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Abstract: This work presents the results of research related to the determination of application
possibilities of new oligoetherols with 1,3-pyrimidine rings and boron atoms in rigid polyurethane
foam production. Oligoetherols were obtained from 1,3-bis(2-hydroxyethyl)uracil, boric acid, and
ethylene carbonate. Their structure was determined by instrumental methods (IR, 1H-NMR and
MALDI-ToF spectra) and the physicochemical and thermal properties were examined. Obtained
oligoetherols were used for synthesis of polyurethane foams. Some properties of the foams, such as
apparent density, water uptake, dimensions stability, thermal stability, compression strength, thermal
conductivity, oxygen index, and horizontal burning were investigated. The introduction of boron
atoms into the foam structure reduced their flammability, but unfortunately it had a negative effect
on the water absorption of the obtained materials—the water absorption was higher compared to
the boron-free foams. The obtained foams showed good thermal stability compared to classic, rigid
polyurethane foams.

Keywords: rigid polyurethane foams; flammability; thermal stability; 1,3-pyrimidine ring; 1,3-bis(2-
hydroxyethyl)uracil; boric acid; ethylene carbonate

1. Introduction

Polyurethanes are polymeric materials which, thanks to their physicochemical proper-
ties, have been widely used in all areas of technology and economy. Among polyurethane
plastics, foams are of great technological importance. They represent two thirds of the
world’s production of polyurethanes [1]. The growing ecological awareness, combined
with the size of polyurethane production, make it necessary to replace synthetic ingredients
with natural or recycled ingredients. For this reason, there is a trend in the production of
polyurethanes, including polyurethane foams, of using the polyols obtained from vegetable
oils or from recycled products, e.g., polyethylene terephthalate [2–10]. Such foams have
properties similar or better than the commercial foams available on the market. The foams
based on bio-polyol are characterized by low water absorption (up to 2% after 24 h), low
thermal conductivity (about 25 mW/(m × K)), and good compressive strength (up to
0.3 MPa) [2,8–10]. Good mechanical properties are demonstrated by the foams obtained
from polyols based on rapeseed oil and recycled polyethylene terephthalate [9].

Polyurethane foam plastics are currently the most widely used insulating material.
This is a result of their advantages, such as lower thermal conductivity coefficients than
polystyrene and, additionally, they are light, durable, and easy to install. The main disad-
vantages of foams plastics are low thermal resistance and relatively low decomposition
temperature. The thermal resistance of typical polyurethane foams usually does not exceed
120 ◦C [11], and the degradation of polyurethane foams is accompanied by the formation of
flammable substances, which creates a fire hazard. In the course of burning, polyurethanes
emit toxic gases, among others hydrogen cyanide, carbon monoxide and carbon dioxide,
and nitrogen oxides [12,13]. This is a danger to human life and health, and for this reason
methods to reduce the flammability of polyurethane foams and improve their thermal
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resistance are sought. Foams of improved thermal stability can be obtained by using
an oligo- or polyetherol component containing some heterocyclic rings (Scheme 1), e.g.,
1,3,5-triazine (I) [14,15], purine (II) [16,17], or 1,3-pyrimidine (III) [18–21].
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Foams containing these heterocyclic rings in their structure are resistant to long-term
heat exposure up to 200 ◦C, but unfortunately, they are flammable. This is a disadvantage,
especially for thermal insulation materials that are to be used at high temperatures. There-
fore, polyurethane foams are subjected to modifications increasing their fire resistance.
One of the methods of reducing the flammability of polyurethane plastics consists in intro-
ducing atoms into the foam structure that impede the burning, e.g., nitrogen, phosphorus,
silicon, or boron [22–24]. Currently, the use of halogen flame retardants is being abandoned
due to their negative impact on people and the environment [25].

Quite common reactive flame retardants for polyurethane foams are organic esters of
boric acid, which are polyol components in the synthesis of foams [26–29]. The use of oligo-
and polyetherols with boron atoms and heterocyclic rings, e.g., perhydro-1,3,5-triazine or
1,3,5-triazine rings, allows obtaining foams with improved thermal stability and reduced
flammability [30–33].

This paper proposes the syntheses of polyurethane foams with the use of oligoetherols
obtained in the reactions of 1,3-bis(2-hydroxyethyl)uracil (BHEU) with boric acid (BA) and
ethylene carbonate (EC). Two methods for the synthesis of oligoetherols are presented;
their structures were determined and selected properties were examined. Properties of
the foams obtained using the oligoetherols, such as thermal stability and flammability,
were tested.

2. Materials and Methods
2.1. Synthesis of 1,3-bis(2-hydroxyethyl)uracil

BHEU was obtained from uracil (99%, Alfa Aesar, Germany) and ethylene oxide (pure,
Honeywell-Fluka, Buchs, Switzerland) according to the patent [34].

2.2. Oligoetherols Synthesis
2.2.1. Two-Step Synthesis of Oligoetherol
Reaction of BHEU with BA

First, 10.01 g (0.05 mol) of BHEU and 6.2 g (0.1 mol) of BA (pure, POCH, Gliwice,
Poland) were placed in an open 100 cm3 three-necked flask, equipped with a mechanical
stirrer and a thermometer. The contents of the flask were heated at 90–95 ◦C to melt the
reactants, then 1 cm3 of distilled water was added to better homogenize the reactants. Then,
the stirrer was started and the open flask was heated at 120 ◦C for about 30–35 min, until
the appropriate weight loss associated with evaporation of the water formed in the reaction
was reached. The obtained product (2,4-dioxopyrimidine-1,3-diethyl bis(dihydroborate),
DOPDEDHB, elemental analysis: found: 32.93% C, 4.97% H, 9.55% N; calculated: 33.39%
C, 4.90% H, 9.74% N) was a creamy, glassy mass.
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Reactions of DOPDEDHB with EC

To a three-necked flask equipped with a mechanical stirrer, reflux condenser and
thermometer, containing 14.41 g (0.05 mol) of DOPDEDHB, 52.84 g (0.6 mol) or 70.45 g
(0.8 mol) of EC (pure, Honeywell-Fluka, Buchs, Switzerland) and 1 g of potassium carbonate
as catalyst were added. After the reactants were melted (90–95 ◦C), the stirrer was started
and the mixture was heated at 160 ◦C for 19 (0.6 mol EC) or 33 h (0.8 mol EC). The end of
the reaction was determined by analyzing the IR spectrum of the reactions mixture—the
disappearance of the band at 1800 cm−1 of valence vibrations of carbonyl group C=O of
unreacted EC was used as the indicator.

2.2.2. One-Pot Synthesis of Oligoetherol

To a three-necked flask equipped with a mechanical stirrer, reflux condenser and
thermometer 10.01 g (0.05 mol) of BHEU, 6.2 g (0.1 mol) or 9.3 g (0.15 mol) of BA and
52.84 g (0.6 mol) of EC were added. The contents of the flask were melted at 90–95 ◦C, then
the stirrer was started and the mixture was heated for 4 h at 120 ◦C. After this time, 1 g
potassium carbonate was added, the temperature was increased to 160 ◦C and the mixture
was heated for 38 (0.1 mol BA) or 28 (0.15 mol BA) hours. The end of the reaction was
determined by analyzing the IR spectrum of reactions mixture—the disappearance of the
band at 1800 cm−1 of valence vibrations of carbonyl group C=O of unreacted EC was used
as the indicator.

2.3. Foams Synthesis

A 10 g quantity of oligoetherol was introduced into a 500 cm3 polypropylene cup,
then 1.95% silicone L-6900 (pure, Momentive Performance Materials, Wilton, CT, USA) as a
surfactant, 2–3% distillate water, and 2.16–4.86% TEA (pure, Avantor Performance Materials
Poland S.A., Gliwice, Poland) as a catalyst were added. The mixture was vigorously
stirred and then polymeric 4,4′-diphenylmethane diisocyanate (pMDI, mixture of di- and
triisocyanates (30%) for synthesis; Merck-Schuchardt, Hohenbrunn, Germany) was added
(Table 1). The mixture was vigorously stirred until creaming started.

Table 1. The influence of composition on foaming process.

Oligoetherol—
Product of
Reaction

Composition
Number

Composition *
(g/100 g of Oligoetherol) Foaming Process

Characteristics of Freshly
Prepared Foams

pMDI TEA Water
Time of

Creaming
(s)

Time of
Expanding

(s)

Time of
Drying

(s)

BHEU:BA:EC
1:2:12

1 128 2.16 2 52 10 1 insufficiently grown, hard

2 149 2.70 3 46 17 1 small shrink, small regular
pores, rigid

BHEU:BA:EC
1:3:12

3 165 4.31 3 40 12 5 rigid after time
4 160 3.77 3 43 9 1 rigid

DOPDEDHB:EC
1:12

5 80 3.23 3 35 60 190 unrigid

6 120 4.86 3 25 43 1 small shrink, small regular
pores, rigid

7 140 3.85 3 32 20 1 small regular pores, rigid
DOPDEDHB:EC

1:16
8 120 4.31 3 79 23 1 rigid after time
9 140 3.50 3 27 11 1 small regular pores, rigid

* a constant amount of the surfactant (silicone) was used at 1.95/100 g oligoetherol.

2.4. Analytical Methods

The infrared spectra were registered on ALPHA FT-IR spectrometer, (Bruker, Ettlingen,
Germany) ATR technique. The 1H-NMR spectra were recorded with a 500 MHz Bruker
UltraShield spectrometer in d6-DMSO with hexamethyldisiloxane as internal standard.
Elemental analyses for C, H, and N of the product reaction of BHEU with BA were done
with Vario EL III, Elementar Analyzer (Elementar, Langenseldbold, Germany). MALDI-
ToF spectra (matrix-assisted laser desorption/ionization time of flight) were obtained on
a Bruker autoflex speed reflectron time-of-flight mass spectrometer (Bruker, Ettlingen,
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Germany), equipped with a SmartBeam II laser (Bruker, Ettlingen, Germany) (352 nm)
in 80–2000 m/z range. Mass calibration was performed using internal standards (gold
ions and clusters from Au+ to Au10

+ depending on m/z range). The sample solution
(ca. 5 mg/mL in H2O) was placed on AuNPET [35] (0.5 µL) with a 0.5 µL standard
α-cyano-4-hydroxycinnamic acid solution (1:1 water:acetonitrile with 0.2% TFA). The
oligoetherols were also analyzed by gas chromatography with a Hewlett–Packard 4890A
instrument (Agilent Technologies Deutschland GmbH, Waldbronn, Germany) equipped
with a flame ionization detector. From chromatograms, the amounts of side products
(glycols and polyglycols) formed in the reaction were determined. The gas chromatography
conditions were as follows: HP-FFAP capillary column of 30 m length, 0.53 mm diameter,
1.5 µm film thickness, port temperature: 220 ◦C, temperature profile: 50–220 ◦C, heating
rate 20 deg./min, the helium flow 18.3 cm3/min, and 0.2 µdm3 sample volume. The
calibration was performed with cyclohexanone (≥99%, S.A. POCH, Gliwice, Poland) as an
internal standard. A series of reference substances were used: ethylene glycol, diethylene
glycol, triethylene glycol, and tetraethylene glycol, (pure Aldrich, UK). The percentages
of glycols/polyglycols in products were determined based on calibration curves with the
same internal standard using Equation (1):

mg

mst
= a×

Sg

Sst
+ b (1)

where: mg, mst: glycol/polyglycol mass and mass of standard, respectively; Sg, Sst: in-
tegrated peak area of glycol/polyglycol and standard, respectively; a, b: experimental
coefficients of calibration curves.

The mass of side products (glycols and polyglycols) were calculated from Formula (1).
The amount of side products in mass percentage were calculated considering total sample
mass (ms) according to Equation (2):

%G =
mg

ms
× 100% (2)

Some other properties of the oligoetherols were evaluated, such as density (pycnomet-
rically), viscosity (Höpler viscometer, type BHZ, VEB Prüfgerate-Werk Medingen, Freital,
Germany), and surface tension, by the detaching ring method. The surface morphologies of
foams were photo-recorded with Malvern’s MORPHOLOGI G3 apparatus (Malvern Instru-
ments Ltd., Malvern, UK)with 123 (zoom 2.5) and 247 (zoom 5.0) enhancement lenses. The
thermal analysis of foams was conducted with a thermogravimetric analyzer TGA/DSC 1
(Mettler Toledo, Spain); the recording conditions were as follows: sample weight 2–4 mg,
temperature range 25–600 ◦C, recording time 60 min, and nitrogen atmosphere. Thermal
resistance of foams was determined also by static method. The foams were heated for a
month (during this time the foam mass stabilizes) at 150, 175, and 200 ◦C with continuous
measurement of mass loss. Mass loss of foam was calculated from Equation (3):

∆m =
m0 −mt

m0
× 100% (3)

where: m0, mt: mass of the sample before and after heated, respectively (g).
The apparent density of foams (the ratio of foam weight to its geometrical volume)

was determined for cube-shaped samples according to the norm [36]. Water absorption
was tested according to the norm [37] by immersing the samples in distilled water for
5 min, 3 h, and 24 h. Water absorption in vol % was calculated from Equation (4):

%WA =
m2 −m1

V0 × dW
× 100% (4)
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where: m1, m2: mass of the sample before and after immersion in distilled water, respec-
tively (g), V0: volume of the sample before immersion in distilled water (cm3), dW: density
of distilled water (dW = 1 g/cm3).

Linear dimension stability of foams was determined according to the norm [38] by
thermostating the samples at a temperature 150 ◦C for 20 and 40 h and measuring changes
in length (∆l), width (∆b), and thickness (∆δ) of samples (Equations (5)–(7)):

∆l =
l1 − l0

l0
× 100% (5)

∆b =
b1 − b0

b0
× 100% (6)

∆δ =
δ1 − δ0

δ0
× 100% (7)

where: l0, b0, δ0, l1, b1, δ1: dimensions of samples before and after thermostating, respec-
tively (mm).

Thermal conductivity of foams was determined by measuring the thermal conductivity
coefficient (λ) with IZOMET 2104 (Bratislava, Slovakia) according to the norm [39]. The
compressive strength was determined using the testing machine with an electronic head
FT 100 (Heckert, Chemnitz, Germany) according to the norm [40]. The maximum force
and relative strain (decreasing of the height of foam in relation to the initial height, in
accordance with the direction of foam rise) or maximum force inducing 10% relative strain
foams before and after exposition at 150 ◦C were determined. Horizontal burning test
was determined according to the norm [41]. The samples (150 mm × 50 mm × 13 mm)
were weighed and located on stainless steel net (200 mm × 80 mm). The line on every
sample at the distance of 25 mm from the edge was marked. The sample was set on fire
from the bottom using a Bunsen burner with the blue flame of 38 mm height for 60 s. Then
the burner was removed and time of free burning of foam by stopwatch was measured
from when the flame or glowing combustion front passed the 25 mm gauge mark. After
the test, the samples were weighed again. The rate of burning (v) was calculated from the
Equation (8):

v =
Le

tb
(8)

where: Le: the distance burnt (between the 25 mm gauge mark and the point where the
flame or glowing combustion front stopped, mm), tb: burning time (s).

The mass loss (∆m) after burning was calculated according to the Equation (9):

∆m =
m0 −m

m0
× 100% (9)

where: m0, m: mass of the sample before and after burning, respectively (g).
Oxygen index was measured with Concept Equipment apparatus (Concept Equip-

ment, Rustington, UK) according to the norm [42]. In the mixture of oxygen and nitrogen,
the percentage-limited concentration of oxygen, sufficient to sustain the burning of the
sample, was determined. Oxygen index (LOI) was calculated from Equation (10):

LOI =
[O2]

[O2]+[N2]
× 100% (10)

where: [O2], [N2]: volumetric flow of oxygen and nitrogen at the limit concentration,
respectively (m3/h).
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3. Results and Discussion
3.1. Oligoetherols Synthesis and Properties

Oligoetherols with 1,3-pyrimidinering were obtained in two ways. In the first method,
reaction of BHEU with BA was carried out (Scheme 2).

Polymers 2021, 13, x 6 of 21 
 

 

where: [O2], [N2]: volumetric flow of oxygen and nitrogen at the limit concentration, re-
spectively (m3/h). 

3. Results and Discussion 
3.1 Oligoetherols synthesis and properties 
Oligoetherols with 1,3-pyrimidinering were obtained in two ways. In the first 

method, reaction of BHEU with BA was carried out (Scheme 2). 

O
C

CH N
C

N
CH

O

OHCH2CH2

CH2CH2 OH
O
C

CH N
C

N
CH

O

OCH2CH2

CH2CH2 O B

B

OH

OH

OH

OH
(IV)

2 H3BO3

2 H2O−

 
Scheme 2. Reaction of 1 mol BHEU with 2 moles BA. 

The next obtained product (DOPDEDHB, IV) was treated with excess of EC in the 
presence of potassium carbonate (Scheme 3). 

n
CH2

CH2

O
C

O
O

O
C

CH N
C

N
CH

O

OCH2CH2

CH2CH2 O B

B

OH

OH

OH

OH

O
C

CH N
C

N
CH

O

OCH2CH2

CH2CH2 O B

B

O

O

CH2 CH2

CH2 CH2

O

O

H

H

O

O

CH2 CH2

CH2 CH2

O

O

H

H

x

y

)(

( )

v

z
(

( )

)

− n C O 2

 
Scheme 3. Reaction of DOPDEDHB with an excess of EC, where: n = x + y + z = 12 or 16. 

The syntheses were carried out at 160 °C, with a molar ratio of DOPDEDHB to EC 
equal to 1:12 and 1:16. The amount of EC was selected to obtain an oligoetherol with a 
high boron content and with a consistency that allows mixing it with the isocyanate (if a 
smaller amount of EC was added, oligoetherols of large density at room temperature 
were obtained). The course of the reaction and its end were determined by analyzing the 
IR spectrum of reactions mixture—the disappearance of the band at 1800 cm−1 of valence 
vibrations of carbonyl group C=O of unreacted EC was used as the indicator. Dark 
brown, thick, resin-like, soluble-in-water products were obtained. The structure of the 
obtained oligoetherols was determined by instrumental methods (IR, 1H-NMR and 
MALDI-ToF spectra). 

In the IR spectra of the products of the reaction of DOPDEDHB with excess EC 
(Figure 1) the following were present: a valence vibration band of hydroxyl groups at 
3427 cm−1; the asymmetric and symmetric valence vibration bands and the deformation 

Scheme 2. Reaction of 1 mol BHEU with 2 moles BA.

The next obtained product (DOPDEDHB, IV) was treated with excess of EC in the
presence of potassium carbonate (Scheme 3).

Polymers 2021, 13, x 6 of 21 
 

 

where: [O2], [N2]: volumetric flow of oxygen and nitrogen at the limit concentration, re-
spectively (m3/h). 

3. Results and Discussion 
3.1 Oligoetherols synthesis and properties 
Oligoetherols with 1,3-pyrimidinering were obtained in two ways. In the first 

method, reaction of BHEU with BA was carried out (Scheme 2). 

O
C

CH N
C

N
CH

O

OHCH2CH2

CH2CH2 OH
O
C

CH N
C

N
CH

O

OCH2CH2

CH2CH2 O B

B

OH

OH

OH

OH
(IV)

2 H3BO3

2 H2O−

 
Scheme 2. Reaction of 1 mol BHEU with 2 moles BA. 

The next obtained product (DOPDEDHB, IV) was treated with excess of EC in the 
presence of potassium carbonate (Scheme 3). 

n
CH2

CH2

O
C

O
O

O
C

CH N
C

N
CH

O

OCH2CH2

CH2CH2 O B

B

OH

OH

OH

OH

O
C

CH N
C

N
CH

O

OCH2CH2

CH2CH2 O B

B

O

O

CH2 CH2

CH2 CH2

O

O

H

H

O

O

CH2 CH2

CH2 CH2

O

O

H

H

x

y

)(

( )

v

z
(

( )

)

− n C O 2

 
Scheme 3. Reaction of DOPDEDHB with an excess of EC, where: n = x + y + z = 12 or 16. 

The syntheses were carried out at 160 °C, with a molar ratio of DOPDEDHB to EC 
equal to 1:12 and 1:16. The amount of EC was selected to obtain an oligoetherol with a 
high boron content and with a consistency that allows mixing it with the isocyanate (if a 
smaller amount of EC was added, oligoetherols of large density at room temperature 
were obtained). The course of the reaction and its end were determined by analyzing the 
IR spectrum of reactions mixture—the disappearance of the band at 1800 cm−1 of valence 
vibrations of carbonyl group C=O of unreacted EC was used as the indicator. Dark 
brown, thick, resin-like, soluble-in-water products were obtained. The structure of the 
obtained oligoetherols was determined by instrumental methods (IR, 1H-NMR and 
MALDI-ToF spectra). 

In the IR spectra of the products of the reaction of DOPDEDHB with excess EC 
(Figure 1) the following were present: a valence vibration band of hydroxyl groups at 
3427 cm−1; the asymmetric and symmetric valence vibration bands and the deformation 

Scheme 3. Reaction of DOPDEDHB with an excess of EC, where: n = x + y + z = 12 or 16.

The syntheses were carried out at 160 ◦C, with a molar ratio of DOPDEDHB to EC
equal to 1:12 and 1:16. The amount of EC was selected to obtain an oligoetherol with a
high boron content and with a consistency that allows mixing it with the isocyanate (if
a smaller amount of EC was added, oligoetherols of large density at room temperature
were obtained). The course of the reaction and its end were determined by analyzing
the IR spectrum of reactions mixture—the disappearance of the band at 1800 cm−1 of
valence vibrations of carbonyl group C=O of unreacted EC was used as the indicator.
Dark brown, thick, resin-like, soluble-in-water products were obtained. The structure of
the obtained oligoetherols was determined by instrumental methods (IR, 1H-NMR and
MALDI-ToF spectra).

In the IR spectra of the products of the reaction of DOPDEDHB with excess EC
(Figure 1) the following were present: a valence vibration band of hydroxyl groups at
3427 cm−1; the asymmetric and symmetric valence vibration bands and the deformation
vibration bands of methylene groups at 2931, 2870, and 1454 cm−1, respectively; valence
vibration bands of carbonyl groups and of unsaturated bond in the 1,3-pyrimidine ring at
1703 and 1656 cm−1, respectively; valence vibration bands of the B–O bond at 1411 and
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1326 cm−1; valence vibrations of ether groups (C–O–C) at 1118 cm−1; and C–O bonds in
primary alcohols at 1060 cm−1. The bands at 928, 766, and 549 cm−1 were attributed to
vibration of the 1,3-pyrimidine ring. In the IR spectra of oligoetherols, there was also a
band at 1746 cm−1, derived from the valence vibrations of the ester groups (–CH2–O–CO–
O). This indicates that the reaction took place to a small extent with preservation of the
carbonate group.
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Figure 1. IR spectrum of the product of reaction of 1 mol DOPDEDHB with 12 moles EC.

In the 1H-NMR spectra of the obtained oligoetherols (Figure 2), signals of methylene
protons in oxyethylene groups (–O–CH2–CH2–O–) and borate groups (–CH2–O–B) at
a chemical shift in the range of 3.4–3.7 ppm and the ester groups (–CH2–O–CO–O) at
4.18 ppm were observed. The intensity of these signals increased as the amount of EC
used in the reaction increased. The signals of protons connected with unsaturated carbon
atoms in the ring =C(5)–H and =C(6)–H were located at a chemical shift of 5.64 and
7.58 ppm, respectively. The splitting of the signal of the proton of carbon C(6) in the ring
was associated with various atomic surrounding of the proton. Signals of hydroxyl protons
appeared in the range of 3.7–5 ppm and overlapped with the signals of methylene protons,
connected with nitrogen atoms (>N–CH2–CH2–O–, 3.7–4 ppm), which was confirmed by
the spectra with D2O (Figure 2a,b). Since, after D2O addition, the signal at 4.75 ppm had
not disappeared completely, it can be concluded that unsaturated bonds were present in
the reactions products. Unsaturated bonds formed at the ends of chains as a result of H2O
elimination in the high-temperature process (160 ◦C). Their amount was not significant. In
the spectra a characteristic signal at 3.57 ppm was also visible, indicating the presence of
1,4-dioxane in the product. This compound was formed at high temperature from ethylene
glycol. Ethylene glycol was formed in the side reaction of EC with water contained in
the hydroborate.
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Therefore, a chromatographic analysis was performed to identify and evaluate the
content of by-products of ethylene glycol and the products of its consecutive reactions
with EC. An analysis of postreaction mixtures indicated presence of ethylene glycol and
tetraethylene glycol in amounts: 1.28% and 5.78% in the product of reaction of DOPDEDHB
with 12 moles EC, and 0.89% and 7.49% in product of reaction of DOPDEDHB with
16 moles EC, respectively. Analysis of the MALDI-ToF spectra of products of reactions of
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DOPDEDHB with EC indicated the formation of oligoetherols with different oxyethylene
chain lengths (Table 2). In spectra, the peaks of molecular ions differing by M/z = 44.05
(oxyethylene sub-units) could be observed. Since the analysis of the IR and 1H-NMR
spectra of the oligoetherols indicated presence of ester groups, structures containing a
carbonate groups were also proposed (the molar mass of oxyethylene and carbonate
groups is the same). The spectra showed that unsaturated structures formed. Many of the
unsaturated structures were generated in the conditions of registration of the MALDI-ToF
spectrum (high temperature favors the elimination of water from the hydroxyethyl groups).
Analysis of the 1H-NMR spectra with D2O showed that a very small amount of unsaturated
structures were present. The occurrence of molecular peaks with mass increased by the
unit M/z = 39, was related to the presence of potassium cations from the catalyst used
(potassium carbonate). The spectrum also confirmed the formation of 1,4-dioxane and
glycols (Table 2, No. 1–3).

Table 2. Interpretation of MALDI-ToF spectrum of the product of reaction of 1 mol DOPDEDHB with 12 moles EC.

No Signal Position (M/z) Probable Structure of Molecular Ion Calc. Molecular Weight (g/mol)

1 83.1 Ethylene glycol + K+ − H2O 83.0
2 89.1 1,4-dioxane + H+ 89.1
3 233.1 Tetraethylene glycol + K+ 233.1

4 397.3 DOPDEDHB + 2 OE − H2O + K+

DOPDEDHB + OE − H2O + CO2 + K+
397.1
397.1

5 415.1 DOPDEDHB + 2 OE + K+ 415.1

6 421.1 DOPDEDHB + 3 OE + H+

DOPDEDHB + 2 OE + CO2 + H+
421.1
421.1

7 459.2 DOPDEDHB + 3 OE + K+

DOPDEDHB + 2 OE + CO2+ K+
459.1
459.1

8 465.2 DOPDEDHB + 4 OE + H+

DOPDEDHB + 3 OE + CO2+ H+
465.2
465.2

9 503.2 DOPDEDHB + 4 OE + K+

DOPDEDHB + 3 OE + CO2+ K+
503.2
503.2

10 509.2 DOPDEDHB + 5 OE + H+

DOPDEDHB + 4 OE + CO2+ H+
509.2
509.2

11 534.3 DOPDEDHB + 6 OE − H2O
DOPDEDHB + 5 OE − H2O + CO2

534.2
534.2

12 553.3 DOPDEDHB + 6 OE + H+

DOPDEDHB + 5 OE + CO2+ H+
553.3
553.3

13 579. 4 DOPDEDHB + 7 OE − H2O + H+

DOPDEDHB + 6 OE − H2O + CO2+ H+
579.3
579.3

14 597.3 DOPDEDHB + 7 OE + H+

DOPDEDHB + 6 OE + CO2+ H+
597.3
597.3

15 641.2 DOPDEDHB + 8 OE + H+

DOPDEDHB + 7 OE + CO2+ H+
641.3
641.3

16 773.5 DOPDEDHB + 11 OE + H+

DOPDEDHB + 10 OE + CO2+ H+
773.4
773.4

where: DOPDEDHB is a fragmentation product of 2,4-dioxopyrimidine-1,3-diethyl bis(dihydroborate), OE is an oxyethylene group, CO2 is
a carbonate group, and the number preceding the symbol indicates the number of oxyethylene groups in a structure.

The second method of synthesis of oligoetherols relied on the direct reaction of BHEU
with BA and EC (Scheme 4).

The syntheses were carried out at an initial molar ratio BHEU, BA, and EC equal to
1:2:12 and 1:3:12. The mixture was heated at 120 ◦C for 4 h. This temperature allowed
the start of the esterification of BHEU with BA and the reaction of BA with EC [31]. After
this time, potassium carbonate (catalyst) was added and the temperature was increased to
160 ◦C. This temperature allowed the start of the reaction of EC with hydroxyethyl and
hydroborate groups. The end of the reaction, as before, was determined by analyzing the IR
spectrum of the reactions mixture. Dark brown, liquid, resin-like, soluble in water products
were obtained. The structure of the obtained oligoetherols was determined by instrumental
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methods (IR, 1H-NMR and MALDI-ToF spectra). The IR spectra of the reaction products
of BHEU with BA and EC (Figure 3) and the reaction products of DOPDEDHB with EC
(Figure 1) were similar. In the spectra of the reactions products of BHEU with BA and
EC (Figure 3), the presence of the band from the valence vibrations of the ester groups at
1746 cm−1 was not found only.

Polymers 2021, 13, x 10 of 21 
 

 

O
C

O O
CH2 CH2

12+

(

( )

)

B
O O

O

CH2 CH2 O

CH2 CH2 O

CH2CH2O H

H

H ( )

( )

( )
c d

e

++

++n H3BO3
12 CO2 1+a

1+b

O
C

CH N
C

N
CH

O

OHCH2CH2

CH2CH2 OH

O
C

CH N
C

N
CH

O

OCH2CH2

CH2CH2 O B

B

O

O

O

O

CH2 CH2 O H

CH2 CH2 O H

CH2 CH2 O H

CH2 CH2 O H

O
C

CH N
C

N
CH

O

OHCH2CH2

CH2CH2 OH

)(
f

( )
j g

( )
h

( )
k i

−

 
Scheme 3. Reaction of BHEU with BA and EC, where: n = 2 or 3, a + b + c + d + e + f + g + h + i = 12, j + k < 2 or 3. 

The syntheses were carried out at an initial molar ratio BHEU, BA, and EC equal to 
1:2:12 and 1:3:12. The mixture was heated at 120 °C for 4 h. This temperature allowed the 
start of the esterification of BHEU with BA and the reaction of BA with EC [31]. After this 
time, potassium carbonate (catalyst) was added and the temperature was increased to 
160 °C. This temperature allowed the start of the reaction of EC with hydroxyethyl and 
hydroborate groups. The end of the reaction, as before, was determined by analyzing the 
IR spectrum of the reactions mixture. Dark brown, liquid, resin-like, soluble in water 
products were obtained. The structure of the obtained oligoetherols was determined by 
instrumental methods (IR, 1H-NMR and MALDI-ToF spectra). The IR spectra of the re-
action products of BHEU with BA and EC (Figure 3) and the reaction products of 
DOPDEDHB with EC (Figure 1) were similar. In the spectra of the reactions products of 
BHEU with BA and EC (Figure 3), the presence of the band from the valence vibrations of 
the ester groups at 1746 cm−1 was not found only. 

Scheme 4. Reaction of BHEU with BA and EC, where: n = 2 or 3, a + b + c + d + e + f + g + h + i = 12, j + k < 2 or 3.

Polymers 2021, 13, x 11 of 21 
 

 

 
Figure 3. IR spectrum of the product of reaction of 1 mol BHEU with 2 moles BA and 12 moles EC. 

Also, the 1H-NMR spectra of the reaction products of BHEU with BA and EC (Fig-
ures 4 and 5) were similar to the spectra of the products obtained in the reaction of 
DOPDEDHB with EC (Figure 2a). In the spectra, however, signals of methylene protons 
in ester groups were not observed. The use of 3 moles of BA in the reaction resulted in the 
presence in the spectrum (Figure 5) of small signals of protons of hydroborate groups 
(7.12 ppm) and of unreacted BA (8.14 ppm). 

 

Figure 3. IR spectrum of the product of reaction of 1 mol BHEU with 2 moles BA and 12 moles EC.

Also, the 1H-NMR spectra of the reaction products of BHEU with BA and EC
(Figures 4 and 5) were similar to the spectra of the products obtained in the reaction of
DOPDEDHB with EC (Figure 2a). In the spectra, however, signals of methylene protons
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in ester groups were not observed. The use of 3 moles of BA in the reaction resulted
in the presence in the spectrum (Figure 5) of small signals of protons of hydroborate
groups (7.12 ppm) and of unreacted BA (8.14 ppm).
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Chromatographic analysis of postreaction mixtures indicated presence 3.03% of ethy-
lene glycol and 2.89% of tetraethylene glycol in product of reaction of BHEU with 2 moles
BA and 12 moles EC and 4.22% of triethylene glycol in product of reaction of BHEU with
3 moles BA and 12 moles EC. The MALDI-ToF spectra of oligoetherols (Table 3) confirmed
the occurrence of the reactions presented in Scheme 4. The peaks corresponding to the
products of reaction of BA with EC (Table 3, Nos. 3, 4, 6, 7, 9, 10, 12–15), BHEU with
EC (Table 3, Nos. 5, 8, 10,11, 13, 15–21), 1-(2-hydroxyethyl)-2,4-dioxopyrimidine-3-ethyl
dihydroborate/3-(2-hydroxyethyl)-2,4-dioxopyrimidine-1-ethyl dihydroborate (HEDOPE-
DHB), and DOPDEDHB with EC (Table 3, Nos. 11, 13, 15–21) were present. There were
also unsaturated structures in the spectra, with the mass reduced by the unit M/z = 18.

Table 3. Interpretation of MALDI-ToF spectrum of the product of reaction of 1 mol BHEU with 2 moles BA and 12 moles EC.

No Signal Position (M/z) Probable Structure of Molecular Ion Calc. Molecular Weight (g/mol)

1 83.1 Ethylene glycol + K+ − H2O 83.0
2 89.1 1,4-dioxane + H+ 89.1
3 145.0 BA + OE + K+ 145.0
4 189.1 BA + 2 OE + K+ 189.0
5 227.1 BHEU + OE − H2O + H+ 227.1

6 233.1 BA + 3 OE + K+

Tetraethylene glycol + K+
233.1
233.1

7 239.1 BA + 4 OE + H+ 239.1

8 245.1 HEDOPEDHB + H+

BHEU + OE + H+
245.1
245.1

9 277.1 BA + 3 OE − H2O + H+

BA + 4 OE + K+
277.1
277.1

10 283.2 BHEU + OE + K+

BA + 5 OE + H+
283.1
283.2

11 289.2
DOPDEDHB + H+

HEDOPEDHB + OE + H+

BHEU + 2 OE + H+

289.1
289.1
289.1

12 321.2 BA + 5 OE + K+ 321.1

13 327.2

DOPDEDHB + K+

HEDOPEDHB + OE + K+

BA + 6 OE + H+

BHEU + 2 OE + K+

327.1
327.1
327.2
327.2

14 365.1 BA + 6 OE + K+ 365.1

15 371.2

DOPDEDHB + OE + K+

HEDOPEDHB + 2 OE + K+

BA + 7 OE + H+

BHEU + 3 OE + K+

371.1
371.1
371.2
371.2

16 376.3 DOPDEDHB + 2 OE
BHEU + 4 OE

376.0
376.3

17 415.1
DOPDEDHB + 2 OE + K+

HEDOPEDHB + 3 OE + K+

BHEU + 4 OE + K+

415.1
415.1
415.1

18 421.2
DOPDEDHB + 3 OE + H+

HEDOPEDHB + 4 OE + H+

BHEU + 5 OE + H+

421.1
421.2
421.2

19 465.2
DOPDEDHB + 4 OE + H+

HEDOPEDHB + 5 OE + H+

BHEU + 6 OE + H+

465.2
465.2
465.2

20 553.2 DOPDEDHB + 6 OE + H+

BHEU + 8 OE + H+
553.3
553.3

21 773.5 DOPDEDHB + 11 OE + H+

BHEU + 13 OE + H+
773.4
773.4

where: BA, BHEU, HEDOPEDHB, and DOPDEDHB are fragmentation products of boric acid, 1,3-bis(2-hydroxyethyl)uracil,
1-(2-hydroxyethyl)-2,4-dioxopyrimidine-3-ethyl dihydroborate/3-(2-hydroxyethyl)-2,4-dioxopyrimidine-1-ethyl dihydroborate, 2,4-
dioxopyrimidine-1,3-diethyl bis(dihydroborate); OE is an oxyethylene group; and the number preceding the symbol indicates the
number of oxyethylene groups in a structure.
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The physical properties of oligoetherols were examined. Measured viscosity, density,
and surface tension values (Table 4) showed that these obtained compounds are suitable
substrates for obtaining polyurethane foams.

Table 4. The physical properties of oligoetherols.

Oligoetherol—Product of Reaction Viscosity (N × s/m2) × 103 Density (g/cm3) Surface Tension (N/m) × 103

DOPDEDHB:EC
1:12 79,500 1.25 51

DOPDEDHB:EC
1:16 192,600 1.24 52

BHEU:BA:EC
1:2:12 10,000 1.24 50

BHEU:BA:EC
1:3:12 7600 1.25 49

3.2. Polyurethane Foams Synthesis

In the next stage, the obtained oligoetherols as polyol components to prepare polyure-
thane foams were used. Foaming was carried out in a laboratory scale. The composition of
foaming samples was selected experimentally. As a catalyst, triethylamine was used, and
as a surfactant, silicone L-6900 was applied. It was found that foams with regular, small
pores are obtained using 3 wt% of water, 2.7–3.85 wt% of catalyst, 1.95 wt% of surfactant
and 140–160 g of isocyanate per 100 g of oligoetherol (Table 1). For this composition of the
reaction mixture, the creaming time was in the range of 27–46 s, the expanding time was
9–17 s, and the foams immediately dried (Table 1).

Based on digital images of foams (Figure 6) one can notice that foams obtained from
oligoetherols synthesized by the two-step method did not differ much from foams based
on oligoetherols obtained in the direct reaction of BHEU with BA and EC. Digital images
of compositions no. 2 and 9 (Figure 6) showed that the pore diameter was between 300 and
600 µm.

3.3. Properties of Foams

The physical properties—apparent density, water uptake, dimension stability, com-
pression strength, thermal conductivity coefficient, thermal resistance, and flammability—
of selected polyurethane foams were studied.

The apparent densities of the foams were in the range of 56–91 kg/m3 (Table 5), so
they were classified as rigid materials. Along with the increase in the content of boron
in foams, their apparent densities increased. The highest density (91 kg/m3) showed the
foam synthesized from oligoetherol obtained in the direct reaction of BHEU, BA, and EC
with the initial molar ratio of the reactants equal to 1:3:12. The obtained foams had a higher
apparent density than the foams based on oligoetherols synthetized from 6-aminouracil
(AU), EC, and propylene oxide (PO) (Table 5).

Water uptake of the obtained foams (Table 5) was significantly larger than one of the
foams without boron incorporated, prepared from oligoetherols synthesized in reactions
of AU with EC and PO [20]. Water absorption after 24 h of exposition was between
8.05–27.62 vol%, the lowest uptake (8.05 vol%) characterized the foam based on product of
reaction of 1 mole of DOPDEDHB with 16 moles EC (Table 5). Increased water absorption
of obtained foams was due to the presence of boron and the formation of a coordination
bond between the water oxygen atom and the boron atom.

Dimensional stability tests showed that shrinkage of the foams after 40 h exposure at
150 ◦C is small (Table 5). The largest shrink was observed for composition no. 2, and the
smallest for composition no. 4. The foams without boron atoms showed both positive and
negative dimensional changes (Table 5).
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Table 5. Density, absorption of water, and linear dimension stability of selected polyurethane foams.

Composition Number
(From Oligoetherol)

Density
(kg/m3)

Absorption of Water (vol%) Linear Dimensions Stability at Temperature 150 ◦C

Length Increase (%) Width Increase (%) Thickness Increase (%)
After 5 Mmin After 3 h After 24 h After 20 h After 40 h After 20 h After 40 h After 20 h After 40 h

2
(BHEU:BA:EC = 1:2:12) 66 4.37 9.61 27.62 3.19 4.65 3.00 3.70 2.94 4.84

4
(BHEU:BA:EC = 1:3:12) 91 4.44 11.22 18.21 0.70 0.95 0.28 0.56 −0.29 0.16

7
(DOPDEDHB:EC = 1:12) 72 3.76 7.76 18.40 2.47 3.40 1.51 2.15 4.21 5.24

9
(DOPDEDHB:EC = 1:16) 56 2.21 5.00 8.05 0.78 2.33 0.72 2.77 −1.96 1.19

AU:EC = 1:6 [19] 32 4.45 6.4 8.7 0.17 0.34 −0.61 −0.31 2.23 2.68
AU:EC:PO = 1:6:6 [20] 42 2.57 4.15 5.28 −0.29 2.03 2.36 4.72 −1.94 0
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Table 5. Density, absorption of water, and linear dimension stability of selected polyurethane foams. 

Composition Number 
(From Oligoetherol) 

Density 
(kg/m3) 

Absorption of Water (vol%) 
Linear Dimensions Stability at Temperature 150 °C 

Length In-
crease (%) 

Width Increase 
(%) 

Thickness 
Increase (%) 

After 5 
Mmin 

After 3 
h 

After 24 
h 

After 
20 h 

After 
40 h 

After 
20 h 

After 
40 h 

After 
20 h 

After 
40 h 

2 
(BHEU:BA:EC  

= 1:2:12) 
66 4.37 9.61 27.62 3.19 4.65 3.00 3.70 2.94 4.84 

4 
(BHEU:BA:EC  

= 1:3:12) 
91 4.44 11.22 18.21 0.70 0.95 0.28 0.56 −0.29 0.16 

7 
(DOPDEDHB:EC = 1:12) 

72 3.76 7.76 18.40 2.47 3.40 1.51 2.15 4.21 5.24 

Figure 6. Microscope image of the foams.
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The thermal resistance of foams was determined by registering the loss of mass of
compositions at 150 ◦C, 175 ◦C, and 200 ◦C (Table 6). The samples were exposed to thermal
treatment for one month, because the foams reach a constant mass during this time. After
4 h of heating at 200 ◦C, all compositions showed a significant loss of mass, very high
shrinkage, and deformation, therefore the tests at this temperature were not continued. All
samples showed distortion of their shape after 30 days of thermal treatment at temperature
175 ◦C (Figure 7), and after 30 day of thermal treatment at 150 ◦C only sample No. 4
showed distortion.

Table 6. Thermal resistance of selected polyurethane foams.

Composition Number
(From Oligoetherol)

The Mass Loss After 30 Days Heating at
Temperature (wt %) Thermal Analysis

150 ◦C 175 ◦C 200 ◦C T10% (◦C) T25% (◦C) T50% (◦C)

2
(BHEU:BA:EC = 1:2:12) 19 35 - 235 252 303

4
(BHEU:BA:EC = 1:3:12) 24 38 - 202 242 299

7
(DOPDEDHB:EC = 1:12) 16 34 - 228 269 322

9
(DOPDEDHB:EC = 1:16) 19 34 - 230 255 302

AU:EC = 1:6 [19] 7 23 33 260 320 550
AU:EC:PO = 1:6:6 [20] 13 29 41 235 280 330
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Figure 7. Composition 7 after exposition at temperature 175 ◦C.

The gradual loss of mass was observed, but the highest loss of mass of foams was
always observed after the first day of exposition. Stabilization of mass was reached after
23–25 days. The mass losses of foams after exposition at temperatures of 150 ◦C and 175 ◦C
for 30 days were 16–24 wt.% and 34–38 wt.%, respectively (Table 6). All foams after thermal
treatment became more rigid. Dynamic thermal analysis showed that 10% mass loss was
observed at temperature range 202–235 ◦C and 50% mass loss at 299–322 ◦C (Table 6). The
research indicates that polyurethane foams prepared from oligoetherols synthesized from
BHEU, BA, and EC are characterized by better thermal resistance than classic industrial
polyurethane foams and worse than foams based on oligoetherols from AU and EC or from
AU, EC, and PO (Table 6).

The thermal conductivity coefficients of the obtained materials fell in the range
0.0349–0.0368 W/(m × K) (Table 7). These were larger in comparison with typical rigid
polyurethane foams (0.019–0.026 W/(m×K)) [10], but still indicate good thermal insulation
properties of boron-modified foams.



Polymers 2021, 13, 1603 17 of 19

Table 7. Thermal conductivity and compression strength of selected polyurethane foams.

Composition Number
(From Oligoetherol)

Thermal Conductivity
Coefficient

Λ

[W/m×K]

Compression Strength

Before Exposition After Exposition at 150 ◦C

σM
(MPa)

εM
(%)

σ10
(MPa)

2
(BHEU:BA:EC = 1:2:12) 0.0357 0.33 7.08 0.58

4
(BHEU:BA:EC = 1:3:12) 0.0368 0.30 7.99 0.81

7
(DOPDEDHB:EC = 1:12) 0.0357 0.29 8.33 1.12

9
(DOPDEDHB:EC = 1:16) 0.0349 0.32 9.08 1.27

σM—compression strength, εM—strain, σ10—compression strength at 10% strain.

Mechanical properties were evaluated on the basis of compression strength measure-
ments (Table 7). Before the thermal treatment, compression strengths of the foams were in
the range of 0.29–0.33 MPa. It has been observed that one-month-long thermal treatment
at temperature 150 ◦C resulted in higher compression strengths (0.58–1.27 MPa). This is
presumably related to structural changes of polyurethane foams. During exposition at
the temperature of 150 ◦C, the process of additional cross-linking of the foams probably
occurred, and the material degradation had not taken place yet. The foam based on oli-
goetherol obtained from DOPDEDHB and 16 moles of EC was characterized by the highest
compressive strength (1.27 MPa) after exposition at 150 ◦C. The tested foams resisted
significantly higher forces than the foams based on obtained oligoetherol from AU and
6 moles EC (0.14 MPa) [19].

Flammability of the foams was determined by the methods of horizontal burning
test and oxygen index (Table 8). The horizontal burning test showed that all the foams
were self-extinguishing in the air. In the horizontal test, the flame reached merely in
the range 11–20 mm from the ignition start point, and the flaming rate was in the range
2.06–3.42 mm/s (Table 8). Mass losses during burning amounted to 3.81 wt% (composition
No. 4) up to 4.97 wt.%. (composition No. 9). The oxygen index of the obtained foams
had values in the range of 22.0–24.1 vol% (Table 8) The limit value of the oxygen index
(LOI) distinguishes three classes of flammability of materials: flammable—LOI < 21%, fire
retardant—LOI = 21–28%, and nonflammable—LOI > 28% [1]. Thus, the obtained foams
can be classified as class two. The foams with the highest boron content (composition
No. 4) presented the lowest flammability. The flammability tests indicated that the obtained
polyurethane foams with 1,3-pyrimidine ring and boron atoms are self-extinguishing and
flame-retardant [43].

Table 8. Horizontal burning tests and oxygen index of selected polyurethane foams.

Composition Number
(From Oligoetherol)

Horizontal Burning Tests
Oxygen Index (vol%)Linear Burning Rate

(mm/s)
Distance Burnt

(mm)
Mass Loss During
Burning (% mas.)

2
(BHEU:BA:EC = 1:2:12) 3.42 18 4.35 22.3

4
(BHEU:BA:EC = 1:3:12) 2.06 11 3.81 24.1

7
(DOPDEDHB:EC = 1:12) 2.05 13 3.84 22.1

9
(DOPDEDHB:EC = 1:16) 2.68 20 4.97 22.0



Polymers 2021, 13, 1603 18 of 19

Polyurethane foams obtained from oligoetherols synthesized from 1,3-bis(2-hydroxye-
thyl)uracil, boric acid, and ethylene carbonate characterized a reduced flammability and
improved thermal stability compared to classic, rigid polyurethane foams.

4. Conclusions

Oligoetherols obtained from 1,3-bis(2-hydroxyethyl)uracil, boric acid, and ethylene
carbonate are suitable for manufacturing of polyurethane foams with improved thermal
stability and reduced flammability. The obtained polyurethane foams have better thermal
resistance than the resistance of classic polyurethane foams and can be used at a temper-
ature range of 150–175 ◦C. Total mass losses of 10% were observed in the foams in the
temperature range of 202–235 ◦C. The water absorption rates of these foams were larger
than the water absorption of commercial foams and after 24 h of exposition they were
within the range 8.05–27.62 vol%. This fact is due to the presence of boron and the forma-
tion of a coordination bond between the water oxygen atom and the boron atom. The other
properties of foams, such as, apparent density, dimensions stability, thermal conductivity,
and compression strength were similar to the properties of the commercial polyurethane
foams. The apparent density rates of the foams were in the range of 56–91 kg/m3, the ther-
mal conductivity levels fell in the range 0.0349–0.0368 W/(m × K), compression strength
values were in the range of 0.29–0.33 MPa. The compression strengths of foams after
exposition at temperature 150 ◦C for 30 days increased to 0.58–1.27 MPa. The oxygen
indexes of the foams were in the range of 22.0–24.1 vol%, hence the obtained materials
were hardly flammable under normal atmospheric conditions, in contrast to foams based
on oligoetherols obtained from AU and EC or from AU, EC, and PO, without the addition
of boron.
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