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A B S T R A C T

Cotton fibre provides a unicellular model system for studying cell expansion and secondary cell wall deposition.
Mature cotton fibres are mainly composed of cellulose while the walls of developing fibre cells contain a variety
of polysaccharides and proteoglycans required for cell expansion. This includes hydroxyproline-rich glycopro-
teins (HRGPs) comprising the subgroup, extensins. In this study, extensin occurrence in cotton fibres was as-
sessed using carbohydrate immunomicroarrays, mass spectrometry and monosaccharide profiling. Extensin
amounts in three species appeared to correlate with fibre quality. Fibre cell expression profiling of the four
cotton cultivars, combined with extensin arabinoside chain length measurements during fibre development,
demonstrated that arabinoside side-chain length is modulated during development. Implications and mechan-
isms of extensin side-chain length dynamics during development are discussed.

1. Introduction

Plant cell walls are constructed primarily of polysaccharides but
glycoproteins can account for up to about 10% of the dry weight
(Albersheim et al., 2011) and have diverse functions in development
and stress responses (Nguema-Ona et al., 2014). The hydroxyproline-
rich glycoproteins (HRGPs) superfamily consists of highly glycosylated
arabinogalactan proteins (AGPs), moderately glycosylated extensins
(EXTs) and lightly glycosylated proline-rich proteins (PRPs)
(Kieliszewski et al., 2010; Showalter et al., 2010). Extensins feature a
characteristic repetitive Ser-Hyp4 motif in which hydroxyproline (Hyp)
and Ser residues are O-glycosylated with one to four (and occasionally
five) arabinosyl residues and a single galactose residue, respectively
(Lamport, 1963). Gene and protein names in the literature mostly relate
to Arabidopsis but this type of O-linked protein glycosylation is as old as
the green plant lineage (Domozych et al., 2012).

The precise structures vary significantly across the plant kingdom
with notable differences between grasses and other flowering plants

(Carpita, 1996). Extensins make up a relatively minor proportion of the
cell wall while not challenged by biotic or abiotic stress and under these
conditions they are assumed to serve as a scaffold for proper wall as-
sembly (Cannon et al., 2008; Hijazi et al., 2014). Insight into extensin
functionality has increased significantly since extensins were first de-
scribed in 1960s (Lamport et al., 2011). At cell wall pH, positively
charged extensins pair with negatively charged pectin, which together
with their ability to align and form peroxidase mediated covalent
crosslinks, define and confer their structural functionality within the
cell wall (Brady et al., 1996; Lamport et al., 2011; Nuñez et al., 2009;
Valentin et al., 2010). The Arabidopsis root-shoot-hypocotyl defective,
rsh, mutant of the cell wall hydroxyproline-rich glycoprotein RSH is
lethal suggesting that extensins are essential for embryogenesis (Hall
and Cannon, 2002). Co-expression analysis has demonstrated that a
group of peroxidases under control of the RSL4 transcription factor,
cluster with a group of extensins (Marzol et al., 2018). Furthermore,
Arabidopsis phenotypes generated by biochemical inhibition or genetic
disruption of extensin proline hydroxylation and Hyp-glycosylation
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confer aberrant hypocotyl and root morphogenesis, indicating the im-
portance of extensins in cell differentiation and expansion (Gille et al.,
2009; Ogawa-Ohnishi et al., 2013; Velasquez et al., 2011) and previous
studies found correlation between expression of extensin-like proteins
and tip growth in tomato (Bucher et al., 2002).

Leucine-rich repeat extensins (LRXs) are also involved in main-
taining cell wall integrity during pollen tube growth in Arabidopsis, as
knock out mutants showed irregular deposition of callose and pectin. A
complex of LRX, several CrRLK1Ls and the Rapid Alkaline Factors 4 and
19 was shown to act as an autocrine mechanism monitoring cell wall
integrity during pollen growth in Arabidopsis (Ge et al., 2017; Mecchia
et al., 2017). The importance of extensin O-glycosylation for protein
conformation is well established (Stafstrom and Staehelin, 1986), and
the significance the fourth Araf residue for cross-linking has been
substantiated by in vitro studies (Chen et al., 2015; Møller et al., 2017).
Chen et al. (2015) showed that initial rate of cross-linking was pri-
marily determined by the presence of Hyp-Ara4, and the number of
cross-linking motifs in the protein backbone. Molecular dynamics si-
mulations have indicated that O-glycosylation stabilizes the helical
conformation, whereas incomplete glycosylation leads to a flexible
conformation, and high levels of O-glycosylation was also shown to
restrict the lateral alignments of EXTs (Velasquez et al., 2015). Ex-
tensins were early on shown to be deposited as cell wall repair fol-
lowing pathogen attack and also to attribute to wound and stress re-
sponses (Esquerré-Tugayé et al., 1979; Merkouropoulos and Shirsat,
2003).

Cotton fibre is the most important natural textile fibre and the high
industrial value drives the research to understand the correlation be-
tween cotton fibre quality and composition (Chen et al., 2007). Cotton
fibre is a unique unicellular model for the study of cell elongation and
cellulose deposition, which eliminates the complication of cell division
and multicellular differentiation (Haigler et al., 2012; Kim and Triplett,
2001). Cellulose makes up more than 94% of the cotton seed trichome
dry weight in mature cotton fibres (Yang et al., 2008). However, in
developing cotton fibre, cellulose constitutes only 35–50% of the pri-
mary cell wall (PCW) on a dry weight basis (Tokumoto et al., 2002).
Various ‘omics studies have provided insight into the molecular and
biochemical events regulating cotton fibre development (Gou et al.,
2007; Lee et al., 2007; Shi et al., 2006; Tuttle et al., 2015; Wang et al.,
2016; Xu et al., 2007). The majority of transcripts expressed at early
stage of cotton fibre development are maintained at similar expression
levels until the onset of secondary cell wall (SCW) deposition. SCW
cellulose starts to be deposited within a transiently-synthesized winding
layer (analogous to the S1 layer in wood xylem) and SCW begins to
thicken rapidly when the transition stage from PCW elongation to SCW
deposition ends (Kerr, 1946; Waterkeyn, 1981). PCW is remodelled
through the action of transcriptionally upregulated sets of glycoside
hydrolases (GHs) and carbohydrate esterases resulting in decrease of
pectin and xyloglucan during SCW deposition (Haigler et al., 2009;
Meinert and Delmer, 1977; Shao et al., 2011; Shimizu et al., 1997;
Tokumoto et al., 2002; Tuttle et al., 2015).

Correlations between amounts of xyloglucan, homogalacturonan,
and callose in mature cotton fibre and cotton fibre characteristics have
been investigated (Haigler et al., 2009; Rajasundaram et al., 2014;
Singh et al., 2009). In a study by Hernandez-Gomez et al. (2015), the
dynamics of xylan and mannan during cotton fibre development were
shown to be determinants of fibre quality, and a comparison of low and
high fibre quality Gossypium species, revealed a correlation between
expression of a pectin methylesterase gene and fibre quality (Al-Ghazi
et al., 2009). Involvement of HRGPs in fibre synthesis has been shown
by RNAi silencing of the fasciclin-like arabinogalactan protein GhAGP4
which led to inhibition of fibre initiation and elongation in G. hirsutum
(Li et al., 2010).

The extensin repertoire has been classified in several species
(Johnson et al., 2017; Liu et al., 2016) but not in cotton. With the recent
identification of ExAD (Møller et al., 2017), the arabinosyltransferase

that adds the fourth residue to extensin arabinoside side-chains, all GTs
involved in extensin glycosylation have been identified with the ex-
ception of the enzyme responsible for transfer of the rare fifth residue.
All identifications were carried out in Arabidopsis. Predicted corre-
sponding cotton genes are annotated on the basis of high similarity to
the Arabidopsis orthologues. Transcripts of genes encoding extensin
proteins have been identified in transcriptomics studies to be highly
enriched both at 10 and 20 days post anthesis (DPA), further suggesting
involvement in the fibre development (Islam et al., 2016; Miao et al.,
2017). Also, in one of the three regression models a correlation between
extensin content and fibre length and strength was indicated
(Rajasundaram et al., 2014). It thus appears that cotton fibre quality is
influenced by processing of the cell wall matrix in general.

In this study we examined extensins during cotton seed trichome
development from three cotton species which contribute to most of the
world cotton production, allopolyploid G. barbadense and G. hirsutum,
and diploid G. arboreum (Wendel et al., 2009). To study extensin dy-
namics in cotton fibre development, 11 time points were analysed using
carbohydrate immunomicroarrays to perform comprehensive micro-
array polymer profiling (CoMPP) (Moller et al., 2007) and expression
profiling of genes involved in glycosylation in developing cotton fibre,
combined with characterization of Hyp-arabinoside chain lengths.
Whereas extensin side chain length ratios are commonly thought of as
species specific characteristics (Lamport and Miller, 1971), we here
report that these ratios appear to be subject to developmental control as
well. Furthermore, the content of extensins during development is
speculated to be indicative to the mature fibre characteristics on the
basis of correlations reported here between loosely bound extensin
content at transition stage and mature cotton fibre mechanical prop-
erties.

2. Results

2.1. JIM20 epitope dynamics during cotton fibre development identified by
CoMPP

The content of CDTA and NaOH extractable extensins in developing
cotton seed trichomes was investigated in four cultivars representing
three Gossypium species. Extensin content in initial CDTA extractions,
sampled from 8 DPA to mature fibre, was assessed through probing
with mAb JIM20, which is predicted to bind to an epitope containing
arabinoside chains typical of extensins (Smallwood et al., 1994). On-
going investigation using extensin glycosylation mutants have shown
that JIM20 has a strict requirement for the β-arabinosides for binding
while binding is unaffected by the presence or absence of the fourth, α-
linked Araf residue (Cora MacAlister, Michigan Univ., personal com-
munication) making JIM20 particularly suitable for the present pur-
pose.

Based on the profile of extractable callose, we recently estimated the
transition from primary to secondary cell wall deposition occurs ap-
proximately at 17 DPA (Guo et al., 2019). CDTA-extractable extensins
displayed a peak coinciding with onset of secondary wall deposition.
We hypothesize that CDTA extractable JIM20 signal represents recently
synthesized and thus not yet cross-linked extensin molecules as well as
extensins lacking cross-linking motifs. Cross-linked extensins are highly
resistant to extraction without cleavage of the covalent bonds and the
inconsistent measurements of NaOH extractable extensins (supple-
mentary Fig. 1) are interpreted to be the results of covalent cross-links
impairing extraction (Fry, 2000) and proper quantitation.

3. Hyp-Araf1-4 verification by mass spectrometry and
monosaccharide profiling

To ascertain correct interpretation of the CDTA extraction data
presented in Fig. 1 we selected one of the cultivars, FM966 (G. hir-
sutum), and prepared Ba(OH)2 hydrolysates of the fibres. The
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appropriate size range of a 20 DPA hydrolysate was isolated using gel
permeation chromatography. The presence of extensin arabinosides
was evident by liquid chromatography-mass spectrometry analysis
where the doublet peaks in the selected ion traces, resulting from hy-
droxyproline (Hyp) isomerization during Ba(OH)2 hydrolysis, are di-
agnostic of Hyp-Arafn species (Møller et al., 2017, Fig. 2). The presence
of extensins in cotton fibres from 20 DPA was thus confirmed and
corroborates the detection of extensin by CoMPP. The monosaccharide
profile suggests that xylan, rhamnogalacturonan-I and possibly callose
are extracted and partially degraded by saturated Ba(OH)2 at 108 °C.
The xylose content could be from 4-O-Methyl-D-glucurono-D-xylan de-
rived oligos, as 4-O-Methyl-D-Glucuronic acid was not analysed for and
the xylans in cotton has a high degree of methylation of the Glucuronic
acid on xylans (Kim and Ralph, 2014). We found that purification by gel
permeation chromatography was not required to obtain clear spectra by
mass spectrometry so the analyses presented below were obtained on
the Ba(OH)2 hydrolysates directly.

4. Expression profiling of GTs involved in extensin glycosylation

The transcriptome dataset previously analyzed for mannan and
xylan synthesis-related genes (Hernandez-Gomez et al., 2015) were
analyzed for expression of glycosytransferase (GT) genes involved in

extensin O-glycosylation. Four cotton lines were analysed, two diploids
and two allopolyploids, in order to cover variation in fibre length and
strength. Table 1 shows G. raimondii sequences mapped to the CAZy
database (Lombard et al., 2013) and annotated as described by Harholt
et al. (2012). Transcripts were in turn mapped to the G. raimondii se-
quences to identify orthologs, see Table 1 in Materials and Methods.

Fig. 3 shows expression profiles of GTs involved in extensin O-gly-
cosylation. None of the GTs displayed a peak at the transition to SCW
deposition. This was expected given the observations that expression
profiles of genes involved in extensin O-glycosylation constitute a bio-
synthetic module (Møller et al., 2017), which, however, does not
comprise their substrates, i.e. the genes encoding the extensin proteins.
Also, the signal in Fig. 1 represents the easily extractable sub-fraction of
extensins.

It is noteworthy that cotton orthologs of AtXEG113 and AtExAD are
expressed at particularly low levels. The GTs encoded by these genes
add the third and the fourth arabinose onto extensin arabinosides, re-
spectively, (inset in Fig. 3) and hence comparatively short extensin side-
chains may be expected in the cotton fibres. Moreover, the expression
of ExAD dropped to zero before extensin arabinosylation as a whole
terminated. This finding prompted us to investigate the modulation of
arabinoside chain-length during fibre development. SGT1 expression
was only above the detection threshold for two of the cotton cultivars.

Fig. 1. CDTA extracted extensins as measured with mAb JIM20 in developing
cotton fibre. All four cotton cultivars exhibited similar content dynamics during
development. PimaS7 and JWF15 represent diploid cotton and PimaS7 and
FM966 represent allopolyploid cotton. Very low amount of extensin was de-
tected in mature fibre. Error bars represent standard deviation of three biolo-
gical replicates.

Fig. 2. Liquid chromatography-electrospray ionization-mass spectrometry of a Ba(OH)2 hydrolysate of FM966 fibres sampled 20 DPA. Diagnostic ion traces of Hyp-
Araf2-4 (extracted ion traces of [M+H+|Na+]+ 396/418 (Hyp-Araf2), 528/550 (Hyp-Araf3) and 660/682 (Hyp-Araf4 each eluting as twin peaks due to the C-4 R/S
stereochemistry of hydroxyproline (Hyp)), were monitored by liquid chromatography-electrospray ionization-mass spectrometry of a Ba(OH)2 hydrolysate of FM966
fibres sampled 20 DPA. Three technical replicates were analysed. The table insert shows a monosaccharide profile of a fraction enriched in Hyp-arabinosides and
arabinose isolated by size exclusion chromatography using a BioRad P2 column.

Table 1
Arabidopsis thaliana: Gossypium raimondii orthologies of genes encoding glyco-
syltransferases that galactosylate extensin or build extensin arabino-sides.
Activities are given in the inset in Fig. 3.

Arabidopsis
gene name

Arabidopsis
locus

G. raimondii
locus

1 SGT At3g01720 Gorai.006G037200
2 HPAT1-3 At5g25265

At2g25260
At5g13500

Gorai.001G035500
Gorai.006G124300
Gorai.010G216000
Gorai.011G215700

3 RRA1-3 At1g75120
At1g75110
At1g19360

Gorai.010G011500
Gorai.012G146400

4 XEG113 At2g35610 Gorai.004G177500
Gorai.008G219000

5 ExAD At3g57630 Gorai.006G138400
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5. Extensin arabinoside chain length changes during cotton fibre
development

The Hyp-Araf side-chain of total (not only the recently deposited)
extensins in cotton fibre of FM966 are relatively short and are further
shortened as the fibres mature (Fig. 4). This may be a direct con-
sequence of the expression profiles of the extensin glycosyltransferases
(Fig. 3). But there are at least two other possibilities to consider: Firstly,
as the fibre elongates and grows substantially, extensins previously
deposited are diluted and more recently secreted extensins may not be
products of the same genes. Secondly, extensin side-chains may be
subject to metabolism. Plants are not known to be able to cleave β-1,2-
linkages between arabinofuranose residues, but α-linked arabinoses
may be released by arabinofuranosidases of family GH51 or dual
function hydrolases of family GH3 (Bouraoui et al., 2016; Macdonald
et al., 2015).

6. Developing cotton fibre extensin content correlated to mature
cotton fibre properties

Extensin time course profiles, as extracted by CDTA, during devel-
opment were generally comparable across the four cultivars but the
peak value at 17 DPA differed across the cotton cultivars (Fig. 1). By
plotting the CoMPP value at 17 DPA with various mature cotton fibre
characteristics previously published (Rajasundaram et al., 2014), see
Fig. 5, we observed that fibre strength (measured as load (g) required to
break 1000m weight equivalent of fibre (tex)) and length were posi-
tively correlated with extractable extensin peak content, while elon-
gation was negatively correlated; no correlation between micronaire
and extensin content was found. Micronaire is a measure of fibre fi-
neness (larger numbers mean coarser fibres) and all but one line,

JWF15, fall in the premium quality range.

7. Discussion

Monoclonal antibody JIM20 was used to profile an extensin epitope

Fig. 3. Relative expression levels of GTs tentatively involved in extensin O-glycosylation. Relative abundances of transcripts mapping to G. raimondii genes that are
predicted orthologs of the Arabidopsis genes are indicated in each panel. Relative transcript abundances are given on the Y-axis using an arbitrary scale (see Materials
and Methods).

Fig. 4. Relative abundance of extensin side-chains (Hyp-Araf1-4) in fibres of
FM966 as determined by liquid chromatography-electrospray ionization-mass
spectrometry at different cotton fibre developmental stages as indicated by DPA
and mature. Error bars represent standard deviation. Shared group letters
within each side-chain length indicate no significant difference at p < 0.05.
Araf1+Araf2+Araf3+Araf4= 1.0.
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during cotton fibre development. Extensins are generally insolubilised
with time by oxidative cross-linking of Tyr residues in particular cross-
linking motifs, cross-links that require chlorite to be cleaved (Fry,
2000). Cross-linking is not restricted to inter- and intra-chain extensin
cross-linking as evidence has been presented that cross-links to pectin
for example exists in cotton (Qi et al., 1995). Extensin abundance as
detected with mAb JIM 20 displays a remarkable profile in which non-
cross-linked, CDTA-extractable extensins increase transiently at the
time of transition to SCW deposition. This is consistent with what has
been observed for callose and furthermore suggests that distinct ex-
tensins are deposited at different developmental stages.

In this study, extensin arabinosides in cotton seed trichome were
found to be significantly shorter than in Arabidopsis which has an Hyp-
Araf3:Hyp-Araf4 ratio of 4/1 in alcohol insoluble residues of 6 weeks old
mature bolting plants (Møller et al., 2017). In cotton suspension cul-
tures the ratio is ~0.6/1 (Qi et al., 1995) while in fibres at 20 DPA this
ratio is> 10/1 and the ratio increases with time (see Fig. 4). Ba(OH)2
extraction is not impaired by cross-linking or limited extractability so
the reported ratios represent total extensins. Very early on in devel-
opment, where material availability was too scarce for analysis the ratio
may, however, be closer to that of Arabidopsis or the ratio observed in
cotton suspension cultures. It is significant that chain length distribu-
tion appears to be stable in Arabidopsis across tissues and develop-
mental stages (Møller et al., 2017) while it appears to be much more
dynamic in cotton fibre. There are at least three not mutually exclusive
possible contributions to this: 1) Extensin side-chain length is a direct
reflection of the expression levels of the relevant GTs and how their
expression changes during development. 2) Extensins, i.e. extensin gene
products, deposited at different developmental stages may differ.
Sample preparation for Hyp-Araf analysis is not selective for classical
extensins (secreted extensins featuring the motif shown in the Fig. 3
inset and often also cross-linking motifs). And 3) the side-chains might
be degraded by appropriate hydrolases. Expressed arabinofuranosidase
candidates of GH3 and GH51 have been reported and biochemical
evidence for arabinofuranosidase activity in crude fibre extracts

provided (Guo et al., 2019). The activities were implied in pectic ara-
binan metabolism, which accompany cotton fibre middle lamella de-
gradation. Removal of the fourth α-linked Araf-residue could either be
the result of side-activities of the hydrolases responsible for pectic
arabinan degradation in which case the shortening of extensin arabi-
nosides may be without biological significance. Alternatively, extensin-
specific α-arabinofuranosidase activity may be at play. Further short-
ening of the arabinosides by hydrolysis will require β-arabinofur-
anosidase activity and developmentally regulated modulation of ara-
binoside length during fibre development therefore hinges on the
existence in plants of β-arabinofuranosidases. The only known enzymes
with this activity belong to families GH121 and GH127 (Fujita et al.,
2014, 2011) none of which, however, comprise plant genes.

Expression profiles of genes encoding arabinosyltransferases are
compatible with either hypothesis. The pronounced disappearance of
the fourth arabinosyl residue between day 15 and 20, i.e. during rapid
deposition of CDTA-extractable extensin may either point to a parti-
cular extensin being deposited, or towards the presence of extensin
specific α-arabinofuranosidase activity. Easily extractable extensins
may either be classical extensins not yet cross-linked, bona fide ex-
tensins without cross-linking motifs, or may be extensin domains in
other HRGPs. Detection with JIM20 does not discriminate between
these possibilities. Which HRGPs are expressed during fibre develop-
ment becomes a pertinent question since the JIM20 signal appears to
correlate with mechanical fibre properties. This, however, does not
imply that extensins are load-bearing structures in the wall, but rather
that extensins may function as templates during wall assembly and thus
influence cell wall architecture.

8. Material and methods

8.1. Plant materials

Four cotton cultivars from three different Gossypium species pro-
vided by Bayer CropScience were analysed in this study: G. hirsutum (cv

Fig. 5. Mechanical properties of cotton fibre as
functions of the extensin CoMPP signal. A.
Mechanical properties were determined with the
High Volume Instrument (HVI) by CIRAD (France)
from 5 g of mature cotton of each line. A sampled
fibre is held at a random point and two ends are
aligned to measure the length. B. Strength is mea-
sured physically by clamping a fibre bundle at
known distance and then pulled away at a constant
speed until the fibre bundle breaks; the distance it
travelled before breakage, shown in percentage to
the set distance, was defined as elongation (C). D.
The fineness of cotton fibre is evaluated by the
Micronaire value. The underlying data and statis-
tical treatment of the physical properties of which
the means are used here were published by
Rajasundaram et al. (2014).
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FM966), G. barbadense (cv PimaS7), G. arboreum (cv 30834 and cv
JFW15). Cv. 30834 and JWF15 are diploid cotton and PimaS7 and
FM966 are allopolyploid cotton cultivars. The transcriptomic dataset
analysed for transcripts of genes encoding extensin glycosyltransferases
are identical to the one analysed previously for transcripts of relevance
to the cotton fibre middle lamella metabolism and so is the material
analysed by CoMPP (Guo et al., 2019).

8.2. Comprehensive microarray polymer profiling

CoMPP analysis was carried out as previously described (Moller
et al., 2007). Cotton fibres from at least three different plants at each
time point for each cultivar were collected for CoMPP analysis. For each
three technical replicates of 10mg of grounded fine cotton fibre powder
was extracted in two 300 μL solvents sequentially, 50mM CDTA and
4M NaOH with 1% (v/v) NaBH4 for pectic polysaccharides epitope
extraction and hemicellulose and more tightly bonded polymers ex-
traction, respectively. Three independent prints and three independent
probings of each print, giving total nine replicates, were applied in the
data analysis. CoMPP result was presented by individual scaling in
which maximum signal observed in probing was assigned as 100 and
the other signals scale to the highest value. Line chart was generated by
plotting individual scaled carbohydrate immunomicroarray data. The
CoMPP technique is a semi-quantitative method, which only provides
information of relative amount of solvent extractable epitopes.

8.3. Transcriptomic analysis

Transcriptomic profiles were derived from the same dataset that
formed the basis for the analysis of cellulose, mannan, and xylan bio-
synthesis by Hernandez-Gomez et al. (2015). Cotton fibres from five
cotton bolls at each time point were collected and the RNA preparations
pooled for transcriptomic analysis. Annotation of transcripts in this
dataset was carried out by mapping contigs to the Gossypium raimondii
proteome. Levels of expressions were normalized to the total number of
transcripts in the dataset for each cultivar. Transcript abundance of
interest to the present study varied over ~2 orders of magnitude and is
displayed on the same arbitrary Y-axis. A number at the top of each Y-
axis indicates how they are scaled relative to one another. Expression of
a xyloglucan fucosyltransferase was displayed with a Y-axis of 1 in (Guo
et al., 2019) and these authors regarded this the lowest expression level
that could reliably be measured; and this scaling is used also here. Some
transcripts that might have been of interest, like SGT1, fell below this
threshold.

Orthology was established on the basis of sequence similarities be-
tween the G. raimondii protein sequences and annotated proteins from
Arabidopsis thaliana. A conservative approach has been adopted, i.e.
sequences where annotations may be questioned have been left out.
Sums of transcripts abundancies of orthologs are given

8.4. Analysis of Hyp-Arabinosides

Solid Ba(OH)2 was added to fibre samples, three replicates, sus-
pended in water to 0.22M and the vials were closed under N2 and in-
cubated overnight at 108 °C. Following neutralization with H2SO4 and
centrifugation, the hydrolysate was analyzed directly by liquid chro-
matography-electrospray ionization-mass spectrometry for determina-
tion of chain-length; or applied to a BioRad Bio-Gel P2 column
(1.6×60 cm, 1mL/min) equilibrated with 50mM ammonium formate
pH 5.0. Pooled fractions were lyophilized twice, checked by mass
spectrometry and analyzed for monosaccharide profile, see below.

Analysis was carried out using an Agilent 1100 Series LC (www.
agilent.com) coupled to a Bruker HCT-Ultra ion trap mass spectrometer
(www.bruker.com). A Luna C8(2) column (www.phenomenex.com;
3M, 100 A, 150×2.0mm) preceded by a Gemini C18 SecurityGuard
(Phenomenex; 4× 2mm) was used at a flow rate of 0.2mLmin−1. The

oven temperature was maintained at 35 °C. The mobile phases were: A,
water with 0.1% formic acid; B, acetonitrile with 0.1% formic acid. The
gradient program was: 0–2min, isocratic 1% B; 2–8.5 min, linear gra-
dient 1–3% B; 8.6–9.6min, isocratic 99% B; 9.7–17min, isocratic 1% B.
The mass spectrometer was run in positive ESI mode and the recorded
mass range was m/z 100–1000. Chain-length distributions across de-
velopmental stages were analysed using the aov function in R and post-
hoc tests were carried out using the HSD function in the R-package
agricolae.

8.5. Monosaccharide composition analysis

Monosaccharide composition analysis was carried out as previously
described in (Øbro et al., 2004). In brief triplicate samples were hy-
drolysed at 120 °C in 2M trifluoroacetic acid, followed by evaporation
under vacuum, re-suspended in water and monosaccharides analysed
by high-performance anionic chromatography with amperometric de-
tection.
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