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Abstract

A new workflow for protein-based tumor heterogeneity probing in tissues is here presented.

Tumor heterogeneity is believed to be key for therapy failure and differences in prognosis in

cancer patients. Comprehending tumor heterogeneity, especially at the protein level, is criti-

cal for tracking tumor evolution, and showing the presence of different phenotypical variants

and their location with respect to tissue architecture. Although a variety of techniques is

available for quantifying protein expression, the heterogeneity observed in the tissue is

rarely addressed. The proposed method is validated in breast cancer fresh-frozen tissues

derived from five patients. Protein expression is quantified on the tissue regions of interest

(ROI) with a resolution of up to 100 μm in diameter. High heterogeneity values across the

analyzed patients in proteins such as cytokeratin 7, β-actin and epidermal growth factor

receptor (EGFR) using a Shannon entropy analysis are observed. Additionally, ROIs are

clustered according to their expression levels, showing their location in the tissue section,

and highlighting that similar phenotypical variants are not always located in neighboring

regions. Interestingly, a patient with a phenotype related to increased aggressiveness of the

tumor presents a unique protein expression pattern. In summary, a workflow for the local-

ized extraction and protein analysis of regions of interest from frozen tissues, enabling the

evaluation of tumor heterogeneity at the protein level is presented.

Introduction

Intra-tumoral heterogeneity is a common occurrence in breast cancer [1], and has been linked

to increased aggressiveness [2, 3] and reduced survival [4]. Changes in the expression of estro-

gen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2

(HER2), oncoproteins, epithelial markers and immune system specific proteins highlight the

presence of different molecular subtypes within a single tumor [1, 5, 6]. Such heterogeneity

hampers an accurate prognosis by biasing the view of the tumor composition based on the

analyzed region. This is believed to cause differences in the outcome for breast cancer patients
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with seemingly similar disease states [7]. The standard way of evaluating protein expression in

diagnostics, immunohistochemistry, offers limited duplex possibilities. With a larger number

of markers becoming clinically relevant, technologies that allow multiplexing are gaining

importance. While immunohistochemistry and immunofluorescence analyses are still the

most commonly used techniques in cancer research, they are being displaced by new proteo-

mic methods, including imaging mass cytometry (IMC) [8], imaging mass spectrometry (IMS)

[9], or immuno-SABER [10]. Although these techniques offer higher multiplexing capabilities,

they require more specialized equipment and, in the case of IMC and IMS, are destructive to

the sample, prohibiting follow-up investigation. Alternatively, protein signatures can be

obtained using protein microarrays [11] or mass spectrometry [12], although at the cost of los-

ing the tissue structure. To address these challenges, several groups have focused on develop-

ing localized tissue extraction strategies, by applying hydrogels containing lysis solutions [13,

14], by cutting out the tissue using laser capture microdissection [12, 15], and by using micro-

fluidic devices [16–18].

The variations observed in protein expression are not bimodal (presence or absence of

expression), but often gradient-like [6], highlighting the complexity of the internal state of the

cells and their interactions with the microenvironment. Protein abundance at a single-cell

level is a continuous variable and establishing a threshold is thus helpful for defining a patho-

logically high (or low) expression. This strategy is currently employed in most diagnostic labo-

ratories, where semi-quantitative tests take place by visually delimiting the expression of

relevant markers by using immunohistochemistry. The reproducibility of this strategy has

been challenged [19], with new methods suggesting alternatives for reducing the uncertainty

of this type of protein quantification [20, 21]. In research settings, methods such as automated

quantitative analysis (AQUA) [22], which are adapted to analyzing fluorescence intensities in

a tissue section, offer a more objective metric and means for self-normalization [22]. Other

techniques, such as mass spectrometry and microarrays, provide a quantitative metric based

on the signal strength relative to other analytes, while an absolute quantification can be

obtained through calibration curves [23, 24]. Therefore, having a defined protein quantifica-

tion strategy is key towards understanding the degree of heterogeneity in a sample. The most

commonly employed scores to quantify heterogeneity are the Shannon and Simpson entropy,

two biodiversity indices borrowed from ecology that take into consideration both the number

of different species and their relative abundance [25–27], but ignore spatial tissue architecture.

However, local applications of these metrics can provide insight into spatial tumor heterogene-

ity, for example by first dividing a tissue into smaller tiles, each with an individual AQUA

value, and then assigning a global heterogeneity score to the whole tissue [25]. This method is,

however, limited in the number of multiplexed proteins that can be simultaneously achieved

due to spectral overlap. Other heterogeneity techniques do take into account the spatial distri-

bution. The H-index, which consists of quantifying the intensity and the proportion of cells

expressing this intensity, was developed to evaluate the heterogeneity of HER2 samples [28],

albeit using immunohistochemistry. Pointwise mutual information has also been used to

study the number and type of cells located in each other’s vicinity [29]. Nevertheless, there is

still no consensus regarding the use of a single method or metric, which hinders the compari-

son of samples across existing studies.

In this work, we propose a new workflow (Fig 1) to extract proteins from selected regions

in frozen tissue samples, analyze the protein content present using antibody microarrays and

explore the spatial distribution of phenotypical variants. The extraction of local regions is per-

formed using a microfluidic probe (MFP), a microfluidic device designed to precisely localize

chemicals on a few cells [30]. The MFP allows the extraction of small tissue regions of interest,

i.e. lysates, and has been previously used to obtain the genetic and transcriptomic footprint of
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areas of interest in FFPE section [31–33]. We adapted the chemistry of the extraction to lyse

frozen tissues and to generate a lysate compatible with a proteomic downstream analysis. The

lysate is analyzed using an antibody microarray containing a panel of 13 proteins and the

expression of each region is quantified through the intensity of the microarray signal. The final

step of this workflow addresses the analysis of spatial heterogeneity for each protein and a clus-

tering of phenotypical variants to unveil spatial heterogeneity both within a patient and across

patients in the analyzed population.

Results

Workflow for spatial heterogeneity analysis

We created a workflow for spatial extraction of protein and the quantification of heterogeneity

at different levels: protein, patient and population. A graphical representation of the workflow

is shown in Fig 1. Briefly, regions of interest (ROIs) chosen through a hematoxylin and eosin

map from a consecutive tissue section are extracted using an MFP (S1 and S2 Figs). The MFP

generates footprints, i.e., extracted ROI areas, with diameters of 100 to 300 μm, each one cov-

ering 50 to 100 cells. The size of the footprint can be adapted using different flow rates, while

some fluctuations in the size are expected due to local differences in viscosity of the immersion

buffer used to avoid tissue drying. Tissue lysis of most of the footprints was achieved within

short times (about 20 s), although a longer time was established in this protocol to ensure com-

plete extraction of epithelial cells. Maintaining a constant distance of 20–30 μm between the

MFP and the sample is critical to ensure a high extraction success rate, which in our case varied

from 80 to 100% among tissues. Once the ROI material is in the lysate (�20 μL), the protein

has to be extracted, purified and biotinylated to undergo protein microarray analysis. To quan-

tify protein abundance, we use the intensity of the corresponding protein spot in the microar-

ray, which we normalize by the area of the footprint to compensate for footprint size

Fig 1. Scheme of the workflow for protein heterogeneity analysis. Using a microfluidic probe, proteins are spatially lysed from a frozen tissue section.

The protein is extracted from the lysate, biotinylated and the presence and expression of proteins is analyzed through an antibody microarray.

Expression is quantified and the heterogeneity of each protein is evaluated. Finally, inter- and intra- patient heterogeneity is examined.

https://doi.org/10.1371/journal.pone.0259332.g001
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fluctuations. We performed the downstream heterogeneity analysis based on these values, as

presented in the following section.

Quantification of protein expression and heterogeneity on spatially

distributed regions of interest

As a first step of the analytical pipeline, we quantified the degree of protein expression as well

as the heterogeneity of expression of each protein across the tissue sections. For signal quantifi-

cation, we define the metric as intensity normalized by unit area (Fig 2a & 2b and S3 Fig), not

taking into account the cell count per ROI to avoid bias [34]. The heterogeneity of each protein

at a patient level is estimated by using Shannon entropy (Materials and Methods, Fig 2d). In

this section, we will briefly outline the results of protein expression and heterogeneity for the

housekeeping gene β-actin, steroid receptors, several cytokeratins (CKs), EGFR, E-cadherin

and Ki67.

β-actin is a highly conserved protein involved in cell structure, and is often used for normal-

ization, since it is coded by a housekeeping gene. Here, we see variations of β-actin not only

across patients but also within the same patient, with patient 1 showing the highest dynamic

range of expression. Such results conform with previous reports across different cell lines [35]

and within the same patient tissue [33] on the gene and transcript levels, respectively. Interest-

ingly, in our analysis β-actin is one of the proteins that presents the highest heterogeneity

score, making it a dubious candidate for protein normalization.

Steroid receptors are a family of nuclear receptors, including PR, ER and androgen recep-

tors (AR). PR and ER are known to exhibit heterogeneous expressions. This potential hetero-

geneity is already incorporated in the commonly used score for quantifying ER and PR, the

Allred score, which analyzes not only the intensity but also the percentage of stained cells in

the tumor. ER and PR positive tumors (Allred score 3–8) are typically less aggressive [36, 37],

Fig 2. Protein quantification and heterogeneity evaluation. a) The z-score of the intensity for ER is shown for five patients (P1-5). b) Violin plot

representing the distribution of the intensities of the proteins across their dynamic range. c) Immunohistochemistry of ER in patient 2. The intensity

value (I) corresponds to the footprint located in that same area in a consecutive slide. d) Heterogeneity analysis of all proteins analyzed using the

Shannon entropy index. Proteins and patients are sorted by increasing median heterogeneity.

https://doi.org/10.1371/journal.pone.0259332.g002
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albeit high heterogeneity in ER has been linked to reduced survival in the long term [38], since

the presence of ER negative regions could correspond to cells that potentially survive hor-

monal treatment. All analyzed patients in this work presented a low intensity of PR for the

selected ROIs, with patients 1 and 4 showing one single ROI with ‘positive’ signal. In the case

of ER, the overall heterogeneity was low, with all patients presenting a similar dynamic range

of expression. The extent of the variations observed using our method was comparable to

those in immunohistochemistry (Fig 2c and S3 Fig). The third analyzed steroid receptor, AR,

tends to be expressed in the same tissues as ER [36], showing anti-proliferative effects in ER

+ tumors [39]. Here, AR presented higher heterogeneity in patients 1 and 3. A correlation

between AR and ER expression was also observed (S4 Fig).

CKs are proteins composing the cytoskeletal intermediate filaments of epithelial cells.

While there is a large number of CKs present in cells, we selected CK19, CK17, CK14, CK8,

CK7 and CK5 due to their involvement in breast cancer. CK19 presented the highest dynamic

range for the examined patients. CK19 is a luminal epithelium cytokeratin, often present in

healthy breast tissue and expressed in ~90% of breast cancers. Its absence has been linked to

increased aggressiveness in breast cancer [40], as it might have a role in attenuating cancer

hallmarks such as migration or proliferation [41]. In this study, all patients were positive for

CK19, albeit with different degrees, with the exception of patient 2, who had both a low expres-

sion and low heterogeneity of CK19. Basal cytokeratins CK17 and CK5 are known indicators

for poor prognosis [42], quick disease progression and lower overall survival [43, 44]. Our

results indicate low heterogeneity for CK17, while CK5 was among the proteins with the high-

est degree of heterogeneity, especially for patients 3 and 4. The last examined basal cytokeratin,

CK14, is commonly present in the basal layer of healthy tissue [44, 45], as shown in the CK14

negative inset of S3 Fig. CK14 has been associated with increased survival rates when no

metastasis is present, although in patients with metastatic cancer the opposite trend is observed

[46]. In our analysis, we see a high dynamic range in patients 1, 3 and 4. The expression in

patient 1 is heterogeneous, as confirmed by immunohistochemistry, where focal staining is

observed (Fig 2c). CK8 is a luminal cytokeratin linked to a resistance to chemotherapy and

related to the resistance to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)

induced apoptosis, product of its interaction with the death receptor 5 [47]. Here, CK8 is het-

erogeneously expressed, especially for patients 2, 3 and 4. The role of CK7 in breast cancer has

been less investigated, although the pattern CK7/CK20 seems to be widely expressed in triple

negative cancers, with CK7 staining often being heterogeneous [48]. In this study we also

observed high heterogeneity in CK7, it being the overall most heterogeneous protein observed

in the analyzed sample, with large variations of expression in patients 1, 3 and 4.

EGFR, a transmembrane protein, often serves as a marker associated with larger tumor

sizes, poor differentiation and poor prognosis in breast cancer [49]. In our cohort, patient 1

exhibits the largest dynamic range of expression of this protein, with a high heterogeneity in

patients 1 and 3. Contrary to EGFR, an abnormal expression of E-cadherin implies a reduction

in its intensity, as its complete or partial loss correlates with tumor invasion and metastasis

[49]. Nonetheless, the metastatic site tends to show normal E-cadherin expression levels, inde-

pendently of its expression in the primary tumor [50]. In our cohort this could be the case for

patient 2, who presented the lowest expression uniformly across the tissue. However, from the

pathology report we know that it did not migrate to the lymph nodes at the time of analysis.

The last protein analyzed, Ki67, is a nuclear protein involved in cell proliferation and used

to establish patient prognosis. Ki67 expression is often heterogeneous, with tumors that show

over 20% of expression being correlated with worse prognosis [51]. We found low expression

of Ki67 in all patients except for one ROI in patient 1. Such a pattern is not surprising, given

the discretization of the ROI extraction in this study.
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Overall, patient 1 presented the highest global heterogeneity (Fig 2d), while patient 2 was

the most homogeneous. On the protein level, we observed that CK7, β-actin and EGFR showed

the highest heterogeneous expression patterns across all the patients, while Ki67 and PR show-

ing the lowest, due to the overall low expression in the analyzed tissue sections.

Spatial dispersion of phenotypical variants across patients

Several breast cancer molecular ecosystems can co-exist within the same patient [6]. We have

thus decided to explore the molecular ecosystems that exist within a single patient. Using hier-

archical clustering on the intensity levels of all proteins (β-actin was not included in the analy-

sis), we found that each patient had 2 to 3 distinct clusters with common phenotypical

expression (in brief, phenotypical clusters), with the rest of the footprints forming their own

singleton variant (Fig 3a). While the clusters of patients 1, 3 and 4 included higher levels of

expression for several proteins, patients 2 and 5 were mostly characterized by low protein

expression. This is also the case for one of the clusters in patient 4 (purple cluster).

Since our workflow allows us to preserve the spatial distribution of the tissue and each phe-

notypical cluster could now be spatially located, we further assessed whether areas of similar

molecular profiles were also spatially clustered. A visual assessment (Fig 3b and S5 Fig) indi-

cated that, although for some patients the footprints belonging to the same cluster appeared to

be spatially colocalized (e.g., red cluster in patient 3), in multiple cases the pattern was more

dispersed. Indeed, we computed the Spearman correlation coefficient between physical prox-

imity (Euclidean distance between footprint coordinates) and proximity in the molecular

space (Euclidean distance between molecular intensity) for all patients, resulting in correlation

Fig 3. Intra-tumoral heterogeneity analysis. a) Protein expression clustering to evaluate inter-tumor heterogeneity. b) Spatial location of the clusters.

The coloring of the clusters in each patient is independent from the other patients. c) Spatial heterogeneity analysis. The heatmap indicates spatial

cluster co-occurrence in the 3 nearest ROIs, as described in Materials and Methods.

https://doi.org/10.1371/journal.pone.0259332.g003
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values of 0.13, 0.23, 0.06, -0.01 and 0.19 for patients 1 to 5, respectively, which are all statisti-

cally not significant (p-values = 0.45, 0.14, 0.68, 0.94 and 0.20 for patients 1 to 5, respectively).

To assess spatial heterogeneity, we computed heatmaps of cluster spatial co-occurrence

using a k-nearest neighbor approach (Materials and Methods, Fig 3c). We can see that in some

cases, such as patients 2 and 5, some variants are spatially close, possibly indicating a common

evolutionary origin. Computing a global spatial heterogeneity metric indicated that patient 3

was the most spatially homogeneous and patient 1 the most spatially heterogeneous (scores

0.36, 0.46, 0.47, 0.42 and 0.43 for patients 1 to 5, respectively). In the cases of patients 1 and 3

the analyzed regions correspond to in situ ductal carcinoma (DCIS, S6 Fig). Since the tissue

sections are a representation on a single plane from a 3D tissue, it is possible that the observed

ducts are connected, even if the variants seem further apart in the analyzed slide. This is espe-

cially visible in patient 3, where several close-by ducts present the same expression pattern.

Patients 2 and 4 present a high grade (G3) invasive ductal carcinoma. We believe this to be the

cause of the large spatial distance between the phenotypical clusters, either because the pheno-

typically close cells are pushed apart by newly forming ones, or because of a fast mutation rate.

Nevertheless, a localized genetic analysis would be required to confirm any of these hypothe-

ses. Patient 5 also presents an invasive ductal carcinoma, although in this case the phenotypical

clusters are in visual proximity, albeit not statistically significant.

Intra-tumoral heterogeneity analysis for clustering across patients

The final step in the proposed workflow was the evaluation of the heterogeneity present across

the analyzed population. Across the existing phenotypical clusters, we expect some of them to

be common across different patients. Four of the analyzed patients indeed had common clus-

ters. However, when compared to the others, patient 2 presented a unique phenotype (Fig 4a

and 4c), clustering in one single group with low heterogeneity and low protein intensity. The

uniqueness of patient 2 could be indicative of a more aggressive phenotype [6], further indi-

cated by the low expressions of CK19 and E-cadherin, also related to higher tumor

Fig 4. Inter-tumoral heterogeneity analysis. a) Hierarchical clustering showing the phenotypical variants across patients and protein correlations. b)

Principal component analysis (PCA). c) Similarity of clusters between patients.

https://doi.org/10.1371/journal.pone.0259332.g004
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aggressiveness [40, 49]. This cluster contains three subgroups, one with a luminal phenotype

described by a high expression of ER and CK8, while the second one lacks the expression of

ER, and the last, also that of CK8. From our cohort, patients 4 and 5 are the most phenotypi-

cally similar patients, sharing clusters 1, 4 and 6, mostly characterized by low protein expres-

sion. Patient 4 also shares clusters 8 and 9 with patient 3. These clusters show a high

expression of CK7, 8, 5, 19 and E-cadherin. Nevertheless, patient 3 presents two subpopula-

tions with a basal phenotype (CK14 and 5 overexpression, clusters 10 and 11). Patient 1’s sam-

ple is dominated by clusters 5 and 7, with high expressions of EGFR, CK14, CK5, AR, CK19

and E-cadherin, while sharing cluster 2 with patient 5.

When looking at the principal component analysis (PCA, Fig 4b), a similar tendency is

observed. Patients 2 and 5 have their ROIs clustered together in a region of lower expression,

while some footprints of patients 1, 3 and 4 show strong correlations, corresponding to the het-

erogeneity observations of the Shannon entropy analysis.

Discussion

The nature of tumor heterogeneity requires precise tools to understand its extent and biologi-

cal relevance. The spatial analysis of tumors can give new insights into the generation, prolifer-

ation and evolution of tumors with respect to the normal tissue architecture, critical towards

understanding disease progression and improving patient prognosis. In this work, we present

a novel workflow that performs a quantitative analysis of protein expression and highlights the

extent of heterogeneity within a tumor section. Using an open-space microfluidic system, we

achieve a quick lysate extraction compatible with commonly used microscopy slides. We envi-

sion this system to be totally automatable, thus reducing the total extraction time and increas-

ing the number of analyzed ROIs per section. While here we focus on the extraction of ROIs of

small diameter, it is in principle possible to reduce the confinement to cover a single cell by

changing the design of the channels of the MFP [52], allowing additional types of investiga-

tions, such as the analysis of intra-cellular protein concentration [53, 54]. For the downstream

processing, we use a well-established technology to perform the analysis—antibody microar-

rays. Microarrays underwent a boom in the early 2000s due to their high degree of multiplex-

ing and sensitivity. Currently, their application has been rather reduced, likely due to the

advent of mass spectrometry, although their simplicity of use and high dynamic range make

them ideal for examining focused protein panels. Additionally, we incorporate into this work-

flow strategies to quantify heterogeneity by evaluating spatially distributed protein expression

to explore the extent of phenotypical changes happening in the tumor.

In the analytical front, the proposed method allows the exploration of different clusters that

can be related to cancer subtypes across micrometer- and millimeter-sized regions. These clus-

ters showed a disperse distribution even in spatially close regions, which could be explained by

the spatial distribution of milk ducts on a 2D surface (patients 1 and 3), and by varying micro-

environments or rapidly multiplying clones in the rest of the patients (patients 2 and 4). In the

literature, cancer subtypes have been explored for both genomic and proteomic data, although

the two types of subgroups do not necessarily cluster the same way [55]. The causes for that

include local gene expression variations due to several factors such as the microenvironment,

and not all the mRNA translating into protein [56]. In our work, we identified 11 proteomic

clusters, most of them being common across the patients, with the exception of a unique clus-

ter present in patient 2, which presented characteristics linked to increased aggressivity.

For this workflow we used fresh-frozen sections. While this type of tissue sections is still

rare due to storage price, it offers several advantages over formalin-fixed paraffin-embedded

(FFPE) sections. Fixing FFPE sections often involves non-standardized protocols, which can

PLOS ONE Spatial protein heterogeneity analysis in frozen tissues

PLOS ONE | https://doi.org/10.1371/journal.pone.0259332 November 19, 2021 8 / 17

https://doi.org/10.1371/journal.pone.0259332


have vast differences in processing in tissues of different sizes [57]. Furthermore, the mecha-

nism of antigen retrieval, necessary to remove the chemical modifications added by formalin,

is not well-understood, with large variations in buffer composition and time incurring for

each protein [58]. This introduces an important degree of uncertainty about the amount and

quality left of the protein of interest. Conversely, frozen sections present proteins in their

native state, with biological activity still present in some cases [59]. This tissue conservation

method is also preferred for DNA and RNA analysis, since less fragmentation of these nucleic

acids is expected [60]. Thus, we envision this work as a step towards proteomic integration

with genomic analysis, which was already demonstrated on the microscale [32]. Steps towards

the integration of several ‘omic’ modalities on tissue sections have been undertaken [61], albeit

using larger sample regions over greater distances, thus overlooking microscale intra-tumoral

heterogeneity.

The exploration of protein heterogeneity offered by our workflow demonstrates the rele-

vance and necessity of spatially localized methods to explore the proteomic landscape. The

analytical workflow we designed makes data easily accessible, facilitating the visualization of

the different phenotypical variants in a patient. Thus, we envision this method to have a role in

easy and multiplexed protein heterogeneity data evaluation.

Methods

Tissue sections

Five patient samples were provided by the Department of Pathology and Molecular Pathology,

University Hospital of Zurich. The tissues were samples of primary invasive ductal carcinoma

(IDC) of the breast including ductal carcinoma in situ (DCIS) as the precursor lesion (see S1

Table for pathological details and analyzed regions). All sections were cut with a thickness of

10 μm and deposited onto SuperFrost plus slides.

Ethics statement

Our retrospective study fulfilled the legal conditions according to Article 34 of the Swiss Law

“Humanforschungsgesetz” (HFG), which allows the use of biomaterial and patient data for

research purposes without informed consent, if i) it is impossible or disproportionately diffi-

cult to obtain patient consent; ii) there is no documented refusal; iii) research interests prevail

the individual interest of a patient. Law abidance of this study was reviewed and approved by

the ethics commission of the Canton Zurich (BASEC-No. 2019–01477).

Microfluidic probe fabrication and microfluidic platform set-up

The MFP was fabricated as previously described [30]. Briefly, a mask with the channel pattern

was written using a mask writer. Then, channels with a depth of 50 μm were etched onto a sili-

con wafer using deep reactive ion etching. The silicon wafer was anodically bonded to a glass

wafer and the resulting wafer was diced to obtain individual MFP heads. The apex of the head

was polished to remove any imperfections that could disturb the flow. Prior to use, the head

channels were flushed successively with isopropanol, ethanol and water. The MFP head was

then connected to glass syringes (Hamilton, Bonaduz, Switzerland) through corresponding

connectors. The MFP head was mounted on motorized stages (LANG, Reiden, Switzerland)

located on top of an inverted microscope (Nikon, Egg, Switzerland) (S1 Fig).
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Extraction of region of interest from tissues

The tissues were thawed from -80˚C to room temperature and then immersed in an OCT:PBS

8:3 solution (OCT compound from VWR, Dietikon, Swtzerland; PBS from Gibco, Thermo-

Fisher Scientific, Reinach, Switzerland) to avoid detachment from the slide during processing.

Regions of interest were probed with an MFP. Owing to the local changes in viscosity of the

immersion medium, flow rates were adjusted locally, with the following flow rates being the

default values: 2:5:-5:-8 μL/min for shielding injection: processing injection: tissue aspiration:

shielding aspiration. Aspiration was kept constant to allow for complete collection of the tissue

lysate. The shielding solution contained PBS with red colorant for the visualization of the con-

finement. The lysis solution consisted of 2% sodium dodecacylsulfate (SDS, Sigma-Aldrich,

Buchs, Switzerland) and 8M urea (Sigma-Aldrich, Buchs, Switzerland) in PBS. The lysis time

was set to 3 min to ensure the complete dissolution of the tissue. After lysis, the liquid contain-

ing the tissue was collected from the corresponding aperture. This lysate was then diluted with

lysis solution up to a volume of 50 μL and left to incubate for protein extraction for at least 30

min at 4˚C.

The tissue was cleaned of the immersion buffer and submerged in acetone at -20˚C for 15

min. The slide was then air-dried for 10 min and submerged in PBS for rehydration. Subse-

quently, it was transferred to hematoxylin and stained during 5 min. The excess hematoxylin

was washed off using running tap water for 3 min and the slide was deposited in HCl 1% for

10-20s to reduce hematoxylin overstaining. After another washing with water, slides were sub-

merged in eosin for 1 min. The slide was then dehydrated in ethanol and mounted.

Protein preparation

The lysate was centrifuged for 15 min at 14,000 xg and 4˚C. The supernatant was diluted with

200 μL of Tris-HCl 20 mM (Sigma-Aldrich, Buchs, Switzerland) and incorporated into an ami-

con ultra centrifugation column with a pore size of 10 kDa (Merck, Zug, Switzerland). The

lysate was centrifuged for 10 min at 14,000 xg and room temperature. A buffer exchange to

PBS was then performed by adding 200 μL of PBS to the purification column. This buffer

exchange step is critical to remove excess SDS, which has been shown to reduce antigen to

antibody binding [62]. A centrifugation was performed until the final volume inside the col-

umn reached 20 μL. The lysate was biotinylated using a biotynilation kit (abcam, Cambridge,

UK) and following the instructions given by the provider.

Microarray

A custom microarray with a panel containing 13 proteins was purchased (Sciomics, Neckarge-

mund, Germany). Proteins used in the microarray were: β-actin, cytokeratin (CK) 19, CK14,

CK17, EGFR, E-cadherin, ER, PR, Ki67, AR (R&D Systems, Abigton, UK), CK8/18 and CK7

(abcam, Cambridge, UK), and CK5/6 (Merck, Zug, Switzerland), all spotted at a final concen-

tration of 0.5 mg/mL. The microarray was incubated with 10% non-fat dry milk in PBS for 30

min and washed with 0.05% Tween-20 in PBS (PBST) three times for 5 min. The biotinylated

protein was then diluted in 1% bovine serum albumin (BSA, Sigma-Aldrich, Buchs, Switzer-

land) in PBS to 1/10th of the initial concentration. 50 μL were incubated in the microarray for

1 h and then washed with PBST three times for 5 min. A solution of Alexa555-streptavidin

(Life Technologies, Bleiswijk, Netherlands) at a concentration of 1:500 in 1% BSA in PBS was

incubated for 30 min and washed twice with PBST and once with distilled water. The microar-

ray was then dried through centrifugation and stored in the dark until imaging.
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Immunohistochemistry

Frozen tissues were fixed in acetone at -20˚C for 15 min. The slide was then air-dried for 10

min and submerged in PBS for rehydration. A peroxidase blocking agent (abcam, Cambridge,

UK) was added for 5 min and washed with a wash buffer (Dako, Basel, Switzerland). The slide

was blocked with 1% BSA in PBS for 30 min and washed with wash buffer. Primary antibodies

were incubated for 1 hour (anti-CK14 and anti-ER at 15 μg/mL, both from R&D Systems,

Minneapolis, US). After a wash, a secondary antibody was added for 30 min (visualization

reagent, Dako, Basel, Switzerland) and washed with the wash buffer. Finally, a freshly prepared

2–2’-diaminobenzidine (DAB) solution was left on the sample for 10 min for color signal

development and washed away with water. The slides were counterstained with hematoxylin

as described in Footprint extraction.

Imaging

Slides were imaged via a slide scanner (Sciomics, Neckargemund, Germany). The resolution of

the imaging was 5 μm, with a gain of 50000 in the green channel and a laser power of 50%. Sat-

urated spots were imaged using a gain of 1000.

Data analysis

The grey intensity of the microarray spots was measured using custom scripts in MATLAB (S7

Fig). The area of each footprint was calculated based on the image using the Fiji area measure-

ment tool (S8 Fig). The statistical analysis of the data was performed in Python using the

numpy, scipy, pandas, scikit-learn and seaborn software libraries.

Heterogeneity quantification

For the heterogeneity analysis (Fig 2d), we first performed a min-max normalization to scale

the raw intensity of each protein to [0,1] as follows:

xnormi;j ¼
xi;j � minðxjÞ

max xj
� �

� minðxjÞ

where xi,j is the intensity of protein j in footprint i. We then discretized each vector of protein

intensities xj, using K = 5 equal-width bins, and computed the Shannon entropy H for each

protein j and each patient p as follows:

Hj;p ¼ �
XK

k¼1

pj;p;klogpj;p;k

where pj,p,k is the relative abundance of protein j in patient p in bin k.

Intra-patient clustering

Raw protein intensities were initially normalized using a z-score normalization as follows:

xz� scorei;j ¼
xi;j � xj

sj

where xj and sj denote the sample mean and standard deviation of each protein respectively,

computed across all footprints. Data was clustered using hierarchical clustering (Fig 3a), with
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average linkage and the Pearson correlation as a distance metric. Footprints were assigned to

different clusters using a distance threshold criterion (Fig 3b).

Spatial heterogeneity analysis

To compute the heatmaps of spatial heterogeneity for each patient (Fig 3c), we followed an

approach based on k-nearest neighbors (k-NN), as previously described [6]. Briefly, for each

patient, we have i = 1, . . ., N footprints, each one assigned to c = 1, . . ., C clusters. We first con-

struct a k-NN graph where each footprint is connected to the k = 3 most proximal footprints,

computed using the Euclidean distance between footprint coordinates. For each footprint i we

retrieved the cluster labels of the 3 nearest neighbors and assessed the neighbors’ vote, i.e., the

frequency of all C clusters in the 3 neighbors. This yielded an N × C matrix, where each value

represents the probability that footprint i belongs to cluster c. For footprints assigned to the

same cluster, we computed the mean of all corresponding rows, resulting in a c × c matrix that

expresses similarities between footprints based on their physical proximity in the tissue. Values

on the diagonal of this matrix represent how “self-contained” each cluster is in the tissue, and

off-diagonal values represent how much this cluster is intermixed with other clusters. A spatial

heterogeneity score for the whole tissue is then simply obtained by dividing the sum of all diag-

onal elements by the sum of all matrix elements.

Inter-patient clustering

Z-scaled data across all patients were first clustered using hierarchical clustering, with average

linkage and the Pearson correlation as a distance metric (Fig 4a). For each patient, we esti-

mated the percentage of this patient’s footprints belonging to each identified cluster, resulting

in a probability distribution across all clusters that sums up to 1. These frequencies were in

turn clustered using the Jensen Shannon Divergence (JSD) metric, an appropriate distance

metric to measure the similarity between probability distributions that is symmetric and

bounded between 0 and 1. Let P, Q denote the probability density of patients p, q over all clus-

ters. The JSD between patients p, q is defined as follows:

JSD PjjQð Þ ¼
1

2
DKL PjjMð Þ þ

1

2
DKL QjjMð Þ

where M ¼ 1

2
P þ Qð Þ and DKL is the Kullback-Leibler (KL) divergence:

DKL PjjQð Þ ¼
X

i

Pi log
Pi

Qi
:

Batch effect evaluation

We evaluated the data to explore the presence of potential batch effects in the data as described

in [63]. No potential batch effects were identified.

Supporting information

S1 Fig. Microfluidic probe set up. Top left represents an MFP head and bottom left shows the

functionality of the head. The right site of the figure shows an MFP mounted on top of an

inverted microscope and connected to syringes.

(TIF)
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S2 Fig. Extraction of a footprint. a) Panel showing the process of a footprint extraction, com-

prising area selection (t = 0 min), confinement generation (t = 1 min), and visual evaluation of

the footprint (t = 3 min). b) Example of a footprint, where epithelial cells have been removed,

while matrix is still in place.

(TIF)

S3 Fig. Details of analysis for all analyzed proteins. The z-score of the intensity for the ana-

lyzed footprints for five patients (P1-5) next to a violin plot representing the distribution of the

intensities of the proteins across their dynamic range. An IHC analysis of CK14 is shown for

patient 1.

(TIF)

S4 Fig. Correlations between proteins.

(TIF)

S5 Fig. Spatial heterogeneity on tissues. Line thickness is inversely proportional to molecular

distance.

(TIF)

S6 Fig. Image of the analyzed tissues with a close up on the right of the footprints used for

the analysis. The dotted line represents the area where the footprints are located. Scale bar: 1

mm on the tissue (left) and 200 μm for the footprint close ups (right). The numbers represent

the numeration of the footprints and their location on the tissue is shown with a grey scale.

(TIF)

S7 Fig. Algorithm for array analysis and quantification. A MATLAB-based algorithm was

developed to perform the analysis of the gray scale intensity of the microarray. The original

image of the array was uploaded and cut into subarrays. The location of two reference spots

was manually adjusted (Fig panel A) and a template of a 9x9 array was placed on top of the

array (panel B) and visually confirmed to correspond to the location of the spots. A mask was

located on each spot of the array (panel C) and using Otsu thresholding the spot was adjusted

(panel D). The gray intensity of each spot was then calculated. Spots presenting artifacts were

removed from the analysis.

(TIF)

S8 Fig. Analysis of the area of the footprints. a) Definition of area of the footprint, the X and

the Y-axis for analysis. Extracellular matrix was excluded from the area considerations. b, c

and d) Boxplot representing the area, X-axis and Y-axis of the footprints for each patient,

respectively. Red crosses represent the outliers.

(TIF)

S1 Table. Disease staging and histopathology of the patients.

(PDF)

S2 Table. Grey intensity measurements for the five patients.

(XLSX)
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