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Abstract

Background: There are over 25 tools dedicated for the detection of Copy Number Variants (CNVs) using Whole
Exome Sequencing (WES) data based on read depth analysis.
The tools reported consist of several steps, including: (i) calculation of read depth for each sequencing target, (ii)
normalization, (iii) segmentation and (iv) actual CNV calling. The essential aspect of the entire process is the
normalization stage, in which systematic errors and biases are removed and the reference sample set is used to
increase the signal-to-noise ratio.
Although some CNV calling tools use dedicated algorithms to obtain the optimal reference sample set, most of the
advanced CNV callers do not include this feature.
To our knowledge, this work is the first attempt to assess the impact of reference sample set selection on CNV
detection performance.

Methods: We used WES data from the 1000 Genomes project to evaluate the impact of various methods of
reference sample set selection on CNV calling performance of three chosen state-of-the-art tools: CODEX, CNVkit and
exomeCopy. Two naive solutions (all samples as reference set and random selection) as well as two clustering
methods (k-means and k nearest neighbours (kNN) with a variable number of clusters or group sizes) have been
evaluated to discover the best performing sample selection method.

Results and Conclusions: The performed experiments have shown that the appropriate selection of the reference
sample set may greatly improve the CNV detection rate. In particular, we found that smart reduction of reference
sample size may significantly increase the algorithms’ precision while having negligible negative effect on sensitivity.
We observed that a complete CNV calling process with the k-means algorithm as the selection method has
significantly better time complexity than kNN-based solution.
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Background
Accurate detection of clinically relevant Copy Num-
ber Variants (CNVs) is essential in the diagnosis of
genetic diseases since CNVs are responsible for a large
fraction of Mendelian conditions [1, 2]. While the
bioinformatics pipelines specializing in the detection of
Single-Nucleotide Variants and short indels using Whole
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Exome Sequencing (WES) data are mature and pro-
vide satisfactory performance https://precision.fda.gov/
challenges/consistency, the identification of larger dele-
tions and duplications still remains a challenge. Although
a plethora of tools have been developed to call CNVs from
WES data, most of these algorithms are characterized by
limited resolution, insufficient performance, and unsatis-
factory classification metrics [3, 4]. Although fine-tuning
of CNV calling parameters may substantially improve
the overall algorithm performance [5], there are still no
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well-established guidelines that would help optimize the
detection rate of CNV-calling pipeline.
CNVs from WES can be detected based on the analy-

sis of read-depth data. Typically, CNV calling algorithms
can be broken down into four main stages. First, in the
depth of coverage calculation step, the number of mapped
reads in each exon is counted, followed by the quality con-
trol stage in which poorly covered exons and samples are
removed. Next, the normalization process is applied to
determine the depth of coverage under the assumption
that CNVs do not occur. To minimize the effect of tech-
nological biases, CNV calling algorithms are required to
take into account the depth of coverage in other samples
(reference sample set) and the influence of known sources
of noise, including but not limited to reads mappability
and GC content in target regions. Then, the raw and nor-
malized depth of coverage are compared - mainly the log
ratio of raw depths of coverage versus normalized one is
calculated. Finally, segmentation and actual CNV calling
are applied, which produces a set of putative deletions and
duplications.
The appropriate selection of the reference sample set

has a substantial influence on the background model-
ing, and as a consequence, on the performance of a
CNV caller. Unfortunately, most of the tools do not
provide procedures for choosing the optimal reference
set from among available samples except for CANOES
[6], ExomeDepth [7] and CLAMMS [8]. The algorithm
of selection in ExomeDepth and CANOES is based on
counting correlation between the investigated sample and
the rest of the samples aiming to find most similar ele-
ments and add them to the reference set. Then, k nearest
neighbors (kNN) meaning the k most correlated samples
are taken as a reference set for a specified element. In
CANOES, the maximum number of samples in reference
set is fixed and can be modified by the user (default 30),
whereas in ExomeDepth this number is determined by
the algorithm which maximizes the posterior probabil-
ity in favour of a single-exon heterozygous deletion call
by ExomeDepth’s model. In CLAMMS, the number of
selected samples in the reference set is also set by the user.
CLAMMS uses kNN algorithm as well, but, in contrary to
CANOES and ExomeDepth, the distance metric between
samples is counted basing on Binary Alignment Map fea-
tures (extracted by Picard (http://broadinstitute.github.io/
picard)).
In this work, we investigated four different approaches

to the selection of reference sample set labelled “all sam-
ples”, “random”, “kNN” and “k-means”. They were applied
to the subset of 1000 Genomes data to study the influence
of a selection method on the performance of CNV callers.
In our analysis we combined reference set selection meth-
ods with three chosen state-of-the-art algorithms special-
izing in the identification of CNVs from WES data which

do not provide any automated mechanism for selecting
reference samples (CODEX, exomeCopy, and CNVkit).

Methods
Benchmark dataset
To evaluate the influence of the reference sample set selec-
tion on the CNV calling performance of selected algo-
rithms, we used 1000 Genomes project phase 3 WES data
from 861 individual (444 females and 417 males), includ-
ing 205 samples from Europe (106 samples from Tuoscany
in Italia; 99 Utah Residents (CEPH) with Northern and
Western European Ancestry), 276 samples from Africa
(109 samples from Yoruba in Ibadan, Nigeria; 101 samples
from Luhya in Webuye, Kenya; 66 Americans of African
Ancestry in SW USA), 207 samples from East Asia (103
samples from Han Chinese in Beijing, China; 104 samples
from Japanese in Tokyo, Japan), 106 samples from South
Asia (Gujarati Indian from Houston, Texas), and 67 samples
fromAmerica (Mexican Ancestry from Los Angeles, USA).
The investigated samples were sequenced by the seven

research centres [9]. The correlation analysis of coverage

Fig. 1 Correlation between samples of benchmark dataset. The figure
presents the results of a multidimensional scaling of the covariance
matrix of the read count data for the 861 investigated samples onto a
two-dimensional plane. The colors depict samples from other
sequencing centres (BCM - Baylor College of Medicine, BGI - Bejing
Genomics Institute, BI - The Broad Institute, ILLUMINA - Illumina,
MPIMG - The Max Planck Institute of Molecular Genetics, SC - The
Welcome Trust Sanger Institute, WUGSC - Washington University
Genome Science Center). It is worth noticing that samples are
grouped into several clusters, mainly according to the research center
where they were sequenced. However, samples sequenced in the
same research center are also divided into subgroups, e.g. cyan dots,
which depict the samples from Baylor College of Medicine. The figure
was prepared by R’s cmdscale function
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Fig. 2Workflow of the research method presented in the study. The input dataset is a set of numbers which depict the depth of coverage in
samples on specified exons. Each sample from this dataset is processed by a reference sample set selector module, which is responsible for
designating a set of samples that will be the reference collection. As a consequence, every element from the input dataset has its own, independent
reference set. The normalization step uses the determined reference sets to perform normalization. This step is performed only once for ”all”
method, once per sample in “kNN” and “random” approach and once per cluster in “k-means” strategy. Then, for each generated sample, we apply
CNV calling performed by three callers: exomeCopy, CODEX and CNVkit. The input for the CNV detecting tool is a set of samples consisting of the
investigated sample and its reference panel. After calling CNVs, the events in the investigated sample are filtered and, this set of events is added to
the final set of CNVs. Having processed all samples from the input dataset, the union of all partial per-sample results stored as the output call set for
each approach combining selection method and variant caller. The evaluation of the results is performed against CNVs call set gold standard,
delivered by 1000 Genomes Project. Variations are additionally categorized into common and rare as well as short and long categories, which allows
us to precisely calculate the True Positives, True Negatives, False Positives and False Negatives metrics in those groups
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profiles among the samples confirmed the existence
of several clusters that correspond to different capture
designs used in the project (Fig. 1).
The quality control (as implemented in CODEX) was

performed for each sample. In this process all targets
with median read depth across all samples below 20 or
greater than 4000, targets shorter than 20 bp or longer
than 2000 bp, with mappability factor below 0.9 and GC
content below 20% or greater than 80% were removed.
In our study we first considered the chromosome 1 only
in order to reduce the computation time. To assess the
potential impact of chromosomal variability on the final
results we repeated the entire analysis for chromosome 11
(see Additional file 1).

Study design
The presented approach follows fork-join [10] processing
model with each sample being processed separately (pos-
sibly in parallel) and combining many outputs into the
final CNVs collection. Operations performed on a single
element include selecting the reference set, followed by
normalization and CNV caller invocation, producing a list
of detected variants for a considered sample. The union of
all partial results creates the set of detected CNVs for the
whole input sample set (Fig. 2).

Reference set selection
To assess the impact of reference set selection on the
performance of a CNV caller, we have examined four
approaches. The first method (“all samples”), considered
as a baseline solution, encompasses all samples from the
input dataset, with no selection performed. The second
one (“random”) is a naive approach to selection, which is
an arbitrary subset choice, implemented as a draw with
no repetitions. We iterated this experiment 10 times with
various sizes of reference collection (from 50 to 500).
The third method (“kNN”) is the approach used in previ-
ous works (i.e., Canoes, ExomeDepth, CLAMMS), where
only k most similar samples are included in the reference
set (k nearest neighbors algorithm [11]). The distance
metric between the elements is based on Pearson corre-
lation between read depth of samples. We repeated the
experiment 10 times with varying sizes of the desired set,
50 ≤ k ≤ 500. Finally, we create a reference set by a
new approach (“k-means”) using the k-means [12] clus-
tering algorithm. The whole sample set is divided into
k groups, basing again on the correlation between read
depthof elements as a proximitymeasure.We repeated the
experiment 10 times with varying k value (from 1 to 10).

Normalization and CNV calling
In our experiments, normalization of read depth data and
CNV calling was performed by three state-of-the-art tools
(CODEX v.1.8.0, exomeCopy v.1.22.0 and CNVkit v.0.9.3)

that do not perform the reference set selection on their
own.
CODEX [13] algorithm is based on a multi-sample

normalization model, which is fitted to remove various
biases including noise introduced by different GC content
in the analyzed targets. CNVs are called by the Pois-
son likelihood-based segmentation algorithm. Exome-
Copy [14], on the other hand, implements a hidden
Markov model which uses positional covariates, including
background read depth and GC content, to simultane-
ously normalize and segment the samples into the regions
of constant copy count. CNVkit [15] uses both the tar-
geted reads and the non-specifically captured off-target
reads to distribute the copy number evenly across the
genome.
All of the tools were called with their default parame-

ters, except for the one related to lowering the maximum
numbers of the latent factors in CODEX (from 9 to 3)
to reduce the calculation time and the changing default
segmentation method in CNVkit application from default
circular binary segmentation to HaarSeg, a wavelet-based
method [16]. For the “all” and “random” approach the
normalization step is called once, followed by CNV call-
ing for each sample. “kNN” method results in a different
reference set for each sample; therefore, it requires both
a normalization and a calling stage performed for each
input element. With the “k-means” method it is sufficient
to normalize samples only once per group, followed by the
CNV calling step.

Performance evaluation
We have evaluated the quality of each pair of (i) reference
set selection algorithm and (ii) CNV calling tool, com-
paring the output CNV call set of the solution and the
CNV call set golden record provided by 1000 Genomes
Consortium [9] generated based on the Whole Genome
Sequencing (WGS) data. To assess accurately the influ-
ence of the reference set on the final output, the results
were evaluated separately for different subset of CNVs.
The variants were categorized into rare (frequency ≤ 5%),
common ( > 5%) CNVs, as well as short (encompass-
ing 1 or 2 exons) and long (encompassing more than 3
exons) CNVs. As part of the evaluation stage we calculated
the Dunn index [17], Silhouette width [18] and Davies–
Bouldin index [19] to discover the quality of k-means
clustering for varying value of k. The above mentioned
measures are based solely on grouped data, presenting
to what extent the clusters formed are compact and well
separated.

Results
All samples as reference set
The “all samples” strategy is treated as a baseline for fur-
ther evaluation and is equivalent to the default mode of
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Fig. 3 Results of four selection methods used in CODEX, CNVkit and exomeCopy. Panels a, c, e present absolute changes in the precision and
sensitivity of the investigated CNV callers for different methods of the reference set selection; relative performance in relation to baseline is
presented in panels b, d, and f. The results for the “all” method (baseline) are presented in the “kmeans” diagram, where k is equal to 1 (single group)
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CNV callers invocation without any selection. Note, that
the same reference set is generated by the kNN algorithm
in case of k equal to the number of all samples and by
k-means with single cluster (k = 1). Overall, we found
CNVkit to have the highest precision but the lowest sen-
sitivity among the examined callers. The F1 measure was
the highest for CODEX (0.34), followed by CNVkit (0.32)
and exomeCopy (0.05).

Random reference set
The performed experiments revealed that random selec-
tion of the reference sample set does not significantly
affect the number of true-positive and false-positive calls.
Interestingly, the performance statistics do not change
significantly as thenumberof randomsamples in the reference
panel increases for all of the CNV callers (Fig. 3a, b).

k Nearest Neighbors
We found that sensitivities of CODEX and CNVkit callers
are independent of the k value in the kNN algorithm,
whereas the sensitivity of exomeCopy is inversely propor-
tional to k, especially, for rare events (Fig. 3c, d). On the
other hand, the precision of exomeCopy is rather stable,
whereas in case of CODEX and CNVkit the precision
decreases when k is growing.

k-means
The results show that the precision for CODEX and
CNVkit is significantly greater, when k ≥ 5 in comparison
to a single group (see Fig. 3e, f ). We observed that for both
tools the saturation point occurs at k = 4 or k = 5. This
point represents the optimal, minimal number of groups
and it is in line with both: (i) the number of groups that
emerge on the Fig. 1 and (ii) the optimal values of Dunn
index, Silhouette width and Davies–Bouldin index (Fig. 4).
Sensitivity for CODEX and CNVkit remains fixed for dif-
ferent numbers of clusters in the k-means algorithm for
k exceeding 5. exomeCopy demonstrates opposite charac-
teristics - constant precision, and significantly improved
sensitivity for a number of groups greater or equal to 5 in
comparison to a single group, especially, for short calls.

Comparison of reference set selection methods
CODEX achieved the highest F1 score in our benchmark;
hence we used evaluation results from this algorithm
to compare different methods of reference set selection
(Fig. 5). The results for “kNN” and “k-means” approaches
differ depending on k value. For comparison we have cho-
sen the best performing k values for both approaches.
In “k-means” case, k is equal to 4, according to internal
quality measures (Fig. 4). In “kNN”, k equals the value of

Fig. 4 Dunn index, Silhouette width and Davies–Bouldin index for assessing the number of groups in k-means algorithm. The figure presents the
evaluation of the number of groups by means of two metrics, which combine the measures of compactness and separation of the clusters. Briefly,
the higher the value of both indexes, the better the division into clusters. The figure shows that for the data set examined in the presented work, the
optimal number of groups is 4, which agrees with the figure of sensitivity and precision - for example, precision for CODEX tool
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Fig. 5 Comparison of CNVs detected by CODEX with four different selection methods. The k value for “k-means” method was set to 4, and k for
“kNN” algorithm was fixed at 200; the baseline (“all samples” method) corresponds to the value of “k-means” for k = 1. The figure shows, that using
“kNN” and “k-means” methods results in better precision in comparison to the baseline. What is more, sensitivity for all of the investigated methods
remains fairly stable. It is worth noting that the dots for the “kNN” and “k-means” methods are very close to each other - both of mentioned methods
lead to very similar results

the quotient of a total number of samples and the best
performing number of clusters resulting in k ≈ 200.
The analysis confirmed that CNV calling performance
was much higher when “kNN” or “k-means” approaches
were used instead of “all samples” or “random” methods.
Interestingly, we observe essentially no difference in CNV
calling accuracy between “kNN” and “k-means”. This is a
particularly important conclusion, since the latter method
is characterized by better time complexity than the former
one (Fig. 6).

Discussion
Performance of CNV callers without reference sample set
selection
The sensitivity and precision of CNV callers vary owing
to different approaches being implemented in those tools
(see Fig. 3). As expected, CNV detecting solutions are
more sensitive in discovering rare events, whereas large

and common CNVs are especially difficult to be detected
since it is hard to distinguish them from a common tech-
nical artifacts and biological biases. At the same time, our
results indicated that the most challenging issue is related
to a very high number of false positive calls observed in
the class of rare variants. In this context, one of the most
important finding in our study is that the precision in
calling rare CNVs (i.e., reduction of the number of false
positives) could be significantly improved by the applica-
tion of “k-nn” or “k-means” based methods of reference
set selection.

Random selection of reference set does not change the
CNV calling performance
The naive approach to selecting the reference set as a
random subset mostly does not change the CNV callers’
characteristics. Since this approach does not positively
impact the performance, it is not recommended.
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Fig. 6 Comparison of CNV calling detection time in a large cohort of samples using “kNN” and “k-means” based approach to reference selection. The
time measured includes reference set selection, normalization and CNV calling step. Note that CNV calling is performed for all samples in the cohort.
The substantial difference between total execution times is a consequence of normalization process as required by “kNN” method (once per
sample) and “k-means” approach (once per cluster). Since the number of samples is significantly greater than the number of groups, the total
normalization time is significantly greater for “kNN” than for “k-means”

Appropriate selection of reference samples improves CNV
detection
In this paper we have shown that the correct reference set
selection improves the results of all tested CNV callers.
The highest improvement was achieved for the class of
short CNVs, which are usually the most challenging to
be identified and often missed by orthogonal biologi-
cal assays, including Comparative Genomic Hybridization
arrays. In case of CODEX, the precision of short, rare
CNVs detection increased more than seven times when
using “k-means” or “kNN” in comparison to “all” or “ran-
dom” strategies. Moreover, sensitivity of exomeCopy in
detecting short, rare CNVs was more than two times
greater when clustering-based or “kNN” strategies are
used. These findings are particularly important since the
more accurate detection of rare and short CNVs may sub-
stantially improve the molecular diagnostic solution rate

in clinics. The main aim of selecting the correct refer-
ence set is determining the most similar samples. In order
to identify the best performing number of clusters in k-means
algorithms, we have used Dunn, Silhouette and Davies–
Bouldin measures.

k-means vs. kNN based approach
The experiments proved that performance metrics for
reference sets chosen by “kNN” and “k-means” meth-
ods are similar. Although the existing tools (Canoes,
ExomeDepth, CLAMMS) use kNN-based methods as
the reference set selection algorithm (see comparison to
CLAMMS method in Additional file 1) in this study, we
have shown that k-means has much less time complexity.
As Fig. 6 clearly states, the “kNN” approach is signifi-
cantly (approximately 200x) slower. The reason for this is
the need to invoke a long-lasting normalization process
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as many times as the number of input elements is, while
“k-means” requires normalization only once per cluster.
Therefore, for large data sets the “k-means” method is
recommended approach.
The reference set selection with the k-means algorithm

could be performed on any data set by splitting samples
on a given number of groups with simultaneous monitor-
ing of Dunn index, Silhouette width and Davies–Bouldin
index values.

Further research
The solution that would automatically determine, based
on the input data set, the best parameters for CNV call-
ing would facilitate the entire process. To achieve this,
we are designing a module for the injection of artifi-
cially generated CNVs into the user data and the com-
parison of the detected CNVs with the events injected.
This technique will enable the choice of an appropriate
method for the reference sample set selection for any
WES data set as well as automatic selection of parameters
of a given method for the selection of reference sam-
ple set including the number of clusters in the k-means
algorithm. This process could be included in complex
tools, e.g. applications for optimization CNV callers like
Ximmer [5].

Conclusions
We have shown that proper reference sample set selec-
tion leads to improved sensitivity and precision for all
considered CNV callers. Our results revealed that k-
means and kNN based approaches guarantee a very sim-
ilar performance of CNV calling while the former one
is significantly faster and requires less computational
resources. Finally, we have shown that the optimal num-
ber of groups for k-means algorithm (corresponding to the
highest accuracy of CNV calling) can be estimated using
internal clustering metrics (including Dunn index, Sil-
houette width and Davies–Bouldin index). To summarize,
these conclusions can be used as a guideline that helps in
appropriate implementation and fine-tuning of CNV call-
ing pipelines from WES data in the clinical and research
environment.

Additional file

Additional file 1: The file contains extended discussion and supporting
data related to: (i) comparison to the reference set selection method
proposed in CLAMMS and (ii) impact of chromosomal variability on the
evaluation results. (PDF 771 kb)
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