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Abstract

Elovl5 elongates fatty acids with 18 carbon atoms and in cooperation with other

enzymes guarantees the normal levels of very long-chain fatty acids, which are

necessary for a proper membrane structure. Action potential conduction along

myelinated axons depends on structural integrity of myelin, which is maintained

by a correct amount of fatty acids and a proper interaction between fatty acids

and myelin proteins. We hypothesized that in Elovl5�/� mice, the lack of elonga-

tion of Elovl5 substrates might cause alterations of myelin structure. The analysis

of myelin ultrastructure showed an enlarged periodicity with reduced G-ratio

across all axonal diameters. We hypothesized that the structural alteration of

myelin might affect the conduction of action potentials. The sciatic nerve conduc-

tion velocity was significantly reduced without change in the amplitude of the

nerve compound potential, suggesting a myelin defect without a concomitant axo-

nal degeneration. Since Elovl5 is important in attaining normal amounts of polyun-

saturated fatty acids, which are the principal component of myelin, we performed

a lipidomic analysis of peripheral nerves of Elovl5-deficient mice. The results

revealed an unbalance, with reduction of fatty acids longer than 18 carbon atoms

relative to shorter ones. In addition, the ratio of saturated to unsaturated fatty

acids was strongly increased. These findings point out the essential role of Elovl5

in the peripheral nervous system in supporting the normal structure of myelin,

which is the key element for a proper conduction of electrical signals along mye-

linated nerves.
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1 | INTRODUCTION

Myelin sheaths wrapped around axons enable saltatory propagation

of action potentials, thereby increasing their velocity (Suminaite

et al., 2019). Myelin, constituted by multiple layers of lipid-rich mem-

branes, provides electrical insulation preventing leakage of current by

increasing the resistance between the axonal cytoplasm and the inter-

stitial fluid (Bakiri et al., 2011). This effect increases the space con-

stant, promoting faster transfer of action potentials from one node of

Ranvier to the next. At the same time, myelin reduces membrane

capacitance at the internode, thereby reducing the time constant, so

that electrical charging becomes faster, speeding up action potential

conduction. These properties are strictly dependent on the compact-

ness of myelin layers, which assures that internodes are almost

entirely formed by lipid membranes with minimal cytoplasmic content

(Simons, 2016).

Lipids are the main component of myelin, constituting about 80%

of its dry mass (O'Brien & Sampson, 1965; Quarles et al., 2005). In

myelin, the main lipid classes are phospholipids (glycerophosphatides),

sphingolipids and cholesterol (Norton & Poduslo, 1973; O'Brien &

Sampson, 1965). The structural integrity of myelin depends on the

interaction between lipids and membrane proteins (Bradl, 1999; Min

et al., 2009; Ohler et al., 2004). Even subtle alterations in lipid or pro-

tein composition can disrupt the normal myelin structure and function

(Maganti et al., 2019). Notably, mice lacking the lipogenic transcription

factor sterol regulatory element-binding factor-1c (Srebf1c) have

blunted peripheral nerve fatty acid synthesis that results in myelin

alterations leading to development of peripheral neuropathy

(Cermenati et al., 2015). The chains of fatty acids of phospholipids

and sphingolipids are a main determinant of their structural and physi-

cal properties, which are critical for myelin function. The length and

the number of unsaturated bonds are particularly important. Fatty

acids are synthesized in several tissues, including the brain, or are

introduced with the diet. Polyunsaturated fatty acids (PUFA) cannot

be synthesized by mammals, so that they must be provided by nutri-

tion. The essential PUFAs, from which the others can be derived, are

linoleic acid and alpha-linolenic acid, which have 18 carbon atoms.

Starting from such essential PUFAs, a number of very long-chain fatty

acid elongases (ELOVL) and desaturases can produce a variety of

downstream molecules with 20 carbon atoms or more, which possess

either structural or signaling functions (Guillou et al., 2010; Serhan

et al., 2014). Seven ELOVL enzymes are known, with ELOVL1,

ELOVL3, ELOVL6, and ELOVL7 preferring saturated or monounsatu-

rated fatty acids, while ELOVL2, ELOVL4, and ELOVL5 being more

selective for PUFAs. More specifically, the step of elongation from

18 to 20 carbon atoms mainly relies on ELOVL5, as liver microsomes

lacking this enzyme are almost unable to elongate PUFAs with 18 car-

bon atoms (Moon et al., 2009). Based on these premises, the role fatty

acid elongases and specifically that of ELOVL5 on alterations of mye-

lin lipid composition remains still unknown.

Mice with a targeted deletion of Elovl5 (Elovl5�/�) show neuro-

logic deficits (Hoxha et al., 2017), in line with an essential role of

downstream PUFAs in the nervous system. We hypothesized that the

lack of Elovl5, by causing a specific modification in the fatty acid

composition of phospholipids, might result in structural alterations of

myelin. The ultrastructural analysis of myelin in the peripheral nerve

of Elovl5�/� mice revealed an altered periodicity of myelin layers, in

agreement with a role of long chain fatty acids in determining the

optimal thickness of the lamellae. Such structural alteration is accom-

panied by a strong reduction of long-chain PUFA, while saturated

fatty acids are increased. The functional consequence of the structural

and molecular alterations consists of a decreased action potential

velocity.

2 | MATERIALS AND METHODS

2.1 | Animals

Elovl5 knockout mice (Elovl5�/�), of the C57BL/6 genetic background,

have been kindly provided by Dr. Moon and Dr. Horton of the UT

Southwestern Medical Center (Moon et al., 2009). Experimental ani-

mals and wild type controls were obtained by mating heterozygous

Elovl5+/� mice, with the expected Mendelian frequency of 1/4

Elovl5�/� and 1/4 Elovl5+/+. Heterozygos littermates were discarded.

Animals were kept on a natural diet without animal derivatives

(Teklad Global 18% Protein Rodent Diet, Harlan Laboratories) and

both female and male mice (12 months old) were used for all the

experimental paradigms. All experimental procedures have been

approved by the Ethical Committee of the University of Torino and

authorized by the Italian Ministry of Health (authorization number:

161/2016-PR).

2.2 | High resolution light microscopy and
transmission electron microscopy

High resolution light and transmission electron microscopy were car-

ried out as reported in (Mancini et al., 2019). Mice were anesthetized

by intraperitoneal injection with ketamine (100 mg/kg body weight)

and xylazine (10 mg/kg body weight). For each animal the sciatic

nerve was exposed, and a nerve segment was removed. Samples were

first fixed in 2.5% glutaraldehyde in 0.1 M phosphate buffer (pH 7.4)

for at least 4 h at 4�C and then were postfixed with 2% osmium

tetroxide for 2 h and dehydrated in ethanol from 30% to 100% (5 min

each passage). After two passages of 7 min in propylene oxide and 1 h

in a 1:1 mixture of propylene oxide and Glauerts' mixture of resins,

samples were embedded in Glauerts' mixture of resins (made of equal

parts of Araldite M and the Araldite Harter, HY 964, Sigma Aldrich). In

the resin mixture, 0.5% of the plasticizer dibutyl phthalate (Sigma

Aldrich) was added. For the final step, 2% of accelerator 964 was

added to the resin in order to promote the polymerization of the

embedding mixture, at 60�C. Transverse semithin sections (2.5 μm

thick) were obtained using an ultramicrotome (Ultracut UCT, Leica,

Wetzlar, Germany), and stained with 1% toluidine blue and 2% borate

in distilled water for high resolution light microscopic examination and
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design-based stereology. A DM4000B microscope equipped with a

DFC320 digital camera was used for section analysis. Quantification of

total number of myelinated nerve fibers was performed on toluidine blue-

stained semi-thin sections. At this purpose, the two-dimensional disector

method (Geuna et al., 2000) together with a systematic random sampling

scheme was applied: 12–16 sampling fields were randomly selected and,

in each field, the two-dimensional disector procedure was carried out.

The total cross-sectional area of the whole nerve was also measured and

used to calculate the total number of myelinated fibers (Geuna

et al., 2000; Mancini et al., 2019). The G-ratio (inner perimeter/outer

perimeter), the axon diameter (as frequency distribution), the myelin

sheath thickness and myelin periodicity were analyzed in ultrathin (70–

100 nm) sections using a transmission electron microscope (JEOL, JEM-

1010, Tokyo, Japan) equipped with a Mega-View-III digital camera and a

Soft-Imaging-System (SIS, Münster, Germany) for computerized acquisi-

tion of the images. The analysis was performed using ImageJ software

(https://imagej.net/Fiji, RRID: SCR_003070). The quantifications of

G-ratio, axon diameter and myelin sheath thickness were performed on

at least 125 axons/animal and on 3–5 mice per genotype.

2.3 | Immunohistochemistry and confocal
microscopy

Elovl5�/�(n = 3) and wild type (n = 3) littermates were anesthetized

with isoflurane (Isoflurane-Vet, Merial, Milan, Italy) and decapitated.

Sciatic nerves were then exposed, separated from the surrounding

muscular tissue and dissected. Samples were fixed in cold 4% parafor-

maldehyde for 30 min subsequently transferred in cold 0.1 M phos-

phate buffered saline (1x PBS) pH 7.2–7.4, and stored overnight at

4�C. The following day, nerves were embedded in optimal cutting

temperature compound (OCT), serially cut by a cryostat (Leica

CM1900, Leica Microsystem, Milan, Italy) in 50 μm-thick longitudinal

slices and stored at 4�C until usage. Floating slices were incubated

with blocking solution (0.5% Triton X100, 5% Normal Goat Serum

[NGS], in 1x PBS) for 1 h at room temperature.

Immunofluorescence labeling was performed incubating slices

with primary antibody mouse monoclonal anti-Caspr (1:500, kindly

gifted by Professor Elior Peles) diluted in a 0.1% triton X-100 solution

and 5% NGS one night at 4�C. The following day, sections were

washed three times in 1x PBS (15 min) and then incubated with goat

anti-mouse IgG1 secondary antibody Cy5 (1:300, kindly gifted by Pro-

fessor Elior Peles) and DAPI (1:1000, Fluka, Saint Louis, United States)

diluted in a 0.1% triton X-100 solution and 5% NGS, 45 min at room

temperature. Finally, slices were washed three times (15 min) in 1x

PBS, mounted and, when dry, glass coverslip was applied using

Mowiol (Calbiochem, 308 LaJolla, CA, United States).

The nodal gap and paranode length analysis were performed on

confocal images acquired using 63X oil objectives with a Leica TCS

SP5 (Leica Microsystems, Milan, Italy) confocal microscope. Images

(1024 � 1024 pixel, 0.50 μm thick optical sections) were analyzed

using ImageJ software (1.52 t version). At least three slices/animal

were analyzed.

2.4 | Caudal nerve conduction velocity

Mice were anesthetized via intraperitoneal injection with ketamine

(100 mg/kg body weight) and xylazine (10 mg/kg body weight). Stain-

less steel subdermal needle electrodes (Technomed, medical accesso-

ries) were used to deliver supramaximal stimulation with 0.05 ms

impulses using an isolated stimulator (A-M System 2100, Sequim, WA,

USA). Low frequency filters were set to 300 Hz and high frequency

filters were set to 10 kHz.

The nerve conduction velocity (NCV) in the tail nerve was

assessed by placing needle electrodes in the tail, with the positive

recording electrode at a few centimeters from the base of the tail. In

proximal to distal direction the distances from the first electrode

were: negative recording electrode 0.5 cm, ground 1.5, negative stim-

ulation electrode 4 cm, positive stimulation electrode 4.5 cm. The

latency of the potentials recorded after nerve stimulation was mea-

sured and the NCV was calculated accordingly. All neurophysiological

determinations were performed under standard conditions and exter-

nal body temperature was maintained at 34�C with a heating lamp.

2.5 | Protein analysis

Sciatic nerves from wild type (n = 8) and Elovl5�/� (n = 4) mice were

resuspended in 20% (w/v) RIPA buffer (25 mM Tris–HCl pH 7.4,

150 mM NaCl, 1 mM EGTA, 1 mM EDTA, 1 mM dithiothreitol, 0.5 mM

PMSF, 10 μg/ml Aprotinine, 10 μg/ml Leupeptine, 2 mM sodium

orthovanadate), and homogenized with a tissue lyser (Russo et al., 2018).

The lysates were centrifuged at 10,000 g for 20 min at 4�C and the

supernatant was collected and stored at �80�C until use. Twenty micro-

grams of proteins were separated by using a 4–12% Bis-Tris precast gel

(Life Technologies) and transferred onto nitrocellulose membrane (GE-

Healthcare). Membranes were than blocked with 50 g/L (5%) nonfat dry

milk (Bio-Rad) in 50 mM Tris–HCl pH 7.4, containing 200 mM NaCl and

0.5 mM Tween-20 and then incubated overnight at 4�C with primary

antibodies. The following primary antibodies were used: MBP (1:1000,

Covance, Cat# SMI-99P-500, RRID: AB_10120130), CNP-ase (1:500, Mil-

lipore, Cat# MAB326R, RRID: AB_94780), MPZ (1:3000, GeneTex Cat#

GTX134070, RRID: AB_2876362), β-Actin (1:16000, Abcam, Cat#

ab8226, RRID: AB_306371). HRP-conjugated goat anti-mouse (1:5000,

Bio-Rad, Cat# 170–6516, RRID: AB_11125547) and goat anti-rabbit

(1:5000, Bio-Rad, 170–6515, RRID: AB_11125142) immunoglobulins, in

Tris-buffered saline Tween containing 20 g/L non-fat dry milk, was used

for detection with Luminata Forte Western substrate (WBLUF0100, Mil-

lipore). Densitometric values were normalized to β-Actin. Images were

acquired by Chemidoc (Bio-Rad) and quantified by ImageLab software

(RRID: SCR_014210, Bio-Rad).

2.6 | Liquid chromatography–tandem mass
spectrometry analysis

The levels of total phospholipids were evaluated by means Liquid

Chromatography–tandem mass spectrometry (LC)-MS/MS according
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to published protocol (Cermenati et al., 2015) with some modifica-

tions described below. Briefly, internal standards (13C-all labeled lin-

oleic acid and 13C-all labeled palmitic acid) were added to samples

(10 mg for tissues), and lipid extraction was performed using 1 ml of

methanol (MeOH)/Acetonitrile (1/1; v/v). Phospholipids analysis:

methanolic extracts were analyzed by liquid chromatography tandem

mass spectrometry (LC–MS/MS) using XTerra Reverse Phase C18

column (3.5 μm 4.6 x 100 mm, Waters) and as isocratic mobile phase

MeOH with 0.1% formic acid with 274 multiples reaction monitoring

(MRM) transitions for positive ion mode in 5 min total run for each

sample. LC-ESI-MS/MS for negative ion mode was conducted with a

cyano-phase LUNA column (50 mm x 4.6 mm, 5 μm; Phenomenex)

and as isocratic mobile phase 5 mM ammonium acetate pH 7 in

MeOH with 50 MRM transitions in 5 min total run for each sample.

The identity of the different phospholipid families was confirmed

using pure standards, namely one for each family. An ESI source con-

nected with an API 4000 triple quadrupole instrument (AB Sciex,

USA) was used. MultiQuantTM software version was used for data

analysis and peak review of chromatograms. Changes between

detected phospholipid families were calculated as percent of single

phospholipid species normalized to total phospholipid analyzed. Data

points have been graphically displayed by the “ggplot2” package of

“R” programming language.

2.7 | Statistical analyses

The Shapiro–Wilk or Kolmogorov–Smirnov test was first applied to

test for a normal distribution of the data. When data were normally

distributed, two-tailed unpaired Student's t-test was used. Alterna-

tively, for data not normally distributed, Mann–Whitney U-test has

been used. Statistical tests were performed by means of SPSS soft-

ware (SPSS Inc., Chicago, IL, USA, RRID: SCR_002865). p-values <.05

were accepted as significant.

3 | RESULTS

3.1 | Structural alterations of sciatic nerve of
Elovl5�/� mice

Stereological analysis of sciatic nerve fibers showed no significant differ-

ence between wild type (n = 4 mice) and Elovl5�/� mice (n = 5) in the

total number of myelinated fibers (wild type: 3441 ± 213.1;

Elovl5�/�mice: 3104 ± 217.4; Unpaired Student's t-test t[7] = 1.09,

p > .05). Myelin ultrastructure analysis revealed that sciatic nerve fibers of

Elovl5�/� mice displayed a lower G-ratio compared to control littermates

(wild type: 0.76 ± 0.01; Elovl5�/� mice: 0.69 ± 0.02; Student's t-test

F IGURE 1 Structural alterations of sciatic nerve of Elovl5�/� mice. (a) Representative images of fibers in wild type and in Elov5�/� sciatic
nerves (scale Bar = 10 μm). (b) Ultra structural representation of myelin periodicity (scale Bar = 40 nm) and of the distance between consecutive
major dense lines (Elov5�/� n = 3 mice vs. wild type n = 3 mice). (c) bar graph representing the G-ratio (inner perimeter/outer perimeter) of
sciatic nerve myelinated fibers (Elov5�/� n = 4 mice vs. wild type n = 3 mice). (d) Graph representing the relative frequency of axonal diameters
(μm) (Elov5�/� n = 4 vs. wild type n = 3). (e) Bar graph representing myelin sheath thickness (mm) of sciatic nerve myelinated fibers (Elov5�/�

n = 5 vs wild type n = 4). (f) G-ratio quantification of fibers accounting for axon diameter (Elov5�/� n = 4 vs. wild type n = 3). Data are expressed
as mean ± SEM and p-values are determined by the appropriate statistical test. *p < .05; ***p < .001
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t[5] = 2.60, p < .05, Figure 1(a,c)). The G-ratio was smaller for fibers of any

caliber (Figure 1(d), p < .001, Mann–Whitney U-test). A smaller G-ratio

refers to a higher myelin thickness relative to axon diameter. The mean

axonal diameter exhibited no difference between genotypes (wild type:

1.74 ± 0.06 μm; Elovl5�/� mice: 1.71 ± 0.22 μm; Student's t-test

t[5] = 0.09, p > .05) and also their frequency distribution (Figure 1(e),

Mann–Whitney U-test, p = .20), while myelin thickness was significantly

larger in Elovl5�/�mice (wild type: 0.66 ± 0.08 μm; Elovl5�/� mice: 0.97

± 0.09 μm; Unpaired Student's t-test t[7] = 2.62, p < .05, Figure 1(f)). To

investigate the ultrastructural cause of the increased myelin thickness, the

period between myelin layers was analyzed. Elovl5�/� sciatic nerves

showed expanded myelin periodicity relative to wild type nerves (wild

type: 19.35 ± 0.66 nm; Elovl5�/� mice: 21.67 ± 0.26 nm; Student's t-test

t[4] = 3.21, p < .05, Figure 1(b)).

3.2 | Increased nodal gap and paranode length in
sciatic nerves of Elovl5�/� mice

We next addressed the possibility that the decompaction of myelin in

nerves of Elovl5�/� mice was associated with alterations of axonal domain

organization. By means of confocal microscopy performed on teased sci-

atic nerve fibers, we analyzed the node/paranode complexes (where the

nodal gap is the space flanked by two Caspr positive paranodes) in

Elovl5�/� mice and wild type littermates (Figure 2(a,b)). Interestingly, we

found that the distribution of measurements of the nodal gap length in

Elovl5�/� mice was significantly shifted to the right (Kolmogorov–Smirnov

test, D = 0.10, p < .001, Figure 2(c)) with a mean nodal gap length signifi-

cantly higher (wild type: 0.81 ± 0.01 μm; Elovl5�/� mice: 0.87 ± 0.02 μm;

Student's t-test t[4] = 3.43, p < .05, Figure 2(d)). The increase in the nodal

gap length was also accompanied by an increase of the average Caspr

domain length (Kolmogorov–Smirnov test, D = 0.10, p < .001, Figure 2(e))

with a tendency to higher values of the mean nodal gap (wild type: 1.86

± 0.02 μm; Elovl5�/� mice: 2.02 ± 0.05 μm; Student's t-test t[4] = 2.69,

p = .055, Figure 2(f)). The increase of the nodal gap and the mean para-

node length is reflected in a stretched structure of the complex node-

paranode in Elovl5�/� mice (Kolmogorov–Smirnov test, D = 0.14,

p < .001, Figure 2(g), wild type: 4.78 ± 0.03 μm; Elovl5�/� mice: 5.17

± 0.11 μm; Student's t-test t[4] = 3.43, p < .05, Figure 2(h)) which might

affect the action potential conduction along myelinated axons.

3.3 | Reduced action potential propagation in
peripheral axons of Elovl5�/� mice

To study the contribution of Elovl5-dependent fatty acids on myelin func-

tioning in the peripheral nervous system we performed action potential

recordings on the caudal nerve of Elovl5�/� (n = 5) and wild type mice

(n = 4, Figure 3(a)). Elovl5�/� mice showed a significant increase in

the latency of the action potential (AP) relative to their wild type lit-

termates (wild type: 1.03 ± 0.0001 ms, n = 4; Elovl5�/� mice: 1.17

± 0.00002 ms, n = 5; Unpaired Student's t-test t[7] = 5.41, p < .001,

Figure 3(b)) and a significant decrease of conduction velocity (wild

type: 33.40 ± 0.43 m/s; Elovl5�/� mice: 29.95 ± 0.52 m/s; Unpaired

Student's t-test t[7] = 5.83, p < .001, Figure 3(c)). Moreover, the AP

duration was significantly longer in Elovl5�/� mice (wild type: 1.3

± 0.06 ms; Elovl5�/� mice: 1.53 ± 0.06 ms; Unpaired Student's t-test

t[7] = 2.74, p < .05, Figure 3(d)). On the other hand, no difference

was observed for AP area (wild type: 86 ± 11.4 V*s; Elovl5�/� mice:

88.7 ± 10 V*s; Unpaired Student's t-test t[7] = 0.18, p > .05).

F IGURE 2 Increased length of the node/paranode complexes of
sciatic nerves of Elovl5�/� mice. Confocal images of a single teased
sciatic nerve from (a) wild type (n = 3) and (b) Elovl5�/� mice (n = 3)

showing paranodes labeled for Caspr (red). (c) Histogram distribution
of nodal gap length (p < .001, Kolmogorov–Smirnov test) and
(d) mean ± SEM of the node lengths for wild type (blue) and Elovl5�/�

mice (red) (Student's t-test, p < .05). (e) Histogram distribution of
paranodal length (p < .001, Kolmogorov–Smirnov test) and (f) mean
± SEM of paranodal length (Student's t-test, p < .05). (g) Histogram
distribution of node/paranode length (p < .001, Kolmogorov–Smirnov
test) and (h) mean ± SEM of node/paranode length (Student's t-test,
p < .05). *p < .05; ***p < .001
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3.4 | Myelin proteins in sciatic nerve of
Elovl5�/� mice

Myelin possesses a peculiar structure that differs from other mem-

branes for the high lipid to protein ratio. Proteins participate in several

mechanisms including stabilization of the structure of myelin sheaths

or signaling during myelination (Campagnoni & Skoff, 2006). To verify

whether the expanded myelin periodicity, in sciatic nerve of Elovl5�/�

mice, was accompanied by changes in protein expression we per-

formed western blot analysis. We found unchanged levels of, MPZ,

MBP, and CNPase proteins in Elovl5�/� compared to wild type sciatic

nerves (Student's t-test, p > .05, Figure 4(a,b)).

F IGURE 3 Reduced action potential propagation in peripheral axons of Elovl5�/� mice. (a) Representative traces of action potentials evoked
by stimulation of the tail nerve for wild type (black) and Elovl5�/� mice (light gray). (b–e) Bar graphs representing mean values of latency, nerve
conduction velocity, action potential duration and action potential area respectively (Elov5�/� n = 5 mice vs. wild type n = 4 mice). Data are
expressed as mean ± SEM and p-values are determined by unpaired Student's t-test. *p < .05; ***p < .001

F IGURE 4 Proteins of myelin. (a) Representative western blots of sciatic nerve extracts from wild type and Elov5�/� mice. (b) Densitometric

quantification shows comparable levels of MBP, MPZ, and CNPase proteins in the sciatic nerve extracts of Elov5�/� mice compared to their
control littermates (wild type n = 5; Elov5�/� n = 6). β Actin served as loading control

2424 HOXHA ET AL.



3.5 | Phospholipid profile of Elovl5�/� sciatic nerve

Based on the myelin defects described above and considering that Elovl5

is involved in fatty acid elongation, we next sought to determine the pro-

file of phospholipids. The sciatic nerves were extracted from wild type

and Elovl5�/� mice (n = 5–6 mice/genotype) and the lipidomic profile

was resolved. The composition in terms of phospholipid species detected

across the two experimental groups was comparable as well as the total

amount of phospholipids detected (Figure S1). However, we detected

46 different phospholipids that were significantly affected by the lack of

Elovl5 (Table S2). Specifically, 2 lysophosphatidylcholines (lyso PC), a pho-

sphatidylglycerol, a lysophosphatidic acid (LPA), 2 phosphatidic acids (PA),

2 phosphatidylinositols (PI), a phosphatidylserine (PS), a sphingomyelin

(SM), 2 ceramides (Cer), 3 sulfatides (Sul), 7 phosphatidylcholines (PCaa)

and 13 phosphatidylethanolamines (PEaa) carrying different fatty acids

bound to the glycerol moiety by two ester linkages at both sn-1 and sn-2

position (di-acyl form, therefore aa means acyl-acyl), 11 plasmalogens

(these molecules are phospholipids characterized by the presence of a

vinyl ether linkage at the sn-1 position and an ester linkage at the sn-2

position of the glycerol moiety; (alkyl-acyl form, therefore ae means alkyl-

acyl) (Table S2). The most common plasmalogens in mammals carry either

ethanolamine (plasmenylethalomines) or choline (plasmenylcholines) as

head group.

Among phospholipids with 2 acyl chains, we found that

Elovl5�/� peripheral nerves showed increased levels of those with

3 or <3 unsaturated bonds and with up to 36 carbon atoms

(Figure 5). The only exceptions are PEaa with lower saturation

(44:1 and 42:2), PEaa 44:12 and PEae 36:5. On the other hand, sig-

nificantly decreased phospholipids with 2 acyl chains had >36 car-

bon atoms and >3 unsaturated bonds. This result agrees with the

reduction of lysoPCs (which have a single acyl chain) with 20 car-

bon atoms and 3 or 4 unsaturated bonds. We detected mainly sat-

urated or monounsaturated sphingomyelins, ceramides and

sulfatides, with a few instances of increased expression Figure 5).

Together, these data demonstrate that despite a comparable

composition in terms of phospholipid families between wild type and

Elovl5�/� sciatic nerves, the lack of Elovl5 negatively impacts some

phospholipids that contribute to myelin compaction.

F IGURE 5 Altered phospholipid profile of Elovl5�/� sciatic nerve. Fold change of the main classes of phospholipids in Elov5�/� sciatic nerve
relative to wild type. The fold change is represented by the size of the circles (see scale legend on the right). The color (from gray to red)

represents the statistical significance level (1/p) with full red corresponding to p ≤ .001 (see color legend on the right). Note that the significant
increases concern phospholipids with 2 acyl chains with 3 or <3 unsaturated bonds and with up to 36 carbon atoms. The significantly decreased
phospholipids with 2 acyl chains have >3 unsaturated bonds and >36 carbon atoms. PCaa, phosphatidylcholines; PCae, plasmenylcholines; PEaa,
phosphatidylethanolamines; PEae, plasmenylethalomines; PS, phosphatidylserines; PG, phosphatidylglycerols; PI, phosphatidylinositols; PA,
phosphatidic acids; LPA, lysophosphatidic acids; lyso PC, lysophosphatidylcholines; lyso PE, lysophosphatidylethanolamines; SM, sphingomyelins
and sphingomyelins(OH) (the latter are plotted slightly upward shifted); Cer, ceramides; LacCer, lactosylceramides; GCer, glucosylceramides; Sul,
sulfatides
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4 | DISCUSSION

In the current study, we investigated the consequences of Elovl5 defi-

ciency in peripheral nerves. We exploited Elovl5�/� mice and show

that the lack of Elovl5 enzymatic activity in mice leads to biochemical

and structural changes in myelin, which have functional consequences

in the velocity of action potential conduction along axons.

Our lipidomic analysis, in line with the lack of Elovl5, revealed an

accumulation of phospholipids consisting of 16 or 18 carbons fatty

acids (Elovl5 substrates) with at most two or three unsaturations. On

the other hand, Elovl5�/� fibers showed a strong reduction of phos-

pholipids carrying the majority of fatty acids composed of at least

20 carbons with multiple unsaturations (Elovl5 products). More specif-

ically, the strong alteration of the plasmalogens observed in Elovl5�/�

mice is in line with the finding of a less compacted myelin. Indeed,

plasmalogens represent a substantial part of phospholipids and are

reported to protect myelin structure from oxidative stress, so that

changes in their quantity can influence myelin-packing properties

(Luoma et al., 2015).

Noteworthy, the most prominent effect of the lack of Elovl5 on

the lipidic profile is a reduced ratio between polyunsaturated versus

saturated and monounsaturated fatty acids. Interestingly, impaired

PUFA levels, in the liver, are shown to increase the activity of the ste-

rol regulatory element-binding protein (Srebp-1c) that pushes the

expression of different lipogenic genes implicated in the monounsatu-

rated and saturated fatty acid synthesis in Elovl5�/� mice (Moon

et al., 2009). However, our analysis in the sciatic nerve did not reveal

changes in the Srebp-1c and proteins involved in synthesis of phos-

pholipids (Figure S2). Actually, we found that Schwann cells them-

selves express Elovl5 indicating local PUFAs synthesis (Figure S3).

This finding raises the question of the role of intrinsic synthesis rela-

tive to the uptake of preformed lipids from the bloodstream.

From a functional point of view, saturated fatty acids lead to stronger

lipid-lipid interactions and make membranes more rigid and tightly

packed, while PUFAs fluidize membranes (Harayama & Riezman, 2018;

Sezgin et al., 2017; van Meer et al., 2008). Moreover, the lack of Elovl5

revealed an important accumulation of sphingolipids, which are structural

lipids highly enriched in nervous cells, and beyond their role in the archi-

tecture of membranes also participate in different cellular pathways

(Venkataraman & Futerman, 2000). A 30% increase of sphingomyelin and

galactosylceramide in lipid bilayer models is sufficient to cause an increase

of the membrane stiffness and reduced flexibility (Saeedimasine et al.,

2019). Sphingomyelin rich bilayers tend to form hydrogen bonding together

(Niemelä et al., 2004), while galactosylceramides tend to pack together via

sugar-sugar bonding and to make strong interactions with phospholipids,

thus causing thickening of the membrane (Saeedimasine et al., 2019).

Indeed, the accumulation of sphingolipids is the main feature of lipid stor-

age diseases (Sural-Fehr & Bongarzone, 2016; Zheng et al., 2006), which

are associated with aberrant myelination and peripheral neuropathy (Bagel

et al., 2013; Higashi et al., 1995; Ramakrishnan et al., 2007).

Even though there are several studies demonstrating that some spe-

cific lipids influence structural stability of myelin, there is insufficient

information on how changes of the whole lipid composition impact the

structure and function of myelin, mainly due to technical difficulties.

Advances in lipidomic investigation highlight the fact that a

deranged lipid homeostasis accompanied by myelin defects and axo-

nal conduction deficits are common features for different neurode-

generative diseases (Harel et al., 2018; Horibata et al., 2018; Karsai

et al., 2019; Kutkowska-Ka�zmierczak et al., 2018; Pujol-Lereis, 2019;

Vaz et al., 2019).

In line with alterations of phospholipid profile, in Elovl5�/� nerves,

myelin thickness was increased, and the layer periodicity was enlarged.

This corresponds to a deficit in myelin compactness, which is required to

provide better electrical insulation, reduction of membrane capacitance

and faster action potential conduction (Schmidt & Knösche, 2019). Inter-

estingly, an increase in myelin periodicity is reported in mice with defects

in fatty acid synthesis (Cermenati et al., 2015) and in mice with deficiency

of plasmalogens (da Silva et al., 2014).

The node/paranode structure is strongly dependent on the

lipid composition (Thaxton and Bhat, 2009). Accordingly, the nodal

gap and the paranode length are increased in Elovl5�/� nerves,

suggesting a role of Elovl5-dependent phospholipids in the mainte-

nance of integrity of nodes and paranodes. It is well reported that

the lack of sulfatides causes nodal and paranodal junction abnor-

malities in mice (Ishibashi et al., 2002; Marcus et al., 2006; Takano

et al., 2012).

Unsurprisingly, in Elovl5�/� mice, such deficits in myelin compact-

ness and length of nodes and paranodes were associated with a

slower conduction velocity of action potentials. Given the importance

of myelin thickness, node and paranode length in influencing the

velocity of action potentials (Schmidt & Knösche, 2019), it is not sur-

prising to find that the alteration of even one of these parameters will

cause deficits in the action potential conduction along axons

(Arancibia-C�arcamo et al., 2017; Li, 2015).

The high amount of lipids in myelin renders them important

players in determining structural integrity of myelin therefore

influencing the conduction of action potentials. In summary, our find-

ings strengthen the notion that the Elovl5 enzyme is necessary for a

correct maintenance of the homeostasis of fatty acids in peripheral

myelin, which is crucial to assure the correct biophysical properties of

the membrane.
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