 0.478 HADH 17.000 MMTAG2 0.157 PDHB 0.475 NMNAT1 16.105 LYRM1 0.146
13 SHMT2 0.526 NIFK 36.911 ALG14 0.225 CDK5RAP2 0.478 CMSS1 16.775 DNAJC15 0.156 MAPK9 0.475 COL4A2 15.781 NID2 0.142
14 CPB1 0.526 SCCPDH 36.042 CPB1 0.220 A1BG 0.458 APOC1 16.197 EPG5 0.153 MTIF2 0.475 MTHFD2L 15.740 RABAC1 0.140
15 XPOT 0.526 SKIV2L2 35.957 WNT2B 0.210 C8G 0.458 PPIF 16.157 TTC1 0.153 NMNAT1 0.475 POLDIP2 15.577 C9orf91 0.138
16 HNRNPA1 0.526 HNRNPA1 35.727 SCCPDH 0.201 LTBP4 0.458 PCNT 15.578 SERPINA3 0.151 MRPL22 0.475 MAPK9 15.468 MTHFD2L 0.138

17 CSNK2A1 0.526 VCPIP1 35.452 PPM1G 0.200 C8A 0.458 SERPINA3 15.499 IGHV4-
34 0.146 LDB3 0.475 NID2 15.440 MAPK9 0.137

18 MUSTN1 0.526 RPL24 35.172 RPL24 0.199 NUDC 0.396 SERPINC1 15.308 CSDC2 0.144 ALOX5 0.475 BLOC1S3 15.217 MRPL1 0.137
19 PPIH 0.526 FBXW8 34.574 UBQLN4 0.198 PTK2B 0.396 PTK2B 15.098 ELOVL5 0.144 COL4A2 0.431 PPOX 15.193 LACC1 0.136
20 RAN 0.526 SRXN1 32.834 INPP1 0.196 ALDH3B1 0.396 TGFB1 15.072 SLC9A3R2 0.142 GHITM 0.427 PLOD2 15.117 PEX3 0.135

ACC—adrenal cortical carcinoma; ANOVA—analysis of variance; InfoGain—Information Gain.
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Figure 3. Feature selection of proteins for classification (top 20 DEPs). Feature selection was performed using ReliefF,
infoGain, and ANOVA for DEP. Using each algorithm, the top 20 DEPs were obtained, and proteins with high rankings in
all algorithms are displayed in overlapping circles. Differential expressions of proteins in (A) benign adrenal adenomas
and ACC, (B) stages 1–2 and 3–4 ACCs, and (C) stages 1–3 and 4 ACCs are expressed, respectively. Red letters indicate
highly expressed proteins in the worse group, while green letters indicate highly expressed proteins in the better group.
ACC—adrenal cortical carcinoma; ANOVA—analysis of variance; DEP—differential expression of proteins.

3.4. Ingenuity Pathway Analysis (IPA)

We performed IPA using significant DEPs to identify the canonical pathways in ACCs.
Pathways with a p-value of 0.05 or less between the two groups are shown in Tables S2–S4
and the top 10 pathways are shown in Figure 4. When comparing benign adrenal ade-
nomas and ACC, glioma signaling and sirtuin signaling pathways were significantly
activated in the ACC. When comparing stages 1–2 and 3–4 ACCs, acute phase response
signaling, LXR/RXR activation, production of nitric oxide and reactive oxygen species in
macrophages, GP6 signaling pathway, and glioma invasiveness signaling were upregulated
in stages 3–4 ACCs. When comparing stages 1–3 and 4 ACCs, the GP6 signaling pathway
and leukocyte extravasation signaling were activated in stage 4 ACCs.

3.5. Selection of Prognostic Protein Biomarkers in the Seoul National University Hospital
(SNUH) Cohort

Survival analyses were performed in the SNUH cohort to assess whether featured
DEPs affected patients’ survival. Among DEPs, 117 proteins, which are the top 20 proteins
of the three algorithms for feature selection (ReliefF, infoGain, and ANOVA), were analyzed
(benign adrenal adenoma vs. ACC, 39 proteins; stages 1–2 ACCs vs. stages 3–4 ACCs,
41 proteins; stages 1–3 ACC vs. stage 4 ACCs, 37 proteins). Each DEP was divided into
two groups based on the median values. In the log-rank test, 9 DEPs of the 117 DEPs were
significantly related to patients’ survival (Figure 5). In the Cox proportional hazard re-
gression models, heterogeneous nuclear ribonucleoprotein A1 (HNRNPA1), C8A, CHMP6,
latent transforming growth factor β-binding protein 4 (LTBP4), SPR, NCEH1, mitochon-
drial ribosomal protein S23 (MRPS23), polymerase delta interacting protein 2 (POLDIP2),
and Williams–Beuren syndrome chromosome region 16 (WBSCR16) were significantly
associated with the prognosis of ACC (Figure 6). Patients with high expression of HN-
RNPA1, C8A, CHMP6, LTBP4, and NCEH1 were at higher risk of mortality (hazard ratios
(HR; 95% confidence interval [CIs]): 2.84 (1.07–7.53), 3.52 (1.28–9.63), 2.83 (1.06–7.56), 2.63
(1.03–6.73), and 2.98 (1.10–8.05), respectively). By contrast, patients with high expression of
SPR, MRPS23, POLDIP2, and WBSCR16 had a lower risk of mortality (HRs (95% CIs): 0.36
(0.14–0.97), 0.30 (0.11–0.79), 0.30 (0.12–0.81), and 0.35 (0.13–0.92), respectively). In age- and
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stage-adjusted Cox proportional hazard regression models, the expression of HNRNPA1,
C8A, CHMP6, MRPS23, and WBSCR16 remained significant. In addition, when calculating
each C-index of nine proteins added to age and stage, all of them showed a higher C-index
compared with age and stage alone. However, when the net reclassification index (NRI)
was calculated, only HNRNPA1, MRPS23, and WBSCR16 exhibited a significantly higher
C-index compared with age and stage alone (Table 3).

Figure 4. IPA analyses of the differential expression of proteins (Canonical pathway). IPA analysis was performed in
the differentially expressed proteins identified in each group, and canonical pathways with low p-values were presented.
(A) Pathways identified in benign adrenal adenomas are indicated in green, while pathways identified in ACC are indicated
in red; (B) Pathways identified in stages 1–2 ACC are indicated in green, while pathways identified in stages 3–4 are
indicated in red; (C) Pathways identified in stages 1–3 are indicated in green, while pathways identified in stage 4 are
indicated in red. The Z-score indicates that the level of protein expression was significantly high, and it was significant when
the absolute value was more than 1. ACC—adrenal cortical carcinoma; GP6—Glycoprotein VI; IPA—ingenuity pathway
analysis; LXR/RXR—Liver X Receptor-Retinoid X Receptor; TCA—tricarboxylic acid cycle.
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Figure 5. Kaplan–Meier analyses of significant DEPs in SNUH cohort. When Kaplan–Meier analyses were performed on
the featured proteins, nine proteins with significant differences were identified. It was analyzed by dividing it into low and
high groups based on the median value. When comparing benign adrenal adenomas with ACC, the high expression of
HNRNPA1 was associated with poor overall survival. When comparing stage 1–2 and stage 3–4 ACCs, high expressions
of C8A, CHMP6, and LTBP4 and low expression of SPR were associated with poor overall survival. In addition, when
comparing stages 1–3 and stage 4 ACCs, high expression of NCEH1 and low expressions of MRPS23, POLDIP2, and
WBSCR16 were associated with poor overall survival. ACC—adrenal cortical carcinoma; C8A—complement C8 alpha
chain; CHMP6—charged multivesicular body protein 6; CI—confidence interval; DEP—differential expression of proteins;
HNRNPA1—heterogeneous nuclear ribonucleoprotein A1; LTBP4—latent transforming growth factor beta binding protein
4; MRPS23—mitochondrial ribosomal protein S23; NCEH1—neutral cholesterol ester hydrolase 1; POLDIP2—polymerase
delta-interacting protein 2; SNUH—Seoul National University Hospital; SPR—sepiapterin reductase; WBSCR16—Williams-
Beuren syndrome chromosome region 16.
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Figure 6. Cox proportional hazard regression models of significant DEPs in SNUH cohort. When
Cox proportional hazard regression model analysis was performed on the feature-selected pro-
tein, nine proteins with significant differences were identified. ACC—adrenal cortical carcinoma;
C8A—complement C8 alpha chain; CHMP6—charged multivesicular body protein 6; CI—confidence
interval; DEP—differential expression of proteins; HNRNPA1—heterogeneous nuclear ribonucleopro-
tein A1; LTBP4—latent transforming growth factor beta binding protein 4; MRPS23—mitochondrial
ribosomal protein S23; NCEH1—neutral cholesterol ester hydrolase 1; POLDIP2—polymerase delta-
interacting protein 2; SNUH—Seoul National University Hospital; SPR—sepiapterin reductase;
WBSCR16—Williams-Beuren syndrome chromosome region 16.

3.6. Validation of the Prognostic Value of Candidate Protein Biomarkers in the TCGA Cohort

We validated nine candidate protein biomarkers derived from the SNUH cohort in the
TCGA cohort using Cox proportional hazard regression analyses. The baseline characteris-
tics of 78 patients with ACC in the TCGA study are presented in Table S5; no significant
differences were observed in age, sex, and follow-up duration between the SNUH cohort
and TCGA cohort (Table S6). However, a significant difference was found in the distri-
bution of the initial stages between the two groups. In the log-rank test and univariate
Cox proportional hazard regression models, HNRNPA1, LTBP4, MRPS23, POLDIP2, and
WBSCR16 were significantly associated with mortality (Figures 7 and 8). However, in
the multivariate analyses after adjusting for age and stage, only HNRNPA1 remained
significant (Figure 8).

We further compared the prognostic values of candidate protein biomarkers using the
C-index and NRI (Table 3). In the TCGA cohort, the C-index and NRI of HNRNPA1, LTBP4,
MRPS23, POLDIP2, and WBSCR16 were significantly higher than those of age and stage
alone. In addition, the combination of HNRNPA1, MRPS23, and WBSCR16 significantly
predicted the prognosis in the TCGA cohort.
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Table 3. C-index and net reclassification index.

Variables
SNUH Cohort TCGA Cohort

C-Index (95% CI) NRI (95% CI) p-Value for NRI C-Index (95% CI) NRI (95% CI) p-Value for NRI

Age+Stage 0.690 (0.551—0.829) - - 0.674 (0.552—0.796) - -
Age+Stage+HNRNPA1 0.704 (0.563—0.845) 0.813 (0.225—1.401) 0.007 0.757 (0.662—0.852) 0.625 (0.179—1.070) 0.006

Age+Stage C8A 0.727 (0.612—0.841) 0.152 (−0.480—0.784) 0.637 0.674 (0.550—0.798) 0.228 (−0.070—0.526) 0.134
Age+Stage+CHMP6 0.756 (0.645—0.867) 0.152 (−0.480—0.784) 0.637 0.683 (0.568—0.797) −0.234 (−0.704—0.236) 0.329
Age+Stage+LTBP4 0.702 (0.561—0.842) 0.596 (−0.018—1.211) 0.057 0.752 (0.639—0.865) 0.585 (0.138—1.031) 0.010

Age+Stage+SPR 0.718 (0.583—0.852) 0.503 (−0.088—1.094) 0.095 0.681 (0.559—0.803) 0.311 (−0.154—0.776) 0.190
Age+Stage+NCEH1 0.695 (0.550—0.839) 0.485 (−0.140—1.111) 0.128 0.689 (0.575—0.803) 0.428 (−0.030—0.885) 0.067
Age+Stage+MRPS23 0.740 (0.618—0.862) 0.819 (0.239—1.398) 0.006 0.729 (0.632—0.825) 0.508 (0.052—0.963) 0.029
Age+Stage+POLDIP2 0.733 (0.612—0.855) 0.591 (−0.024—1.205) 0.060 0.741 (0.666—0.816) 0.508 (0.052—0.963) 0.029
Age+Stage+WBSCR16 0.740 (0.606—0.874) 0.702 (0.098—1.305) 0.023 0.743 (0.668—0.818) 0.508 (0.052—0.963) 0.029

Age+Stage+HNRNPA1+MRPS23+WBSCR16 a 0.708 (0.579—0.838) 0.175 (−0.447—0.797) 0.58 0.752 (0.659—0.845) 0.492 (0.091—0.894) 0.016

Age per 10 years and stage of 1–2 vs. 3 vs. 4 is used. HNRNPA1, C8A, CHMP6, LTBP4, and NCEH1 were analyzed as high versus low expressions, and SPR, MRPS23, POLDIP2, and WBSCR16 were analyzed
as high versus low expressions; a The analysis compared patients with high HNRNPA1, low MRPS23 and WBSCR16, and those who did not. Values in bold in the p-value indicate statistical significance.
C8A—complement C8 alpha chain; CHMP6—charged multivesicular body protein 6; C-index—concordance index; CI—confidence interval; HNRNPA1—heterogeneous nuclear ribonucleo-protein A1;
LTBP4—latent transforming growth factor beta binding protein 4; MRPS23—mitochondrial ribosomal protein S23; NCEH1—neutral cholesterol ester hydrolase 1; NRI—net reclassification improvement;
POLDIP2—polymerase delta-interacting protein 2; SNUH—Seoul National University Hospital; SPR—sepiapterin reductase; TCGA—The Cancer Genome Atlas; WBSCR16—Williams-Beuren syndrome
chromosome region 16.
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Figure 7. Kaplan–Meier analyses of significant DEPs in TCGA study. We tried to validate DEPs, which showed a significant
difference in survival in the SNUH cohort, by performing Kaplan–Meier analyses in the TCGA study. It was analyzed by
dividing it into low and high groups based on the median value. C8A—complement C8 alpha chain; CHMP6—charged
multivesicular body protein 6; CI—confidence interval; DEP—differential expression of proteins; HNRNPA1—heterogeneous
nuclear ribonucleo-protein A1; LTBP4—latent transforming growth factor beta binding protein 4; MRPS23—mitochondrial
ribosomal protein S23; NCEH1—neutral cholesterol ester hydrolase 1; POLDIP2—polymerase delta-interacting protein 2; SPR—
sepiapterin reductase; TCGA—The Cancer Genome Atlas; WBSCR16—Williams-Beuren syndrome chromosome region 16.

Figure 8. Cox proportional hazard regression models of significant DEPs in TCGA study. Cox proportional hazard
regression model analysis was performed on DEPs, which showed a significant difference in survival in the TCGA
study. C8A—complement C8 alpha chain; CHMP6—charged multivesicular body protein 6; CI—confidence interval;
DEP—differential expression of proteins; HNRNPA1—heterogeneous nuclear ribonucleo-protein A1; LTBP4—latent transform-
ing growth factor beta binding protein 4; MRPS23—mitochondrial ribosomal protein S23; NCEH1—neutral cholesterol ester
hydrolase 1; POLDIP2—polymerase delta-interacting protein 2; SNUH—Seoul National University Hospital; SPR—sepiapterin
reductase; TCGA—The Cancer Genome Atlas; WBSCR16—Williams-Beuren syndrome chromosome region 16.
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3.7. Validation of the Prognostic Candidate Protein Biomarker by Immunohistochemistry Staining

Among the five proteins, HNRNPA1, LTBP4, MRPS23, POLDIP2, and WBSCR16,
which were confirmed to be significantly correlated with ACC survival in the TCGA
cohort, IHC staining was performed with HNRNPA1, which was also associated with
poor prognosis in other tumors (Figure S3A). A positive correlation was observed between
HNRNPA1 intensity obtained by MS data analysis and IHC staining intensity (r = 0.478,
p = 0.029, Figure S3B). Moreover, when the tissues were divided into two groups, low and
high, according to the expression level of HNRNP1A, there was a significant difference in
IHC score between the two groups (p = 0.002, Figure S3C).

4. Discussion

In the present study, we identified the prognostic protein biomarkers of ACCs using
LC–MS/MS of FFPE tumor tissues. To date, only transcriptome analysis has been per-
formed on ACCs [13,37–39]. Despite the comprehensive permitting analysis of mRNA
transcripts, these studies cannot demonstrate whether the observed modulation in mRNA
level corresponds to a consequent modulation in protein levels. Indeed, transcript abun-
dance at a steady state only partially predicts the protein levels in various systems [40].
Thus, a comprehensive analysis of the global proteome of ACCs not only contributes to a
better understanding of the biology of carcinomas but also defines new targets for therapy
and even practical biomarkers for the early detection of disease. However, few proteomic
studies have been performed on ACCs [9,41,42]. To the best of our knowledge, this is the
first in-depth proteomic analysis of ACCs. We provided an in-depth comparison of the
ACC proteomes at different stages and identified a total of 7000 individual proteins across
disease stages.

In the SNUH cohort, we first identified DEPs using a combination of three machine
learning algorithms and then determined the final candidate protein biomarkers, HN-
RNPA1, LTBP4, MRPS23, POLDIP2, and WBSCR16, through survival analyses. In the
TCGA cohort, we confirmed the prognostic value of the five candidate proteins. Among
them, HNRNPA1 had the most potent prognostic value for survival. Furthermore, even
when IHC staining was performed, HNRNPA1 was observed to be associated with the
prognosis of ACC.

HNRNPA1 is a family of RNA-binding proteins. HNRNPA1 is involved in gene
expression and signal transduction by performing various functions such as processing
heterogeneous nuclear RNAs into mature mRNAs, RNA splicing, transactivation of gene
expression, and modulation of protein translation [43]. To date, the role of HNRNPA1 in
ACC has not been studied, but other studies have shown that overexpression of HN-
RNPA1 in hepatocellular carcinoma and gastric cancer promotes tumor invasion and is
related to poor prognosis [44,45]. HNRNPA1 is involved in the alternative splicing of the
insulin receptor gene [46]. The insulin receptor is also a receptor of insulin-like growth
factor 2, which is involved in ACC tumorigenesis [47].

Moreover, higher expression of LTBP4 was associated with a poor prognosis of ACCs,
although the role of LTBP4 in ACC has not been studied so far. LTBP4 is one of a family of
latent TGF-β binding proteins involved in the correct folding and secretion of TGF-β [48].
The direct role of the TGF-β signaling pathway in the tumorigenesis of ACCs has not
yet been reported. However, the TGF-β signaling pathway in premalignant cells sup-
presses proliferation and promotes apoptosis; in late-stage cancers, it provokes epithelial-
to-mesenchymal transition and metastasis [49]. Previous studies regarding the relationship
between LTBP4 and tumorigenesis have reported contradictory results. Knockdown of
LTBP4 in mice was associated with the development of epithelial carcinoma [50], and
the expression of LTBP4 was lower in esophageal cancer and mammary carcinoma than
in normal tissues [51,52]. However, given the dual role of the TGF-β signaling pathway
in early and late-stage cancers, the role of LTBP4 in ACC tumorigenesis and metastasis
requires further validation.
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MRPS23 was a favorable prognostic marker in our study. It is a 28S subunit protein
encoded by a nuclear gene that plays a role in mitochondrial protein translation [53].
However, the high expression of MRPS23 was associated with tumor proliferation and
angiogenesis by changing the hypoxic state of tumor cells and increasing mitochondrial
activity [54]. Therefore, previous studies reported the following findings: the abnormal
expression of MRPS23 might serve as a poor prognostic factor of the tumor size in hep-
atocellular carcinomas [53], breast cancers [55], and cervical cancer [54]. However, in
our study, MRPS23 was downregulated in metastatic ACCs compared with that in non-
metastatic ACCs. Thus, the role of MRPS23 in ACC metastasis might be different from that
in tumor proliferation.

Moreover, the high expression of POLDIP2 was associated with low mortality risk.
POLDIP2, also called polymerase delta-interacting protein of 38 kDa, is responsible for
DNA replication and repair, mitochondrial function, and cell cycle regulation [56–59]. In a
previous study on non-small cell lung carcinoma (NSCLC), POLDIP2 expression was lower
in NSCLC tumor tissues, but the overexpression of POLDIP2 increased the growth and
invasiveness of NSCLC cell lines [60,61]. POLDIP2 interacts with multiple protein partners
and participates in numerous cellular processes. Thus, the actual role of POLDIP2 in
tumorigenesis and metastasis remains unknown.

WBSCR16 is a guanine nucleotide exchange factor that plays an important role in
mitochondrial fusion [62]. Mitochondrial fusion is pivotal for maintaining cellular home-
ostasis and the proper intracellular distribution of organelles [63]. Although the role of this
protein in cancer cells has not been studied so far, mitochondrial dynamics have emerged
as new therapeutic avenues for targeting cancer stem cells [63]. Thus, WBSCR16 may play
a role in ACC metastasis.

Several molecular markers were suggested to be prognostic factors [3]. The combi-
nation of budding uninhibited by benzimidazoles 1 homolog beta and PTEN-induced
putative kinase 1 is a strong predictor of recurrence and overall survival [64,65]. The
histone methyltransferase EZH2 results in deregulated P53/RB/E2F pathway activity
and is associated with a poorer prognosis in patients with ACC [66]. The abundance of
VAV2, which is a guanine nucleotide exchange factor for small GTPases and is induced by
steroidogenic factor-1, predicted the patient’s overall survival independent of age, tumor
stage, and Ki-67 index [67,68]. Low DAXX and high phospho-mTOR expression levels are
associated with a poor prognosis of ACC [69]. PTTG1, associated with cancer invasiveness,
can also be a diagnostic and prognostic marker for ACC [10]. Recently, pan-genomic
studies have reported different survival outcomes by dividing the ACC into different
molecular subgroups [13–15]. However, these studies were related to genetic alterations
and mRNA expression, which limits the application of genetic studies to actual clinical
practice. Tian et al. constructed prognostic models derived from RPPA-based proteins
and gene expression profiling and validated the models using immunohistochemistry [70].
They suggested that higher fatty acid synthase, fibronectin, transferrin receptor 1, and TSC
complex subunit 1 expression indicated worse overall survival in patients with ACC [70].
Our candidate protein biomarkers, including HNRNPA1, LTBP4, MRPS23, POLDIP2,
and WBSCR16, were suggested, and the mechanisms of action of each protein in ACC
tumorigenesis or metastasis should be elucidated.

However, this study has several limitations. First, due to the rarity of ACCs, the small
sample size may not be enough to discover and validate protein biomarkers. Therefore,
our results should be confirmed in independent patients with ACC. Although we further
validated our results in the TCGA cohort, we used TCGA data from RNA sequencing
because of the lack of protein numbers in RPPA data. We analyzed the expression of
candidate protein biomarkers in terms of overall survival. Therefore, the prognostic value
of each protein biomarker for risk of recurrence was not included.
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5. Conclusions

The present study identified HNRNPA1, LTBP4, MRPS23, POLDIP2, and WBSCR16 as
protein biomarkers to predict the prognosis of ACC. These biomarkers might guide clin-
icians in determining the adjuvant treatment after surgery and improve the prognosis
of patients with ACC. Moreover, these proteins may be potential therapeutic targets in
patients with ACC. Further functional studies and external validation studies are required
to identify the mechanism of action and the generalization of new protein biomarkers.
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