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Abstract: The striatin-interacting phosphatases and kinases (STRIPAK) multi subunit complex is
a highly conserved signaling complex that controls diverse developmental processes in higher
and lower eukaryotes. In this perspective article, we summarize how STRIPAK controls diverse
developmental processes in euascomycetes, such as fruiting body formation, cell fusion, sexual
and vegetative development, pathogenicity, symbiosis, as well as secondary metabolism. Recent
structural investigations revealed information about the assembly and stoichiometry of the complex
enabling it to act as a signaling hub. Multiple organellar targeting of STRIPAK subunits suggests
how this complex connects several signaling transduction pathways involved in diverse cellular
developmental processes. Furthermore, recent phosphoproteomic analysis shows that STRIPAK
controls the dephosphorylation of subunits from several signaling complexes. We also refer to recent
findings in yeast, where the STRIPAK homologue connects conserved signaling pathways, and based
on this we suggest how so far non-characterized proteins may functions as receptors connecting
mitophagy with the STRIPAK signaling complex. Such lines of investigation should contribute to
the overall mechanistic understanding of how STRIPAK controls development in euascomycetes
and beyond.

Keywords: STRIPAK complex; mitophagy; multifunctional signaling hub; fungal development;
Sordaria macrospora

1. Introduction

Posttranslational phosphorylation of eukaryotic proteins plays an essential role in
modulating their function and is tightly regulated in time and space by the fine-tuned
balance between protein kinases and phosphatases [1]. The serine/threonine protein phos-
phatase PP2A is a heterotrimeric holoenzyme comprising a structural (PP2AA), a catalytic
(PP2Ac), and a regulatory B subunit. So far, four different regulatory subunits are known,
B, B′, B′′, and B′ ′ ′. Subunit B′ ′ ′ is designated as striatin and is the name-giving subunit
of the striatin-interacting phosphatases and kinases (STRIPAK) signaling complex. This
multimeric complex, first characterized in mammalian cells [2], and found to be involved
in the regulation of various target proteins, contains a number of other core components.
Mass spectrometry analysis primarily characterized different subunits of STRIPAK in
mammalian or fungal systems, and various reviews summarize the basic components of
the complex [3–6]. In addition to the PP2A holoenzyme, these are the striatin-interacting
proteins STRIP1/2, the mammalian Mps one binder homolog Mob3/phocein, the sarcolem-
mal membrane-associated protein (SLMAP), and the coiled-coil protein suppressor of IκB
kinase-ε (SIKE). These subunits have been characterized in various eukaryotic STRIPAK
complexes (for review see [4,5]), and the synonymous designations in euascomycetes are
found in Table 1.

Here, we briefly summarize our current knowledge about the function of the STRIPAK
complex of ascomycetes, with an emphasis on the role of euascomycetous development.
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We further refer to recent structural investigations and cellular analyses, which help us
understand how STRIPAK acts as a scaffolding complex that cross-links several signal
transduction pathways. Finally, current molecular cellular investigations of the STRIPAK
homologue in yeast provide insights into a mechanistical hypothesis of how STRIPAK
interacts with other signaling pathways at the cellular level, and thus integrates various
developmental programs.

2. The Structure of STRIPAK Suggests the Integration of Diverse Cellular Signals

Striatin is the central subunit of STRIPAK, and the primary structure of this B′ ′ ′ sub-
unit is conserved in all eukaryotic systems studied so far [3–6]. Striatins have four domains:
an N-terminal caveolin-binding domain, a coiled-coil domain, a calmodulin-binding do-
main, and a C-terminal WD40 repeat domain. Important for the cellular localization and
complex assembly is the coiled-coil domain, which further mediates its homo- or hetero-
oligomerization. Crystal structures of the coiled-coil domain indicated a parallel dimeric
but asymmetric conformation of striatin containing a large bend [7].

Although the association of STRIPAK into a heterotrimeric holoenzyme is validated,
the overall structure of the complex and knowledge about the stoichiometric composition
of the subunits are still cryptic. Assembly of the fungal STRIPAK complex was recently
investigated in the euascomycete Aspergillus nidulans [8]. Using wild type and STRIPAK
subunit deletion strains, these studies showed that the STRIPAK complex is formed from
three subcomplexes (SIKE-SLMAP, MOB3, and STRIP1/2-PP2Ac1-PP2AA), where striatin
acts as a scaffold at the nuclear envelope. Previous crystallographic analysis had explored
the subunit stoichiometry from mammalian STRIPAK, thus promoting our understanding
of the different biological functions [9,10]. A further refinement of the structure of a purified
human protein complex was very recently determined by cryo-EM, at 3.2-Å resolution [11].
STRIPAK contains four copies of striatin and one copy of each of the other subunits.
According to this study, the four WD40 repeat domains from the four striatins interact with
different activators or suppressors of other signaling pathways. Included is the Hippo
signaling pathway, which is conserved within eukaryotes [12]. The high conservation of
STRIPAK subunits allows us to speculate that the structural implications derived from
analysis of the mammalian complex can be transferred to STRIPAK of fungal organisms.

3. STRIPAK Subunits Have an Impact on Fungal Development

Distinct genes encoding subunits of the STRIPAK complex have been analyzed in a
variety of filamentous ascomycetes. Mutations in the corresponding genes lead to severe
developmental defects as summarized in Table 1. Here, we summarize how defects in
subunits of the STRIPAK complex affect fungal development. Initially, genes for STRIPAK
subunits were detected upon investigating the formation of fruiting bodies or hyphal cell
fusion (for review see [4]). In Sordaria macrospora, a self-fertile homothallic member of the
Sordariaceae family, sterile strains were screened for mutant genes, many of which were
found to encode STRIPAK subunits. The mutants only generated small immature fruiting
bodies, called protoperithecia of about 50 µm in diameter, and contained no ascospores
nor asci. Fertility was clearly restored when the wild type subunit gene was introduced
into the mutant genome [13]. Such STRIPAK control of fruiting body formation has been
observed in a variety of ascomycetes, as summarized in Table 1.

In an analogous mutant screen, Neurospora crassa strains with a defect in cell–cell
fusion were investigated and the genes responsible were abbreviated as HAM for hyphal
anastomosis. Of these, several showed a mutation in genes for STRIPAK subunits, such
as HAM-2, -3, and -4 [14–16]. Cell–cell fusions are not only the starting process for sexual
development and fruiting body formation but seems also to be important in some symbiotic
interactions with other organisms, as well as in infection processes by pathogenic species.
A common feature of many STRIPAK mutants is a block in the sexual life cycle. However,
in heterothallic species, such as N. crassa, female but not male fertility is affected by mutant
genes for STRIPAK subunits. Furthermore, it has been hypothesized that the lack of hyphal



J. Fungi 2021, 7, 443 3 of 11

fusions leads to impaired nuclear division during meiosis and to the formation of abnormal
ascospores. These observations led to the hypothesis that subunits of STRIPAK are involved
in regulating the cell cycle [17]. In this context, it is relevant that not only septation of
vegetative hyphae but also of female gametangia (ascocogonia) is apparently controlled by
subunits of STRIPAK [18–20].

A remarkable effect was observed in A. nidulans when proper expression of the velvet
complex [21] was investigated in mutants lacking STRIPAK subunits. The mutants showed
not only an absence of light-dependent fungal development and secondary metabolite
production, but also a reduced stress response [8].

Plant–fungal interactions are another developmental process that is controlled by
STRIPAK. Epichloë festucae forms a mutualistic symbiotic relationship with the grass Lolium
perenne. The fungus produces several secondary metabolites thus protecting the host
against herbivores. This interaction arises by fungal colonization of intercellular spaces
and the leaf surface. Loss of mobC, which is homologous to mob3, completely abolishes the
symbiotic interaction between the fungus and the grass. Instead, E. festucae shows extensive
hyphal growth within the intercellular tissue of the grass, and in addition, hyphae are
found within the vascular bundle tissue, which was never observed with the wild type.
Infection with the mobC mutant leads to underdeveloped grasses, lacking a functional
association with the fungal symbiont [22].

For a long time, plant pathogenic fungi were the subjects of genetic analysis in order
to understand their pathogenic mechanisms. These investigations revealed that STRIPAK
controls the virulence process in plant pathogens such as Colletotrichum graminicola, Fusar-
ium verticillioides, Fusarium virguliforme, and Magnaporthe oryzae. In the corn pathogen
F. verticillioides, the N-terminal domains of the striatin homologue Fsr1, as well as the
STRIP1/2 homologue FvStp1 are important in maize stalk rot virulence [23–25]. Similarly,
in another corn pathogen, C. graminicola, striatin null mutants have functional appressoria;
however, the colonization leading to infection is diminished [26]. Virulence was similarly
investigated in the soybean pathogen F. virguliforme. Here, the striatin homologue FvStr1
controls the colonization of the vascular system, although phloem and xylem vessels of the
roots are still infected by mutants [27]. In the rice blast fungus M. oryzae, strains lacking the
catalytic subunit of PP2A (MoPPG1) were unable to form appressoria for penetrating the
host plant [28]. From these examples, it becomes evident that STRIPAK controls in some
instances plant–fungal relationships by controlling cell–cell interactions and the formation
of infection structures.

So far however, reports are lacking that fungal–animal interactions are controlled by
STRIPAK. For example, nematode trapping fungi were recently investigated genetically
and shown to be dependent on conserved signaling networks for developing specialized
trap structures to capture, kill, and consume nematodes [29–31]. We predict that loss of
STRIPAK components will result in defects of animal trapping. Similarly, the virulence
of approximately 625 fungal species that infect vertebrates [32] were not reported to be
controlled by STRIPAK. It may be envisioned that future molecular genetic studies in
well-studied human pathogens such as Aspergillus fumigatus, Candida albicans, Cryptococcus
neoformans, or Histoplasma capsulatum will discover virulence mutants with a defect in
genes for subunits of the STRIPAK complex. This assumption is supported by the fact
that genes for STRIPAK subunits are very similar between pathogenic and non-pathogenic
ascomycetes and basidiomycetes. At least, so far characterized protein domains in ho-
mologues of striatin, SLMAP and STRIP1/2 seem to be highly conserved (Figures S1–S3).
An exception seems to be the yeast C. albicans. This pathogen has a truncated gene for a
striatin-like protein, lacking WD40 repeats. With this, it resembles the FAR11 protein from
baker’s yeast, which is referred to in the final section [33].
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4. Dual Localization of STRIPAK Connects Signaling Pathways

The previous section reviewed the diverse developmental processes controlled by
STRIPAK. Thus, the question arises as to how this protein complex regulates mechanisti-
cally diverse processes within a single organism.

Eukaryotic cells are compartmentalized within membrane-bound organelles, and
multiple targeting of proteins or protein complexes can arise through distinct mechanisms
during evolution or by stepwise accumulation of mutations within new subunits of a
macromolecular complex [34,35]. In various euascomycetes, localization studies have
detected STRIPAK subunits at different membranes within the fungal cell, such as the
nuclear membrane, the endoplasmatic reticulum (ER), or the mitochondrial outer mem-
branes [8,15,25,36], (Table 2). For A. nidulans and F. verticillium, more than one cellular
localization was reported, and removing striatin by mutation resulted in dislocalization of
the remaining STRIPAK subunits [8,25]. Structured illumination microscopy (SIM) in S.
macrospora showed in detail that PRO45, the homologue of SLMAP, resides in the nuclear
envelope, the mitochondrial membrane and the spindle pole body. These results led to the
hypothesis that this SLMAP homologue functions as a membrane organizer to mediate
signaling by bridging two or more organelles [36]. These findings are compatible to studies
with mammalian cells where the SLMAP subunit of STRIPAK resides in the sarcolemma,
transverse (T)-tubules, and sarcoplasmic reticulum (SR) of muscle cells, as well as in the
outer nuclear envelope, ER, mitochondria, and centrosomes of non-muscle cells [37–41].
Such close associations, for example, between mitochondria and the ER, is believed to
transmit calcium signals necessary for balanced cell metabolism [42].

Genetic and molecular analysis in fungi has shown previously that STRIPAK is as-
sociated with signaling transduction pathways. In N. crassa, for example, subunits of
STRIPAK components are involved in the nuclear localization of MAK-1, the downstream
kinase of the cell wall integrity (CWI) pathway [15], which supports the hypothesis of
crosstalk between the STRIPAK complex and other signaling transduction pathways in
fungi. This seems to be consistent with a recent phosphoproteomic analysis, demonstrating
that subunits of diverse signaling complexes, such as the target of rapamycin complex 2
(TORC2), nicotinamide adenine dinucleotide phosphate oxidase (NOX), septation initia-
tion network (SIN), CWI and pheromone response (PR) pathway, were phosphorylated or
dephosphorylated in a STRIPAK-dependent manner [43,44].

A recent report from the protoascomycete Saccharomyces cerevisiae broadens our mecha-
nistic view of how multiple cellular localizations of STRIPAK subunits connect to signaling
transduction pathways [45]. In yeast, the factor arrest (FAR) complex is the STRIPAK
homologue, which, for example, controls vacuolar protein sorting and pheromone-induced
cell cycle arrest. Subpopulations of FAR reside either in the ER or in the mitochondria, and
this localization is determined by the tail-anchor domain of Far9/10, the homologue of
SLMAP. When located in the ER, FAR regulates the TORC2 signaling pathway, while its
location in the mitochondrial membrane inhibits mitophagy, a process were mitochondria
are selectively degraded by autophagy. The yeast mitophagy receptor Atg32p was shown
to interact with Far8p, the homologue of striatin. Atg32p is phosphorylated by casein
kinase 2 (CK2), which is essential for mitophagy. The phosphorylation is counteracted by
the FAR complex, causing to dissociate from Atg32p upon mitophagy stimuli [46].

So far, a homologue of Atg32p has neither been detected in mammals nor in filamen-
tous euascomycetes [47,48]. However, for mammalian cells, eight mitophagy receptors
were described, of which one, Bcl2-L-13, is functionally homologous to Atg32p [49,50]. Like
Atg32p, Bcl2-L-13 carries a C-terminal transmembrane domain (TM), an amino acid acidic
cluster, and an LC3-interacting region (LIR), which binds ATG8 and corresponds to the
Atg8-interacting motifs (AIM) in yeast [51]. Finally, Atg32p and Bcl2-L-13 are characterized
by a CK2 phosphorylation site and a PP2A docking site. Atg32p additionally carries an
Atg11 binding region (A11BR), which is predicted to bind Atg11p.

In diverse genomes of euascomycetes, no homologue of the Atg32p or Bcl2-L-13 gene
has been detected [48]. Therefore, we searched for S. macrospora genes encoding proteins
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with sequence motifs that are characteristically found in Atg32p and/or Bcl2-L-13. Indeed,
we detected 27 genes (Table S1) in the complete and well-curated S. macrospora genome
encoding proteins with these domains or motifs [52,53]. Among these, six genes were
found exclusively in euascomycetes (Table S1). Interestingly, one of the candidate proteins
(SMAC_04227) is present in the recently characterized library of STRIPAK-dependent
phosphorylated proteins from S. macrospora [43,44]. Thus, we hypothesize that the so
far uncharacterized S. macrospora protein SMAC_04227 is potentially functioning as a
mitophagy receptor, which similar to Atg32p from yeast, connects the STRIPAK complex
to mitophagy. Within euascomycetes, SMAC_04227 shows a high sequence similarity to
other homologues (Figure S2), and in future functional investigations it will be worth
testing whether the phosphorylation status of SMAC_04227 affects an interaction with
STRIPAK subunits. Functionally similar to yeast, the phosphorylation of SMAC_04227 or
its homologues may promote mitophagy, a process which is being intensively investigated
in euascomycetes [47,48,54–57].

We predict that future investigations will address the question, how STRIPAK controls
pathogenic and symbiotic interaction of fungi with plants, animals, including humans,
and other microorganisms. Finally, we do not know what regulates the different cellular
locations of STRIPAK. This question is associated with the problem of how phosphorylation
and dephosphorylation controls the interaction or dissociation of STRIPAK with other
signaling complexes. We anticipate that research in this direction will benefit from advances
in mass spectrometry-based methods for more comprehensive site-specific phosphorylation
profiling. This was recently demonstrated when absolute quantification by parallel-reaction
monitoring (PRM) was applied to analyze phosphorylation site occupancy in signaling
components of the SIN signaling pathway [58]. In conclusion, well established experimental
systems in diverse euascomycetes should contribute to answering these questions and will
contribute to the overall mechanistic understanding of how STRIPAK regulates not just
euascomycetes development, but in eukaryotes in general.
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Table 1. List of genes encoding STRIPAK subunits and STRIPAK associated kinases, which are all involved in different developmental processes in euascomycetes.

STRIPAK
Subunit

Gene
Designation

Developmental Process

Organism ReferenceAscospore
Formation 1

Cell
Fusion

Conidia
Formation Essential 2

Fruiting
Body

Formation
Patho-

Genicity

Primary
and

Secondary
Metabolism

Septation 3 Symbiotic
Interaction

Vegetative
Growth 4

Mob3/Phocein

ChMOB3 X C.h. [59]

mob-3 X X X N.c. [60,61]

mobC X X X X E.f. [22]

sipA X X X X A.n. [8]

Smmob3 X X X S.m. [62]

PP2AA

pp2a-a X N.c. [15]

pp2aa X S.m. [20]

sipF X A.n. [8]

PP2Acα/β

CPP1 X X X X F.ve. [25,63]

Moppg1 X X X M.o. [28]

pp2a X X X T.r. [64]

pp2Ac1 X X X X S.m. [20]

ppg-1 X X X X N.c. [15]

sipF X X X X A.n. [8]

SIKE sci1 X X X S.m. [65]

sipB X X X X A.n. [8]

SLMAP

ham-4 X X N.c. [17]

PaPro45 X X X P.a. [66]

pro45 X X X S.m. [36]

sipD X X X X A.n. [8]

Striatin

FgFSR1 X X F.g. [23]

FSR1 X X X F.ve. [23,25]

FvSTR1 X X X F.vi. [27]

ham-3 X X X N.c. [15,17]

pro11 X X X S.m. [67]

strA X X X X A.n. [8]

str1 X X X X X C.g. [26]
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Table 1. Cont.

STRIPAK
Subunit

Gene
Designation

Developmental Process

Organism ReferenceAscospore
Formation

1

Cell
Fusion

Conidia
Formation Essential 2

Fruiting
Body

Formation

Patho-
Genicity

Primary
and

Secondary
Metabolism

Septation
3

Symbiotic
Interaction

Vegetative
Growth 4

STRIP1/2

ham-2 X X X N.c. [17]

PaPro22 X X X P.a. [66]

pro22 X X X S.m. [18]

sipC X X X X A.n. [8]

FvSTP1 X X X F.ve. [25]

STRIPAK associated kinases

GCKIII

Fg07344 X X X X F.g. [68]

sepL X X X A.n. [69]

sid-1, mst-1 X X N.c. [70]

Smkin3,
Smkin24 X X X X S.m. [19,71]

1 Ascospore formation may be lacking or abnormal ascospore are generated. 2 Deletion of the genes is lethal. 3 includes hyphal or ascogonal septation. 4 includes reduced growth rates or abnormal hyphal
morphology. “x” indicates processes, in which the protein is involved. “Blank cells” indicate that the proteins have not been investigated or are not relevant for the corresponding processes. Abbreviations: A.n.,
Aspergillus nidulans; C.g., Colletotrichum graminicola; C.h., Colletotrichum higginsianum; E.f., Epichloë festucae; F.g., Fusarium graminearum; F.ve., Fusarium verticillioides; F.vi., Fusarium virguliform; M.o., Magnaporthe
oryzae; N.c., Neurospora crassa; P.a., Podospora anserina; S.m., Sordaria macrospora; T.r., Trichoderma reesei.
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Table 2. Localization of STRIPAK subunits in various euascomycetes.

Subunit Organism Localization Reference

Mob3/Phocein

MOB-3 N. crassa Nuclear envelope [15]

SmMOB3 S. macrospora Nuclear envelope [72]

SipA A. nidulans ER (string-like extensions), nuclear envelope (dependant
on StrA), nucelus [8]

PP2Acα/β
PPG-1 N. crassa Nucleus [15]

SipE A. nidulans Nuclear envelope (dependant on StrA) [8]

SIKE
SCI1 S. macrospora Nuclear envelope [65]

SipB A. nidulans Nuclear envelope (dependant on StrA) [8]

SLMAP

HAM-4 N. crassa Nuclear envelope [15]

PRO45 S. macrospora Nuclear envelope, the mitochondrial membrane and the
spindle pole body [36]

SipD A. nidulans Nuclear envelope (dependant on StrA) [8]

Striatin

Fsr1 F. verticillioides ER, nuclear envelope, vacuolar membranes or late
endosomes in [25]

HAM-3 N. crassa Nuclear envelope [15]

PRO11 S. macrospora Nuclear envelope [65]

StrA A. nidulans ER, nuclear envelope, [8,73]

STRIP1/2

HAM-2 N. crassa Nuclear envelope [15]

PRO22 S. macrospora dynamic tubular and vesicular vacuolar network [18]

SipC A. nidulans Nuclear envelope (dependant on StrA) [8]

GCKIII
SID-1 N. crassa Spindle pole body (SPB), septa [70]

SmKIN3 S. macrospora Spindle pole body (SPB), septa [58]

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/jof7060443/s1, Figure S1: Alignment of striatin homologues in selected fungi. Figure S2:
Alignment of SLMAP homologues in selected fungi. Figure S3: Alignment of STRIP1/2 homologues
in selected fungi. Figure S4: Domain organization of SMAC_04227 in S. macrospora, Bcl-2-L-13 in H.
sapiens and Atg32p in S. cerevisiae. Table S1: Identification of 27 putative Atg32p homologoues using
eight different criteria.
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