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Abstract

Groups with higher cognitive diversity, i.e. variations in how people think and solve prob-
lems, are thought to contribute to improved performance in complex problem-solving. How-
ever, embracing or even engineering adequate cognitive diversity is not straightforward and
may even jeopardize social inclusion. In response, those that want to promote cognitive
diversity might make a simplified assumption that there exists a link between identity diver-
sity, i.e. range of social characteristics, and variations in how people perceive and solve
problems. If this assumption holds true, incorporating diverse identities may concurrently
achieve cognitive diversity to the extent essential for complex problem-solving, while social
inclusion is explicitly acknowledged. However, currently there is a lack of empirical evidence
to support this hypothesis in the context of complex social-ecological systems—a system
wherein human and environmental dimensions are interdependent, where common-pool
resources are used or managed by multiple types of stakeholders. Using a fisheries exam-
ple, we examine the relationship between resource stakeholders’ identities and their cogni-
tive diversity. We used cognitive mapping techniques in conjunction with network analysis to
measure cognitive distances within and between stakeholders of various social types (i.e.,
identities). Our results empirically show that groups with higher identity diversity also dem-
onstrate more cognitive diversity, evidenced by disparate characteristics of their cognitive
maps that represent their understanding of fishery dynamics. These findings have important
implications for sustainable management of common-pool resources, where the inclusion of
diverse stakeholders is routine, while our study shows it may also achieve higher cognitive
coverage that can potentially lead to more complete, accurate, and innovative understand-
ing of complex resource dynamics.
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Introduction

Diversity is a term generally used to identify differences between individuals or describe
instances of being composed of differing elements or including different qualities. Depending
on the type of differences by which the diversity is determined, people can be categorized
under demographic, cultural, political, occupational, intellectual, or many other categories. As
a guiding principle, these dimensions can be dichotomized into two overarching kinds of
diversity: (a) identity diversity and (b) cognitive diversity [1-3].

Identity diversity—also known as surface-level diversity—refers to differences in a set of
subjective characteristics that are apparent across individuals or groups [2]. As such, many
social categories or deductive specifications that are explicitly defined by demographic, socio-
economic, cultural, political, or any other salient features of the individuals fall into identity
diversity. These are factors that are generally considered observable (think demographic cate-
gories), and often perceptible by those who seek or care about diversity and inclusion [4].

On the other hand, cognitive diversity—also known as deep-level diversity—refers to differ-
ences in how people represent, think about, and solve problems [2]. Hong and Page (2004) refer
to this kind of diversity as functional differences and explain how it might be determined by mea-
suring variations in people’s perspectives (i.e., how they represent a problem) and heuristics (i.e.
how they find solutions to a problem) (also see [5]). This kind of diversity has been suggested to
be a critical driver of improving group performance in complex problem-solving [6-8]. Three
mostly cited problem-solving benefits associated with cognitive diversity are i) augmentation
(i.e., the generation of a larger pool of knowledge), ii) purification (i.e., the cancelation and
refinement of errors and inaccuracies mostly in predictions), and iii) recombination (i.e., the
emergence of innovative solutions as a result of higher possibility for permutation and combina-
tion of knowledge) [6, 9-11]. Accordingly, since human societies face more complex problems
today, cognitive diversity becomes a vital ingredient in contemporary problem-solving.

Despite these benefits, achieving cognitive diversity is not always straightforward because
such differences across groups and individuals are not immediately observable or readily
detectable [12]. Instead, to assess cognitive diversity, researchers need to dive deeper into
invisible variations in personality, intellectual abilities, and cognitive characteristics of individ-
uals using intelligence tests [13], psychological and neuropsychological assessments [14], men-
tal modeling techniques [15], or cognitive ability tests [16]. Yet, seeking and embracing
cognitive diversity does not necessarily satisfy the full inclusion of diverse social identities [2,
17], which can be problematic wherein social inclusion is vital to achieving ethical goals such
as achieving social equity and resolving conflicts in areas like participatory governance [18].

However, the inverse may possibly be true—that is, some sort of identity diversity can con-
gruently achieve beneficial cognitive diversity [19, 20]. Under certain circumstances, incorporat-
ing diverse identities into problem-solving may concurrently encourage cognitive diversity
which is beneficial to groups’ problem-solving capability, while it also satisfies the social equity
goals. While it does not appear to be an unreasonable assumption in some cases (e.g., particularly
those cases wherein some salient differences that determine identity diversity are of high prob-
lem-solving relevance) [21], the literature around “diversity” is still open to debate about the rela-
tionship between identity and cognitive diversity. In fact there is evidence to the contrary, that is,
that identity diversity does not always contribute to beneficial cognitive diversity [2, 3, 17].

Regardless of these controversies, in many cases, achieving both kinds of diversity at the
same time or what has been referred to as “congruence between surface and deep-level charac-
teristics”—has been thought to be a major success [2]. Despite practical challenges,
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implementing this congruency has been recommended in multi-stakeholder governance and
management systems such as common-pool resources and environmental assessments [18].
Understanding diversity within stakeholders who interact with natural resource systems,
therefore, serves as a great case study to evaluate these congruencies since they typically involve
multiple stakeholders and require the participation of socially diverse groups in dialogue,
deliberation, decision-making, and adaptive co-management [22]. This inclusive participation
of socially diverse groups of stakeholders in decision-making and policy development pro-
cesses instills stakeholders’ sense of ownership of the decisions, helps them address conflicts
and build shared understandings, thereby improving the legitimacy of natural resource man-
agement strategies [23, 24]. It, thus, constitutes an important component of improving deci-
sion-making and social and environmental sustainability [25].

In addition, natural resource systems are composed of both social components (i.e.,
human-related factors like consumption, regulations and conservation) and ecological compo-
nents (i.e., nature-related factors like ecosystem health, resource abundance, productivity), as
well as their feedback interactions (e.g., the impact of consumptions or regulations on resource
dynamics or the impact of degraded ecosystem productivity on human well-being). These so-
called social-ecological interdependences commonly lead to complex system behaviors and
dynamics that are hard to predict [26, 27]. As a result, understanding and managing natural
resource systems typically entails the participation of cognitively diverse individuals who bring
a wider range of perspectives and heuristics to the table, and their diverse knowledge pool can
lead to a greater cognitive coverage and a boosted problem-solving capability [7, 8, 28, 29].

Here we explore whether congruence exist in groups with diverse environmental stakehold-
ers who self-identify themselves in different professional roles, each represents a certain type
of human-nature interactions. We hypothesized that these different social identities are associ-
ated with distinct cognitive spaces and knowledge (i.e. there exist a correlation between surface
and deep-level diversities in environmental stakeholders).

We build this hypothesis on prior theoretical and empirical evidence describing that differ-
ent social groups of resource stakeholders (e.g. fishermen, hunters, scientists, policymakers,
and managers) interact differently with natural and social dimensions of ecosystems at differ-
ent time and spatial scales. Such different social groups may also be subjected to diverging
beliefs and values [30], disparate experiences with the nature [28], differences in preferred
adaptation strategies and management policies [31], and are thought to build in their minds
diverse cognitive representations (i.e., mental models) of the system that reflect their specific
interests and interactions.

To empirically support our hypothesis, we use a fisheries example where multiple groups of
stakeholders interact differently with a natural ecosystem (i.e., a common-pool resource sys-
tem). Our case is the Western Baltic cod (Gadus morhua) in Germany. Western Baltic cod is of
crucial importance for regional ecosystems and constitute a vital component of coastal econo-
mies [32, 33] (a more detailed explanation of the case study is provided in S1 File). Cod is
known as one of the species in high demand and plays a key role in the Baltic Sea, environmen-
tally, socially and economically [34]. Here, we focus on stakeholder groups who are differently
affected by or involved in fisheries management and therefore represent varying interdepen-
dences with the natural ecosystem (S1 File).

We use a semi-quantitative cognitive mapping technique called Fuzzy Cognitive Mapping
(FCM) [35, 36] in conjunction with network analysis to develop a novel approach to measur-
ing cognitive distances within and between social groups of stakeholders (i.e. individuals with
diverse roles and resource use). Finally, analyzing the congruence of differences in stakehold-
ers’ identities and features of their cognitive maps can empirically demonstrate the potential
proximity of surface and deep-level diversities among environmental stakeholders.
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Methods
Data collection

Mental models and fuzzy cognitive maps. To measure variation in stakeholders’ percep-
tions and understanding of the complex social- ecological relationships (i.e. deep-level diver-
sity), we collected individual mental models about fisheries ecosystem dynamics and
management from fisheries stakeholders. Theoreticians have hypothesized that humans
develop in their mind simplified internal representations of the complex reality that allow
them to perceive the world around them [15]. Individuals who observe, interact with, and
experience the world around them can concurrently develop an internal model of the external
world to understand it and predict how it functions [37]. These so-called mental models repre-
sent patterns of perceived cause-and-effect relationships among various concepts that are built
through reasoning and thus shape the basis for problem-solving and decision-making [38].
Importantly, these mental models can be elicited through cognitive mapping techniques [39].
Cognitive maps are graphical representations of mental models in the form of directed net-
works where nodes represent concepts and edges show the causal relationships between them
(see S1 File for more details).

Here we used Fuzzy Cognitive Mapping (FCM) [35]—an enhanced form of cognitive maps
which mathematically and graphically model system components (nodes), their causal rela-
tionships (edges), and the strength of these relationships using a normalized quantitative
parameterization of causal magnitudes. In an FCM, edges are characterized by a normalized
number in the interval of [-1, +1], corresponding to the strength and sign of causal relation-
ships between nodes, thereby forming a weighted directed graph [40]. These weighted directed
graphs can be analyzed using network analysis through measures and algorithms related to
node connectivity, graph distances, their adjacency matrices similarity, and graph clustering
[41].

Cognitive map elicitation. Five relevant stakeholder types were identified in a stake-
holder analysis: Local fisheries (including commercial and recreational fishers) (33.3%), repre-
sentatives of tourism industry (12.1%), Non-governmental organizations (NGOs) (18.2%),
managers and policymakers (18.2%), and scientific experts (18.2%). Two key criteria were
applied to sample study participants (N = 33) using a purposeful sampling strategy: stakehold-
ers needed to be affiliated with a German institution either through their job or honorary posi-
tion, and have been active (involved or affected) in the cod fishery in the Western Baltic Sea
for more than 5 years (see the description of interviewed stakeholders in S1 File). The first cri-
terion is based on the intention of a national survey, whereas the second one was chosen as a
reference point to ensure that the interviewees have established themselves in their position
(job, volunteer) and are familiar with the subject of cod fishery in the Western Baltic Sea. Both
criteria led to the exclusion of some actors, including stakeholders from the fishing industry or
people who have only recently started working on this topic, for example, trainees.

We elicited stakeholders’ FCMs through semi-structured interview processes. This study
was conducted with approval of University of Hamburg, and informed consent was acquired
from all participants. All subjects gave their informed consent via email for inclusion before
they participated in the study. The study was hence conducted in accordance with the Declara-
tion of Helsinki. Individuals were asked to identify relevant concepts (i.e., system components)
and their causal relationships, from which they then drew a concept map representing their
mental models about Western Baltic cod ecosystem and fisheries management. This process
included routine FCM data collection practices with open-ended concepts [42]. Participants’
cognitive maps were qualitatively homogenized (i.e., using the same terminology for concepts
that have the same meaning across all individual maps; see refs.[43, 44] for more detail about
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qualitative homogenization and standardization process) and digitized after the interview (i.e.
maps were converted to digital weighted directed graphs and corresponding adjacency matri-
ces using www.mentalmodeler.org) and sent back to the interviewees for validation. We
described in details the cognitive map elicitation protocol elsewhere [45] and in S1 File.

Data analysis

Comparing graphs. Following the qualitative homogenization of FCMs and standardiza-
tion of terminologies used to describe their concepts, we conducted a subsequent level of
homogenization called quantitative homogenization: FCM adjacency matrices were brought
to the same size and thus included information about every unique concept that was men-
tioned in any of the contributing FCMs. By doing this, all adjacency matrices were adjusted to
have the same size in favor of matrix comparability—for each individual FCM, the absent
nodes not mentioned in the original map were added but left unconnected to other nodes.

To measure cognitive diversity in a group, we determine how dissimilar the cognitive maps
of the group members are by measuring the average of their pairwise distances. To quantify
the distance between cognitive maps, we perform network comparisons of FCMs. Each FCM
is a directed, weighted graph G(V,E), with V being the set of nodes (i.e. set of homogenized
concepts mentioned by all individuals) and E being the set of edges (i.e., causal connections).
We compute the distance between a pair of FCMs by taking into account two measures:

(a) The distance between the dichotomized adjacency matrices of their graphs:

The dichotomized adjacency matrix A? of a graph G is a n x n square matrix, where 7 is the
number of nodes, and the elements of the matrix [a;] indicate whether pairs of nodes i and j
are adjacent [a;] = 1 or not [a;] = 0 in the graph. Apart from weightings, in FCMs, the pres-
ence and absence of the connections is important information which is a binomial variable (0
or 1), representing the extent to which one individual includes or excludes the directed causal
relationship between two concepts when representing a complex system (independent of the
sign and the strength of the relationships). One common norm used as graph distance is the

Jaccard distance [46]. Given two graphs G;(V,E;) and G,(V>,E,) with dichotomized adjacency
matrices A? and A, the Jaccard coefficient ] is defined as J(A¢, AY) = Ajnag

T Adjpd
AIUA2

, and their Jaccard

distance is calculated as follows:

d;=1-J(A],A)) (1)

(b) The distance between the spectra of their graphs:

The spectrum of a graph G(V,E) is the set of eigenvalues of its normalized Laplacian [47,
48] and contains useful information about the principal properties and structure of a graph
which has important implications for graph comparisons [48-50]. In addition, the prior study
[25] demonstrated that the Euclidian distance between the spectra of two FCMs perfectly
matches the distance between dynamics of causal relationships as perceived by individuals (i.e.
simulation of what-if scenarios using a combination of fuzzy logic and artificial neural net-
works) [35, 51].

Let A,, be the undirected, weighted adjacency matrix such that the elements of A,, = [a;] =
[a;] indicate the edge weights between pairs of nodes i and j that are adjacent in the graph.
Then the (symmetric) normalized Laplacian is defined as LY = D2LD /%, where L = D—
A,,, while D is the degree matrix. Importantly, all eigenvalues of the normalized Laplacian are
real and non-negative [48], thereby offering a practical tool for measuring graph distances.
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Given two graphs G;(V,E;) and G,(V,,E,) we find a set of all eigenvalues for each normalized
Laplacian as their spectra. Similar to the approach outlined in [52, 53], we compute the Euclid-
ian distance between the graphs’ spectra d; as follows:

K

d, = Z (A — ;“21‘)2 (2)

i=1

where 4; is the i largest eigenvalue and (4, > 0 for V i). We find the smallest k such that the
sum of the k largest eigenvalues constitutes at least 90% of the sum of all of the eigenvalues. If
the values of k are different between the two graphs, we use the smaller one k*.

These two measures of graph distance are complementary as they take into account the
structural properties that are characterized by either edge directionality or edge weights. Thus,
to jointly acknowledge the weight and directionality of causal connections in FCMs, we define
the cognitive distance between two FCM:s as follows:

CD=——x¢ (3)

were ¢ is the standardization coefficient for mapping CD to a normalized range between [0,1].

All individual cognitive maps were converted into adjacency matrices and the cognitive dis-
tances between any pairs of maps were computed using Eq 3. For each identifiable social
group (e.g., fishers, managers, NGOs, tourism, and experts) we make two sets of cognitive dis-
tances: the intra-group set including the cognitive distances between any pairs of socially
homogeneous individuals who share the same social category (e.g., a pair of fishers), and the
inter-group set including the cognitive distances between any pairs of socially diverse individu-
als who do not share the same social category (e.g., a pair of one fisher and one manager).
Independent sample t-tests were used to compare the means of cognitive distances in intra-
group and inter-group sets. This helped us determine whether or not inter-group distances
were longer than intra-group distances—that is, the cognitive diversity amongst socially
diverse individuals was statistically significantly higher than the cognitive diversity in socially
homogeneous ones. Despite the fact that independent-samples t tests were shown to be reason-
ably robust to Type I and Type II errors when the normality assumption was violated [54], we
conduct an additional non-parametric test to determine the significance of differences. We use
the non-parametric Wilcoxon-Mann-Whitney (or U) test to compare differences between
intra-group and inter-group sets of cognitive distances with the assumption that they are inde-
pendent, but not normally distributed.

Monte-Carlo method. We then used the Monte-Carlo method (MCM), wherein the vir-
tual FCMs were randomly reproduced from the probability distributions of stakeholder-driven
cognitive maps. That is, virtual agents with a defined identity (e.g., fisher, manager, etc.) were
computationally generated, such that their cognitive maps were randomly drawn from the
probability distribution of FCMs elicited from actual individuals of that social type [8]. For
each group g with K individuals i = 1,.. .,k, the set of all unique edges mentioned by these indi-
viduals is {E}:

{E} = UL {E'} (4)

K
forVee {E}, m, = %ZXE (5)
i=1
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Where 7, is the frequency of edge e in group g, {E'} is the set of edges included in the FCM
of individual i, and X! = 1 ifeisin (E}}, (X! = 0, otherwise). Then, a random FCM is gener-
ated in two steps: First, a random set of edges is drawn such that the probability that the gener-
ated FCM includes edge e is determined by a Bernoulli distribution, Pr(X, = 1) ~ Bern(rm,); and
second, the weight of edge e in a random FCM w(e) is determined by a random normal distri-
bution:

w(e) ~ N(u,,0,) (6)

Where p, and o, are the mean and standard deviation of weights assigned to edge e by all
individuals in group g whose FCMs include e. Although, this process of random FCM genera-
tion uses edges-probability distribution (instead of nodes-probability distribution), which rep-
resents the likelihood that two-nodes co-occur, and at the same time, they are adjacent, it does
not take into account the probability that two edges with a shared source node co-occur in a
map. One possible solution to this limitation is to keep at least a memory order of one and
hence using a Markov-Chain Monte-Carlo (MCMC) of memory 1 in which the random
matrix is reproduced while representing a memory with respect to the number of first neigh-
bors that each node has. However, this requires a relatively large sample of observations (i.e.,
collected FCMs), which in many cases, is not achievable due to the fact that FCM interviews
are typically time and resource demanding.

Importantly, the MCM helps us regenerate virtual samples of stakeholders that artificially
represent various levels of identity diversity, thereby enabling us to carry out a probabilistic
examination of how identity diversity correlates with cognitive diversity. Using MCM we built
100 replicates of our FCM sample. Each reproduced sample has N = 33 individuals (to resem-
ble actual sample size) with a random combination of virtual agents from different social cate-
gories (i.e. individuals of different types). For each random replicate, 1000 bootstrap resamples
were used to estimate the 95% confidence interval.

To measure the identity diversity of each reproduced sample we used Shannon’s entropy
index (H) [55]. The Shannon’s entropy index takes into account both the richness (i.e., how
many unique identities exist in a sample) and the evenness (i.e., how even the proportions of
stakeholder identities are in a sample), and thus provides useful information about identity
diversity. Fig 1 displays four illustrative samples of size 10 with different richness and evenness.
We calculate identity diversity in each sample using the following equations:

n
H= _Zpi X Ln(pi)7 P = Nt (7)

eH

b= max (r)

(8)
where H is the Shannon’s entropy index, #; is the number of individuals of type i, N is the sam-
ple size, D is the identity diversity, and max(r) is the maximum possible richness (i.e. maxi-
mum possible number of unique types) in a sample, which is 5 in our case. D is a number
between [0,1] with values closer to one representing higher diversity. In addition, we define
cognitive diversity as the mean of pairwise cognitive distances (CD) (see Eq 3) between any
two individuals within the sample. Finally, the correlation between identity diversity and cog-
nitive diversity is calculated using Pearson correlation coefficient.

Last but not least, we drew on network theory and cognitive map analyses of perceived cau-
sation [56] to cluster FCMs using their network micro-motifs (i.e., micro-structures that are
constructed by two or three nodes and some unique patterns of connections between them,
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Fig 1. Illustrative samples of individuals with different levels of richness and evenness. Four hypothetical examples with low-to-high levels of richness and evenness are
shown in (A). The calculated identity diversity with regards to each sample’s richness, evenness, and their influence on the level of diversity is shown in (B). Samples’
diversity was calculated using an information theoretic measure built on Shannon’s entropy formula.

https://doi.org/10.1371/journal.pone.0244907.9001

which shape the underlying elements of perceived causation in a cognitive map). The fre-
quency distribution of these micro motifs in one cognitive map—also known as directed
graphlets of size two and three—can provide useful information about how one individual sees
the causal interdependencies and can be used as a tool for deep-level comparisons [51]. Theo-
retical and empirical studies have frequently suggested the use of seven simple micro-motifs
(Fig 2) to exemplify common patterns of perceived causation [56-62]. We combined Principle
Component Analysis (PCA) and K-mean clustering to develop an unsupervised learning algo-
rithm that clusters individuals based on their frequency distributions of these 7 micro-motifs
and no pre-defined labeling. We also clustered the individuals based on their pre-defined iden-
tities (i.e. social types labeling). Analyzing and visualizing the alignment between identity-
based clustering and micro-motif-based clustering helped us further examine the proximity of
surface and deep level diversities.

Results
Intra versus inter-group cognitive distances

We collected 33 FCMs through semi-structured interviews with stakeholders (see S1 File). Five
social groups (i.e. types) of stakeholders participated in our study. Fig 3 illustrates the compari-
son of intra-group versus inter-group pairwise cognitive distances (see Eq 3). Independent
sample t-tests were used to compare the means, and p-values demonstrate significance of their
difference. In all five socially distinguishable groups of stakeholders (Fig 3A-3E) the mean of
inter-group cognitive distances is longer than the mean of intra-group cognitive distances, and
in three groups (i.e., NGOs, tourism, and experts) these differences are statistically significant
at the level of p < 0.05. It is visible from the Fig 3F that, once all individuals are combined, the
cognitive diversity (measured by the mean of cognitive distance between any pairs of
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Fig 2. Seven micro-motifs and their corresponding network structure (Graphlet). These micro-motifs exemplifying common patterns of
perceived causation in cognitive maps.

https://doi.org/10.1371/journal.pone.0244907.9002

individuals) amongst socially diverse individuals (i.e. inter-group pairs) is statistically signifi-
cantly higher than the cognitive diversity in socially homogeneous ones (i.e., intra-group
pairs). Additionally, the results of nonparametric Wilcoxon-Mann-Whitney U test further
supported the findings that the mean of inter-group cognitive distances was statistically signifi-
cantly larger than the mean of intra-group distances (p = 0.04), even if the the normality
assumptions were violated.

Correlation of identity and cognitive diversity

Next, we examined the correlation of identity and cognitive diversity using the MCM. Fig 4
shows the result of 100 randomly generated samples of stochastic agents (i.e. artificial individ-
uals who own randomly-generated cognitive maps drawn from the probability distribution of
actual FCMs). These random samples represent different levels of identity diversity deter-
mined by Eq 8. Pearson correlation coefficient of 0.74 revealed a positive association between
samples’ identity diversity and the mean of pairwise cognitive distances among agents’ cogni-
tive maps. That is, samples high in identity diversity are 74% probable to show high cognitive
diversity (each sample was bootstrapped 1,000 times to estimate 95% confidence interval).

Proximity of surface and deep-level clusters

In addition, we compared the results of two clustering algorisms: one based on predefined
socially distinguishable labels (i.e. identity), and the other one based on an unsupervised
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dimension reduction technique (i.e., a PCA) that transforms cognitive maps from their
7-dimensional micro-motif space (see Fig 2) to a 2-dimensional principle component space,
where clusters are determined by k-nearest neighbors (based on their Euclidian distance). Fig
4A and 4B illustrate the results of these two clustering algorithms for a randomly reproduced
sample of size 1,000 (with 200 individuals for each of five social groups). It is visible from these
figures that individuals who are similarly clustered by their predefined social identities are
more likely to be in the same cognitive neighborhood that represents a prevailing cluster of
individuals who are closely matching in terms of how they perceive causal interdependences.
Fig 5C shows the probability of possible concurrencies formed by the categories of two cluster-
ing algorithms. Interestingly, for each cognitive cluster, there exists one and only one dominat-
ing social cluster (i.e. identity) whose concurrency probability is greater than 0.5, meaning that
the overwhelming majority of individuals within a cognitive cluster share the same social iden-
tity. These findings revealed that environmental stakeholders demonstrate distinguishable dif-
ferences in discrete aspects of their cognitive models (i.e., deep-level clusters) that are most
probably aligned with the way they could have been distinguished by their disparate social
identities (i.e., surface-level clusters). Consequently, these perfect alignments demonstrate the
strong likelihood of congruence of surface and deep level diversities in environmental
stakeholders.

Discussion

The importance of diversity, in general can be seen across systems, from ecosystems [63] to
economic systems [64], and also extends to norms regarding social inclusion and social equity
[65, 66]. In each case, diversity is considered to make systems more adaptable and resilient to
changes. Here we extend this general notion of the diversity bonus [4] and provide evidence of
the hypothesized correlation between identity diversity (surface) and cognitive diversity
(deep). Our data provide empirical evidence that the inclusion of diverse stakeholder groups
in natural resource problem-solving has implications for better understanding the complexity
of natural resource systems since different social groups interact within these systems some-
what similarly by group, but distinct across groups providing more opportunities for full cog-
nitive coverage [8]. While the literature on collaborative natural resource management has for
some time promoted the inclusion of diverse stakeholder groups and public participation for
improved decision-making [18], the diversity of knowledge systems that these different social
groups bring with them has been largely assumed, rather than empirically evaluated with some
exceptions [67].

Combining approaches from network science, graph theory, and cognitive mapping, we
explored the relationship between social identity and cognitive diversity in environmental
stakeholders who interact with a common pool resource system. For this, we collected stake-
holders’ cognitive maps using FCM—a weighted, directed graph that visualizes people’s men-
tal models that represents how each individual perceives causal interdependencies to explain
the complex real world they interact with. In this study we used a case of Western Baltic cod in
Germany and collected FCMs from five groups of stakeholders whose identities are socially
distinguishable (i.e., social categories that are identified by their distinct roles and types of
resource use which specify how they interact with the fisheries ecosystem and its resources).

Our data indicate that individuals whose identities (i.e., social categories) vary and demon-
strate variations at surface-level, also develop cognitive maps that are more likely to demon-
strate diverging network structural aspects as determined by their longer cognitive distances—
a quantitative measure to represent cognitive, deep-level variations base on cognitive map
characteristics. We developed a novel measure of cognitive distance which simultaneously
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takes into account dissimilarities in graph and spectral-graph metrics to provide useful insights
about how individuals’ cognitive maps (i.e., mental models) differ at the macro scale (metrics
that represent a graph as a whole). These methods for comparing FCMs prove to produce use-
ful information about how individuals represent different mental models and how they vary in
perceiving the dynamics of the system they represent (e.g. [8, 25]).

Despite the benefits of using spectral methods such as the eigenvalue similarity index we
used in the current study, we should warn the readers of some of the drawbacks associated
with the use of spectral methods in comparing graphs (e.g., dependence on the matrix repre-
sentation and abnormal sensitivity, such that small changes in the graph’s structure can pro-
duce large changes in the spectrum) [51]. Thus, before using this approach, we encourage
readers to evaluate the sensitivity of the spectra of their observed sample of FCMs to small
changes (e.g. through a repetitive process of random small alterations, such as random removal
or extension of nodes and edges). We, also encourage readers to replicate our study by using
other methods for comparing graphs and conclude which approaches most appropriately fit
their study.

Yet, it is also interesting to consider the variations of cognitive maps at the micro scale. To
that end, we examined the distribution of certain directed graphlets in cognitive maps (i.e.
micro-motifs) that represent common patterns of perceived causalities and are building blocks
of causal reasoning [56]. This micro-motif comparisons, too, showed the proximity of identity
and cognitive diversities (Fig 5). While conventional graphlet methods for network compari-
sons such as Relative Graphlet Frequency distance (RGF-distance) [68] or Graphlet Degree
Distribution agreement (GDD-agreement) [69] use all 2-5-node Graphlets, our approach only
takes into account those micro-motifs that represent common typology of perceived causation
and have important relevance to comparing cognitive maps (see Fig 2).

Trade-offs in measuring knowledge diversity

Currently, there are several methods that exist to elicit and compare knowledge diversity, each
with trade-offs. For example, “Cultural Consensus” theory [70] is a relatively straightforward
way to understanding within and across group differences, often measured through evaluating
individuals’ responses to a series of related questions where norms and shared beliefs can be
assessed through aggregate responses [71]. While these methods have been widely used, many
questions posed to individuals exist at a broad-level and often force participants to select
binary responses (true/false). Additionally, qualitative approaches, such as applying emergent
coding rubrics to concept maps or narratives are also common [72]. While these approaches
provide rich data, analyzing and coding qualitative concept maps take considerable time and
are resources that might not be available with larger datasets. Finally, FCM as a semi-quantita-
tive assessment, such as the approach we use here, has been popular in recent years. Gray et al.
(2014) point out, however, that there are considerable trade-offs in how these cognitive maps
are collected: are concepts/elements in the model pre-defined?, are these maps the result of an
interviewer leading the process of map development or are crowdsourced freely, or are they a
mix of data collection methods? Each decision a researcher makes in the data collection pro-
cess will influence the analytical options available to the researchers and should be considered
fully in the design of studies seeking to elicit, capture and integrate or compare individual
knowledge [42].

In the context of social-ecological systems, and in contrast to our findings, Stier et al. (2017)
found that experts can exhibit cognitively diverse views and perceptions about the structure of
a complex ecosystem (e.g., marine food web), independent of commonly identified “bins” of
expertise (e.g., local, scientific, traditional) [17]. That is, the identity and cognitive diversities
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may not necessarily co-occur. The authors of that study have contended that individuals’
demographics and background may not explain differences in perceptions of complex ecosys-
tem structure as evidenced by lack of variations in their cognitive maps.

We argue that such findings might be influenced by the methodological biases resulting
from highly standardized elicitation methods where cognitive maps are constructed using pre-
defined standardized concepts provided by researchers. In such cases, representation of indi-
viduals’ cognitive maps is significantly influenced by researchers’ presumptions or limitations;
consequently, true cognitive diversity is less likely to be fully captured. Therefore, we decided
to provide more flexibility and elicited cognitive maps while individuals were able to freely
brainstorm, represent concepts, and draw connections between them with no influence from
researchers and facilitators. This decentralized process allows individuals to freely represent
their internal perceptions and system knowledge, and therefore it increases the probability
that a wider spectrum of knowledge diversity (i.e., cognitive coverage) is sampled. In addition,
conventional methods to compare FCMs (e.g. methods described in [51]) which were used by
prior studies (e.g., [17]), take into account fewer structural metrics mainly obtained by com-
paring the value of network global statistics, such as the density, number of receiver/driver/
ordinary nodes, complexity index, hierarchy index, and the centrality of particular nodes.
Except for the centrality, these metrics do not consider the correspondence between nodes—
that is, two FCMs with different set of nodes, (i.e., different qualitative compositions) may be
considered very similar only because they have the same number of nodes or how these nodes
are connected to each other matches across two FCMs (i.e., apples and oranges considered
similar because they both have round shapes). These limitations may impact the results of pre-
vious studies. Here we addressed these limitations by introducing a novel approach to measur-
ing cognitive distances within and between groups of stakeholders.

Conclusion

In sum, our approach produces a more inclusive set of insights into understanding and mea-
suring within group and between group knowledge variations, which has three important
implications: First, measuring within group cognitive distances has implications for how we
understand similarities and knowledge homogeneity within "social groups", which enables
innovative approaches to measuring culture (shared ideas and knowledge) and group-specific
cognitive biases or alternatively, identifying different types of expertise (e.g. commercial fisher-
men may have more expertise about biological or market-related aspects of a fishery compared
to other groups). As our study supports, individuals form the same social group hold more
similar knowledge, and this might be attributed to their shared experiences, beliefs and values;
the routine set of human-environment interactions they adopt in their day-to-day life; and a
more frequent exposure to the same information sources and social network (e.g., shared
media and news outlets). They, therefore, build in their minds cognitively more homogenous
understanding of the complex ecosystem dynamics compared to the members of other social
groups. Our novel approach of measuring within group shared knowledge helps us to under-
stand how different social groups construct their specific cultural spaces about the environ-
ment which, in turn, lead stakeholders to behave/adapt in a certain way in response to
environmental and social changes.

Second, measuring across group cognitive distances has implications for understanding
how incorporating diverse knowledge and perceptions from across groups may ensure prob-
lem-adequate solutions, reaching knowledge saturation points, and the achievement of more
complete “cognitive coverage”. Knowledge held by stakeholders varies across social groups, yet
suggesting that different types of stakeholders hold complementary perceptions of complex
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social-ecological interdependencies. Our approach of measuring between group cognitive dis-
tances ensures that we bring in adequate knowledge diversity from across multiple stakeholder
groups to harness their collective intelligence. Nevertheless, we did not evaluate whether more
diverse groups improve group task performance.

Finally, our findings have applications for designing inclusive processes and adaptive co-
management practices [23]. Such approaches encourage the participation and involvement of
relevant stakeholders and may enhance the credibility and legitimization of management strat-
egies while resource users, managers, NGOs, policymakers, and scientists bridge their divides
and jointly agree on possible management actions for uncertain ecosystems [73]. Furthermore,
to achieve knowledge co-production, inclusive processes with buy-in from diverse individuals
should also guarantee an increase in the total pool of available knowledge and cognitive cover-
age. Our study assures that involving diverse groups of stakeholders into adaptive co-manage-
ment can also achieve knowledge co-production: the “Iterative and collaborative processes
involving diverse types of expertise, knowledge and actors to produce context-specific knowl-
edge and pathways towards a sustainable future” [24]. However, it worth noting that inclusion
of diverse stakeholder groups with diverging perspectives and knowledge, if not properly har-
nessed, may undermine the success of co-management and knowledge co-production pro-
cesses as conflicts may arise. Importantly, dialogue between different stakeholder groups needs
to be mediated and stakeholder engagement requires extensive facilitation, such that conflict-
ing representations of the system/problem does not reduce the effectiveness or the value of
diversity, but guarantees the creation of between-group synergies.
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