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Abstract: A composite solid propellant which generates high propulsive force in a short time is
typically composed of an oxidizer, a metal fuel powder and a binder. Among these, the binder is
an important component. The binder maintains the mechanical properties of propellant grains and
endures several thermal and mechanical stresses in the engine. Several studies have been reported
for the development of energetic propellant binders for increasing the propellant′s propulsive
force. While several materials have been studied for the synthesis of energetic prepolymers,
a nitramine-group-containing prepolymer is a suitable candidate because these types of prepolymers
are less toxic and more cost-effective when compared to the traditional glycidyl azide polymers
(GAP) and triazole-based prepolymers. Considering the lack of studies for the binder using a
nitramine-group-containing prepolymers, we synthesized a nitramine-group-containing monomer
and polymerized a nitramine-group-containing prepolymer. The prepolymer was then used for the
preparation of the binder and its thermal and mechanical properties, as well as the effect of the plasticizer,
were studied. The binder that was prepared using the prepolymer containing a nitramine-group
showed very high elongation, tensile strength. Nitrate-ester (NE)-type plasticizer could reduce the
glassy transition temperature (Tg)of the binder successfully. Also, high-energy is released due to
the decomposition of the nitramine-group at around 245 ◦C, thus exhibiting the efficiency of the
nitramine-group-containing prepolymer as an excellent energetic binder material.

Keywords: propellant; binder; nitramine-group-containing polymer; energetic polymer; mechanical
properties

1. Introduction

The 20th-century world wars and competitive international space exploration have contributed
extensively to the development of rocket propellants, which have been continually studied for
development of the aerospace industry and long-range missiles. Propellants are classified as liquid and
solid propellants according to their phase. However, liquid-fuel engines, which use liquid propellant,
typically have complex structures which restrict their size. In contrast, solid propellants are widely
used because they allow the design of variable size fuel engines [1]. Among the various types of solid
propellants available, the composite-solid propellant started with a polysulfide binder by Thiokol in
the 1950s in the United States, is easy to store and can generate high propulsive force in a short time.
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Thus, due to its several merits, extensive research has been carried out about this composite-solid
propellant [2].

Composite solid propellants are composed of an oxidizer, which is the solid component that
supplies the oxygen needed for combustion; metal fuel-powder (energetic materials), that releases
high-energy when the propellant is combusted; plasticizer, which improves processability; and a
binder, that physically bonds the oxidizer and the fuel. Among them, the plasticizer is an important
component of the composite-solid propellant. Plasticizer can reduce the viscosity of the mixture-paste
when mixing with the binder, the oxidant and the metal fuel-powder, thereby improving processability
and increasing casting time [3]. Especially, nitrate-ester (NE)-type plasticizers have been widely used
for military purposes because they can improve the performance of propellants due to the NE part [3,4].
The binder can maintain the mechanical properties of propellant-grains and endures thermal and
mechanical stresses present both in the inside and outside of the engine. In addition to acting as an
adhesive which helps in bonding the propellant to the motor case, the binder also acts as combustible
material which is required for generating propulsive force during combustion [5].

A rubber-like viscoelastic material obtained by the reaction of a low-molecular-weight polymer
(prepolymer) with a curing agent is typically used as the binder material. Generally, the prepolymer used
in binders for the preparation of composite solid propellants is a low-molecular-weight polymer which
is amorphous and exhibits flowability and forms a polymer network structure through crosslinking.
Among various types of crosslinking binders, such as polyethylene glycol (PEG) in the form of polyether
or polyester, hydroxyl-terminated polybutadiene (HTPB) and polycaprolactone (PCL) are widely used
in the preparation of propellants [6–9].

In recent years, the development of high-energy propellant binders has been actively carried
out for increasing the propulsive force of the propellant. Usually, glycidyl azide polymers (GAPs),
triazole-crosslinked polymers and nitramine-group-containing polymers have been studied as energetic
prepolymer candidates. GAP is an energetic polymer which releases a large amount of gas and thermal
energy during combustion and is widely used in propellants [10,11]. Min et al. [12] had studied
the physical properties of a polyurethane binder prepared with GAP and further studies [13] were
conducted for the evaluation of the physical properties of the binder which was prepared with
a polyurethane and triazole-dual-crosslinked system. However, GAP is expensive and its other
disadvantages include the necessity for the use of toxic and explosive monomers for its synthesis and
its tendency to releases gases during processing or storage [14].

A triazole-crosslinked polymer, which has been systematically studied by Huisgen [15], is a
polymer containing a triazole ring formed by a “click reaction.” Due to their moisture insensitivity and
the lack of by-product formation, triazole crosslinked polymers are attracting attention as eco-friendly
energetic materials [16–19]. Lee et al. [20] studied the properties of binders with a triazole curing system
to assess their impact on the properties of the binders. Furthermore, the effects and behavior of plasticizers
in the triazole-crosslinked polymer were also studied [21]. While triazole-crosslinked-polymers exhibited
excellent performance characteristics, their poor cost-competitiveness by the relatively expensive raw
materials required for the synthesis are the major disadvantages for their use.

To solve these kinds of problems, a relatively cheap and less toxic nitramine group (–N–NO2)
was introduced into the polymer backbone and the synthesis of polyether and polyester-type polymer
containing the nitramine group has been reported [22,23]. A polymer containing a nitramine-group
typically shows proper viscosity and glass transition temperature and is resistant to hydrolysis.
However, studies on the preparation of a binder introducing this group and a study of its physical
properties have not been carried out yet [24]. The effect of the nitramine-group on the binder was usually
confirmed by studies which added a cyclic nitramine, such as hexahydro-1,3,5-trinitro-1,3,5-s-triazine
(RDX) or 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane (HMX), to the binder [25–27], or studies which
used a polymer containing a nitro group that is similar to the nitramine group [28,29]. Thus, studies
exploring the properties of binders which use a nitramine-group-containing polymer have been lacking.
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Thus, in this study, a nitramine group-containing prepolymer was synthesized by using a monomer
containing the nitramine group in their molecular structure to investigate the effect of the nitramine
group present in the polymer backbone of the binder on the propellant. The binder was then prepared
by using the synthesized low-molecular-weight energetic prepolymer and its thermal and mechanical
properties were studied. Additionally, the effect of plasticizer on binder was studied by using binder
which was applied NE-type plasticizer.

2. Experimental Section

2.1. Materials for Monomer Synthesis and Prepolymer Polymerization

For monomer synthesis, ethylenediamine (≥99%) was purchased from Merck, Kenilworth,
New Jersey, USA. Acrylonitrile (>99.0%) was purchased from Tokyo Chemical Industry (TCI),
Nihonbashi-honcho, Japan, and hydrochloric acid (35.0%) was purchased from DAEJUNG Chemicals,
Korea. Acetic anhydride (>93%) and methyl alcohol (>99.8%) were purchased from DUKSAN Chemicals,
Daejeon, Korea, and nitric acid (95%) was purchased from SAMCHUN Chemicals, Seoul, Korea.
For the polymerization of the prepolymer, diethylene glycol (DEG) (>99.5%) was purchased from
Tokyo Chemical Industry (TCI), Nihonbashi-honcho, Japan.

2.2. Materials for Binder Preparation and Plasticizer

Trifunctional group curative (Desmodur N-3200) and the TPB (triphenyl bismuth) catalyst which
were required for the preparation of the binder, were purchased from Covestro and DONGIN Chemicals,
respectively. The poly (diethylene glycol adipate), a polyester-type prepolymer synthesized with
adipic acid and diethylene glycol, which was used for comparison with the energetic binder, was
purchased from SONGWON Industrial Co., Korea. And for controlling Tg of binder, the nitrate-ester
(NE)-type plasticizer, butanetriol trinitrate (BTTN) and trimethy-lolethane trinitrate (TMETN), were
supplied by Agency for Defense Development, Korea.

2.3. Synthesis of Energetic Monomer

Acetic anhydride (94 mL) was placed in a 2-neck flask and was cooled to 0 ◦C under an argon
atmosphere. Nitric acid (95%, 2.7 g, 0.04 mol) and hydrochloric acid (35%, 1.32 g, 0.04 mol) were added
to the cooled flask. The resulting mixture (3,3′-(ethane-1,2-diylbis(azanediyl))dipropanenitrile nitric
acid salt (19.90 g, 0.068 mol)) was added by portionwise at 35 ◦C for 2 h and was then stirred for 4 h at
35 ◦C. A solution of 35% hydrochloric acid (3.00 g, 0.08 mol) was added to the reaction mixture until
the reactant turned dark yellow. The reaction mixture was stirred at 35 ◦C for 30 min, the temperature
was increased to 55 ◦C and the stirring was continued for another 30 min. The temperature was then
cooled to 10 ◦C and the reaction mixture was crystallized by addition of cold distilled water (120 mL).
The crystallized solid was filtered off under reduced pressure to obtain N,N′- (ethane-1,2-diyl) bis
(N-(2-cyanoethyl) nitramide) (8.80 g, 50%) as a white solid.

Hydrochloric acid (35%, 160 mL, 5.26 mol) was added to the N,N′-(ethane-1,2-diyl) bis
(N-(2-cyanoethyl) nitramide and the mixture was refluxed for 16 h. After removal of water by
vacuum distillation, the product was cooled and recrystallized at 5 ◦C and was filtered off under
reduced pressure. The product was dried to obtain 4,7-dinitrazadecanoic-1,10-diacid (DNDA) (10 g,
99%) as a white solid and the DNDA monomer melting point is 100 ◦C. A brief synthesis of the
monomers is shown in Figure 1.
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Figure 1. Synthesis of 4,7-dinitrazadecanoic-1,10-diacid.

2.4. Polymerization of Energetic Prepolymer

Diethylene glycol was reacted with the carboxyl groups at both ends of the synthesized energetic
monomer 4,7-dinitrazadecanoic-1,10-diacid for polymerization. Figure 2 shows the condensation of the
carboxyl group at both ends of the monomer with the alcohol, which results in the formation of ester
linkages. As both reactants are highly reactive, the ester-type polymer was easily obtained by mixing and
heating the 4,7-dinitrazadecanoic-1,10-diacid and diethylene glycol. The 4,7-dinitrazadecanoic-1,10-diacid
(1.27 g, 0.0043 mol) was reacted with diethylene glycol (0.73 g, 0.0069 mol) in the presence of the
p-toluenesulfonic acid (0.013 g, 0.00008 mol) catalyst. During the reaction, nitrogen gas was continuously
purged through the flask and the reaction mixture was stirred at 120 ◦C for 8 h while removing water.
The product was dissolved in CH2Cl2 and was precipitated in MeOH. After drying at 60 ◦C for 12 h in
a vacuum oven, the prepolymer (DNDA_DEG, 1.8 g, 90%) containing the –OH group at the terminal
was synthesized.
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2.5. Characterization of Energetic Monomer and Prepolymer

1H- and 13C-NMR spectra were acquired at 400 and 100 MHz using a JNM-AL400 spectrometer
(JEOL, Japan), respectively. The number-average molecular weight (Mn) and molecular weight
distribution (MWD) were determined using GPC (gel permeation chromatography) calibrated with
poly ethylene glycol (PEG) standard. The GPC consisted of Agilent 1100 pump, Refractive Index
Detector and PSS GRAM (5 µm, 102 Å 8.0 × 300.0 mm) columns.

Fourier-transform infrared spectroscopic (FT-IR) analysis was carried out using a Nicolet 6700
spectrometer (Thermo Scientific) at a resolution of 8 cm−1 in the 650–4000 cm−1 spectral range using an
attenuated total reflection (ATR) method.

The OH value of the prepolymer was measured using an auto titrator (Metrohm 888 Titrando
Model) according to ASTM E 1899-08 after titration with tetrabutylammonium hydroxide (TBAOH).

2.6. Formation of Urethane Crosslinked Binder Network

A prepolymer containing an –OH group at the terminal position, plasticizer, and Desmodur
N-3200, a trifunctional group curative containing the NCO group, were mixed at the functional
ratio of 1:1.1 (–OH/–NCO). DNDA_DEG prepolymer is high viscosity liquid phase. It is possible to
manufacture the binder at room temperature, but this mixing process was carried out at 60 ◦C to
improve processability. A solution of the TPB in acetone was added to this mixture as a catalyst and
the mixture was stirred for 15 min. The acetone was removed by an evaporator with stirring at 60 ◦C
for 30 min. The resulting compound was poured into a mold and curing was performed at 60 ◦C for
one week.

2.7. Thermogram Analysis

Thermal properties of the polymer were measured with a differential scanning calorimeter
(Instrument DSC Q20 V24.11 Build 124) at a −10 ◦C/min rate under a nitrogen atmosphere at −80 to
100 ◦C. The mass loss was measured in the 10 to 510 ◦C range under a nitrogen atmosphere at a rate of
10 ◦C/min by the thermogravimetric analysis (TGA 550, TA Instruments).

2.8. Mechanical Properties

The mechanical properties were measured using a universal testing machine (UTM; KSU-05M-C,
KSU Co., Ansan, Korea) with a sample of dimensions 35 mm (length) × 6 mm (width) × 1 mm
according to ISO-37 type 4. The elongation and tensile strength were measured at a rate of 50 mm/min
at room temperature.

3. Results and Discussion

3.1. Characterization of Energetic Monomer and Prepolymer

3.1.1. H-NMR and 13C-NMR Spectra of Energetic Monomer

The 1H- and 13C-NMR spectra of the prepared 4,7-dinitrazadecanoic-1,10-diacid were acquired
for confirming the chemical structure (Figure 3). 4,7-Dinitrazadecanoic-1,10-diacid: white powder; 1H
NMR (400 MHz, DMSO-d6) δ 4.08 (s, 4 H), 3.91 (t, J = 8.0 Hz, 4 H), 2.63 (t, J = 4.0 Hz, 4 H). 13C-NMR
(100 MHz, DMSO-d6) δ 172.2, 48.9, 47.8, 31.0.
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3.1.2. H-NMR Spectrum of Energetic Prepolymer

A GPC measurement of the polymer resulting from the reaction of DNDA, the monomer-containing
nitramine group, with diethylene glycol, showed that the prepolymer had a number-average molecular
weight (Mn) of 2300 g/mol and a molecular weight distribution (MWD) of 1.5. 1H-NMR data showed
the microstructure of the synthesized prepolymer. The –OH group at the end of the prepolymer showed
a peak at 4.62 ppm and the presence of the nitramine-group (–N–NO2) was confirmed by the peaks at
3.95 and 4.08 ppm. The peak at 2.75 ppm confirmed the formation of the ester group by condensation
polymerization and the peaks at 4.15 and 3.62 ppm indicated the presence of the glycol-polymerized
polymer backbone. The calculation of the area-ratio confirmed that a low-molecular-weight prepolymer
having five to six repeating units was synthesized. Detailed results are shown in Figure 4.
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3.1.3. FT-IR Spectrum of Energetic Prepolymer

FT-IR measurement results of the prepared prepolymer are shown in Figure 5. The broad peak at
3200–3500 cm−1 indicated the presence of the –OH group at the terminal position of the prepolymer.
The peaks at 1735–1750 cm−1, indicated the presence of the carbonyl group of the ester and the peak at
around 1290–1360 cm−1 indicated the presence of the –NO2 group. Thus, the IR analysis confirmed the
synthesis of a prepolymer having a nitramine group and a terminal –OH in the polymer chain.
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3.1.4. Thermogravimetric Analysis of Monomer and Prepolymer

The thermal properties of the monomer were measured and show the melting point at 113.4 ◦C.
The thermal properties of the commercial SS-207 prepolymer and that of the synthesized DNDA_DEG
prepolymer were compared. The SS-207 prepolymer, used as a reference, is a polyester-type prepolymer
synthesized with adipic acid and diethylene glycol and has a similar molecular structure to that of the
DNDA_DEG prepolymer.

The cohesive energy density, which indicates the agglomeration characteristics of the polymer
chain, of the synthesized DNDA_DEG prepolymer, was high due to the presence of the energetic
nitramine group and which was also reflected by its higher Tg than that of the SS-207 [30–32].
Furthermore, the formation of an amorphous polymer was confirmed by the lack of the change in
the direction of the heat flow up to 100 ◦C. Prepolymer chemical structures that we use are shown in
Figure 6 and detailed DSC thermograms are shown in Figures 7–9.
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3.2. Formation of Urethane Crosslinked Binder Network

An energetic binder was prepared using the DNDA_DEG prepolymer containing the nitramine
group and a comparative evaluation was conducted with a binder which did not contain a nitramine
group. A DNDA_DEG prepolymer which had a molecular weight similar to that of SS-207 was
synthesized and the –OH value was measured before the preparation of the binder. The binder was
prepared using DNDA_DEG prepolymer and Desmodur N-3200, a trifunctional curing agent, based
on the measured –OH value. Additionally, binders are prepared using NE-type plasticizer to solve the
high Tg problem of DNDA_DEG prepolymer. The detailed binder formulations are shown in Table 1
and confirm that a clear transparent elastomer was formed by the crosslinking of the binder.
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Table 1. Formulation of urethane-crosslinked binder network.

Step Unit T-1 T-2 T-3 T-4 T-5

Prepolymer –OH value
- SS-207 DNDA_DEG

mgKOH/g 56 56 56 56 56
mole/kg 1 1 1 1 1

Curatives –NCO value mole/kg 5.45 5.45 5.45 5.45 5.45
–NCO: –OH - 1.1 1.1 1.1 1.1 1.1
Prepolymer g 2.909 2.909 1.588 1.092 0.832
Curatives g 0.587 0.587 0.321 0.220 0.168
Catalyst g 0.004 0.004 0.004 0.004 0.004

Plasticizer g - - 1.588 2.184 2.496

3.3. Thermogravimetric Analysis of Binders

The thermal properties of the prepared binder were measured using DSC and TGA and the
detailed DSC results are shown in Table 2, also TGA results are shown in Figures 10 and 11. In the case
of the T-2 compound, which was prepared by using a prepolymer containing the nitramine group,
shows higher Tg than T-1 compound due to Tg of DNDA_DEG prepolymer. So, NE-type plasticizer
was applied to reduce the Tg of the binder prepared by using DNDA_DEG prepolymer, and effectively
lowered the Tg of the binder and shows lower Tg than T-1 compound when more than 200 wt % of
plasticizer, compared to prepolymer, was applied.

In the case of the T-1 compound, which was prepared by using a commercial prepolymer,
the backbone of the polymer began to decompose at around 300 ◦C according to the TGA results and
the continuous mass reduction was observed up to 450 ◦C, which is similar to the thermal degradation
behavior of the general polymer. However, unlike the T-1 compound, the T-2 compound prepared by
using the prepolymer containing the nitramine group showed a rapid decrease of mass due to the
decomposition of the nitramine group at 245 ◦C. Therefore, in the case of the T-2 compound, it can be
confirmed that the nitramine group exists in the urethane network after the preparation of binder and
a larger propulsive force can be obtained at a lower temperature using this material than with the use
of the binder prepared using the commercial prepolymer.

Table 2. DSC data of urethane crosslinked binder network.

Title T-1 T-2 T-3 T-4 T-5

Tg (◦C) −40 5.5 −26 −44 −49

Polymers 2019, 11, 1966 9 of 13 

 

3.2. Formation of Urethane Crosslinked Binder Network 

Table 1. Formulation of urethane-crosslinked binder network. 

Step Unit T-1 T-2 T-3 T-4 T-5 

Prepolymer  
–OH value 

- SS-207 DNDA_DEG 
mgKOH/

g 
56 56 56 56 56 

mole/kg 1 1 1 1 1 
Curatives  

–NCO value mole/kg 5.45 5.45 5.45 5.45 5.45 

–NCO: –OH - 1.1 1.1 1.1 1.1 1.1 
Prepolymer  g 2.909 2.909 1.588 1.092 0.832 
Curatives g 0.587 0.587 0.321 0.220 0.168 
Catalyst g 0.004 0.004 0.004 0.004 0.004 

Plasticizer g - - 1.588 2.184 2.496 

An energetic binder was prepared using the DNDA_DEG prepolymer containing the nitramine 
group and a comparative evaluation was conducted with a binder which did not contain a nitramine 
group. A DNDA_DEG prepolymer which had a molecular weight similar to that of SS-207 was 
synthesized and the –OH value was measured before the preparation of the binder. The binder was 
prepared using DNDA_DEG prepolymer and Desmodur N-3200, a trifunctional curing agent, based 
on the measured –OH value. Additionally, binders are prepared using NE-type plasticizer to solve 
the high Tg problem of DNDA_DEG prepolymer. The detailed binder formulations are shown in 
Table 1 and confirm that a clear transparent elastomer was formed by the crosslinking of the binder. 

3.3. Thermogravimetric Analysis of Binders 

Table 2. DSC data of urethane crosslinked binder network. 

title T-1 T-2 T-3 T-4 T-5 
Tg(oC) −40 5.5 −26 −44 −49 

 

Figure 10. TGA thermogram of SS-207 binder. 
Figure 10. TGA thermogram of SS-207 binder.



Polymers 2019, 11, 1966 11 of 14
Polymers 2019, 11, 1966 10 of 13 

 

 

Figure 11. TGA thermogram of DNDA_DEG binder. 

The thermal properties of the prepared binder were measured using DSC and TGA and the 
detailed DSC results are shown in Table 2, also TGA results are shown in Figures 10 and 11. In the 
case of the T-2 compound, which was prepared by using a prepolymer containing the nitramine 
group, shows higher Tg than T-1 compound due to Tg of DNDA_DEG prepolymer. So, NE-type 
plasticizer was applied to reduce the Tg of the binder prepared by using DNDA_DEG prepolymer, 
and effectively lowered the Tg of the binder and shows lower Tg than T-1 compound when more than 
200 wt % of plasticizer, compared to prepolymer, was applied.  

In the case of the T-1 compound, which was prepared by using a commercial prepolymer, the 
backbone of the polymer began to decompose at around 300 °C according to the TGA results and the 
continuous mass reduction was observed up to 450 °C, which is similar to the thermal degradation 
behavior of the general polymer. However, unlike the T-1 compound, the T-2 compound prepared 
by using the prepolymer containing the nitramine group showed a rapid decrease of mass due to the 
decomposition of the nitramine group at 245 °C. Therefore, in the case of the T-2 compound, it can be 
confirmed that the nitramine group exists in the urethane network after the preparation of binder 
and a larger propulsive force can be obtained at a lower temperature using this material than with 
the use of the binder prepared using the commercial prepolymer. 

3.4. Mechanical Properties of Binders 

 

Figure 12. Mechanical properties of binder. 

Figure 11. TGA thermogram of DNDA_DEG binder.

3.4. Mechanical Properties of Binders

Since the DSC measurement showed the amorphousness of the prepared binder, mechanical
properties were measured at room temperature. The T-2 compound prepared from prepolymer
containing a nitramine-group showed four-times higher tensile strength and five-times higher
elongation than the T-1 compound prepared with the commercial prepolymer. Generally, the presence
of an energetic functional group such as an azido group in the polymer backbone affects the mechanical
strength and elongation of the binder [5,33]. Even though the T-2 compound forms a urethane network
similar to that of the T-1 compound, the internal energy of the T-2 compound is improved due to the
presence of the nitramine group in prepolymer backbone.

In the case of the compound that the plasticizer is applied, the tensile strength and the elongation
decreases as the content of the plasticizer increases. Generally, studies have reported that the
crosslinking density is significantly affected by the plasticizer. As a result of the addition of plasticizer,
tensile strength and elongation showed decreases. [34,35] Especially in the case of compound with
300 wt % of plasticizer compared to prepolymer, the amount of plasticizer is high, so it is difficult to
form polymer network, so showed worse mechanical properties.

However, T-3 and T-4 compounds were found to have low Tg while showing excellent mechanical
properties as a good solid propellant binder. (tensile strength >2 bar, elongation at break >200%,
and Tg < −20 ◦C) Accordingly, high-energy binder with excellent mechanical properties can be prepared
by using prepolymer containing the nitramine group synthesized in this laboratory and urethane
network binder having a low Tg can be prepared by applying plasticizer of NE type. The detailed
results are shown in Figure 12 and Table 3.
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Table 3. Mechanical properties of the binder.

Title Unit T-1 T-2 T-3 T-4 T-5

Elongation at break % 96 517 219 211 157
Tensile strength bar 7.4 15.3 7.6 2.9 2.1

4. Conclusions

The purpose of this study was to investigate the effect of a nitramine group present in the polymer
backbone on the properties of the binder for the propellant. We synthesized a low-molecular-weight
high-energetic prepolymer with a monomer containing the nitramine group in the molecule and,
using this prepolymer, we prepared a binder and studied its thermal and mechanical properties.
The experimental conditions for the synthesis of the energetic monomer containing the nitramine
group were established and the monomer was used for the polymerization of a polyester-type
nitramine-containing prepolymer with a terminal –OH group. The structures of the synthesized
energetic monomer and the energetic prepolymer were confirmed by 1H- and 13C-NMR and the
presence of the nitramine group was confirmed through FT-IR analysis. Importantly, the synthesized
prepolymer is a stable amorphous polymer at 60 ◦C, which is the condition used for preparing
the binder.

Notably, the thermal characterization of energetic binder showed a rapid weight loss due to the
decomposition of the nitramine group at 245 ◦C. Furthermore, through this study, the applicability
of the nitramine-group-containing prepolymer as a propellant binder was confirmed and the effect
of the nitramine group on the polymer backbone for improving the mechanical properties of the
polyurethane binder was established. The polyurethane binder prepared by using the NE-type
plasticizer, polyester-type prepolymer containing the nitramine group showed excellent mechanical
properties (tensile strength >2 bar, elongation at break >200%, and Tg < −20 ◦C) as a composite-solid
propellant binder.

Since the evaluation of binders using nitramine-group-containing prepolymer in various curing
systems such as polysulfides and triazoles has not been studied yet, this study will facilitate
the development of such applications and will allow the synthesis of efficient energetic binders
for propellants.
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