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ABSTRACT

In the early months of the coronavirus disease 2019 (COVID-19) pandemic, a hypothesis emerged suggesting that
pharmacologic inhibitors of the renin–angiotensin system (RAS) may increase COVID-19 severity. This hypothesis was
based on the role of angiotensin-converting enzyme 2 (ACE2), a counterregulatory component of the RAS, as the binding
site for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), allowing viral entry into host cells. Extrapolations
from prior evidence led to speculation that upregulation of ACE2 by RAS blockade may increase the risk of adverse
outcomes from COVID-19. However, counterarguments pointed to evidence of potential protective effects of ACE2 and RAS
blockade with regard to acute lung injury, as well as substantial risks from discontinuing these commonly used and
important medications. Here we provide an overview of classic RAS physiology and the crucial role of ACE2 in systemic
pathways affected by COVID-19. Additionally, we critically review the physiologic and epidemiologic evidence surrounding
the interactions between RAS blockade and COVID-19. We review recently published trial evidence and propose important
future directions to improve upon our understanding of these relationships.
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INTRODUCTION

Early in the coronavirus disease 2019 (COVID-19) pandemic, a
hypothesis emerged proposing that angiotensin-converting en-
zyme inhibitors (ACEIs) and angiotensin II receptor blockers
(ARBs), inhibitors of the renin–angiotensin system (RAS), may
increase the risk of development and severity of COVID-19 [1].
This hypothesis was based on limited physiologic evidence cou-
pled with initial clinical descriptions of individuals hospitalized
with COVID-19. Considering that ACEIs/ARBs are among the
most prescribed medications globally [2, 3], the hypothesis of a
potential interaction between RAS blockade and COVID-19
quickly gained momentum in the lay press and medical
community. Several medical societies quickly reacted, unani-
mously recommending that patients continue to take these
medications until more information became available [4, 5].

The physiologic evidence for the hypothesis was based on
the role of angiotensin-converting enzyme 2 (ACE2), a
counterregulatory component of the RAS, as the primary bind-
ing site for severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2), facilitating SARS-CoV-2 entry into host cells [6–8].
Prior evidence suggested that ACEIs/ARBs upregulate ACE2 [9,
10], and individuals hypothesized that increased ACE2 expres-
sion may increase susceptibility to SARS-CoV-2 infection, in-
creasing the risk of development and severity of COVID-19
(Figure 1) [1]. However, counterevidence supported a protective
role of ACE2 as well as possible differential effects between
ACEIs and ARBs on the risk of acute lung injury [11, 12].
Epidemiologically, the hypothesis was based on findings from
initial case series, which showed that a high proportion of indi-
viduals hospitalized with COVID-19 had conditions commonly
treated with RAS blockade, including hypertension, diabetes,
and heart disease [13–15]. These initial case series did not pro-
vide information on the frequency of ACEI/ARB use nor could
they be used to draw conclusions about the relationships be-
tween these risk factors with adverse outcomes [16].

The current review aims to provide an overview of classic
RAS physiology and its interaction with SARS-CoV-2. We exam-
ine the role of ACE2 in hypertension; effects in the heart, kid-
neys, brain, lungs and thromboembolic pathways; and how
ACE2 may impact host responses to SARS-CoV-2 infection. We
also evaluate the strengths and limitations of the current physi-
ologic and epidemiologic evidence of the relationships between
RAS blockade and COVID-19 and propose approaches to im-
prove our understanding of these relationships in future
studies.

ROLE OF ACE2 IN RAS PHYSIOLOGY
ACE2 in hypertension

The RAS plays a crucial role in regulating blood pressure (BP),
including fluid and electrolyte balance and vascular tone.
Targeting the RAS with ACEIs/ARBs constitutes a very effective
strategy to treat hypertension. Since the discovery of ACE in
1956 [17], our understanding of the RAS as an endocrine system
has been focused primarily on studying the interaction of
angiotensin II (Ang II) with the Ang II type 1 (AT1) receptor to
increase BP. However, our understanding of the RAS shifted
dramatically with the identification of angiotensin 1–7 (Ang-1–
Ang-7) in the late 1980s as the first amino-terminal angiotensin
peptide possessing biological actions that oppose those of Ang
II [18–22].

ACE2 catalyzes the formation of Ang-1–7 from Ang II [23, 24]
and thus plays a critical role in RAS counterregulation by de-
creasing Ang II content and increasing Ang-1–7 content, among
other roles [25]. Mice lacking the ACE2 gene had an enhanced
Ang II pressor response [26]. ACE2-deficient mice on the C57BL/
6 background had modestly increased BP compared with con-
trols at baseline, but acute Ang II infusion increased plasma
Ang II concentrations and BP to a greater extent in the ACE2-de-
ficient mice compared with controls [27]. In rat models of hyper-
tension, renal ACE2 messenger ribonucleic acid (mRNA) and
protein levels and expression are markedly lower than those ob-
served in normotensive controls [28]. ACE2 enzymatic activity is
not limited to the RAS; ACE2 can metabolize and inactivate
other peptides such as pyr-apelin 13 and apelin 17, the domi-
nant apelin peptides [29], which have hypotensive effects [30].
Indeed, ACE2 knockout mice had potentiated hypotensive
responses from pyr-apelin 13 that corresponded to greater
plasma apelin levels and that the selective ACE2 inhibitor MLN-
4760 blocked [31]. On the other hand, in select models, lisinopril
may increase cardiac ACE2 mRNA expression but not activity,
while losartan may increase both cardiac ACE2 mRNA expres-
sion and activity, in addition to their BP-lowering effects in
Lewis rats [9].

ACE2 in target organ disease. Heart. ACE2 plays a critical role in
cardiovascular pathology development, especially heart failure.
ACE2 is present in the membrane of most epithelial cells, car-
diac myocytes, vascular smooth muscle and endothelial cells,
the adventitia of large blood vessels and neural tissues [32].
ACE2-deficient mice exhibit severely reduced cardiac contractil-
ity [28]. Chronic ACE2 inhibition with MLN-4760 in transgenic
rats increased cardiac Ang II content and significantly increased
left ventricular anterior, posterior and relative wall thicknesses,
as well as increased interstitial collagen fraction area and cardi-
omyocyte hypertrophy [33].

Furthermore, increasing Ang-1–7 content improves heart
function, reverses cardiac remodeling and restores vascular re-
sponsiveness after myocardial infarction [34, 35], while recom-
binant human ACE2 successfully reduced cardiac hypertrophy
and dysfunction in preclinical models of heart failure [36]. On
the other hand, transgenic mice with increased cardiac ACE2
expression had a high incidence of sudden death due to pro-
gressive conduction and rhythm disturbances with sustained
ventricular tachycardia and terminal ventricular fibrillation
[37]. Thus the exact role of ACE2 in cardiovascular disease, and
in particular heart disease, remains incompletely understood.

Kidney. The ACE/Ang II and ACE2/Ang-1–7 pathways are
coexpressed throughout the kidney, including in the arterioles,
epithelium, endothelium and podocytes of the glomerulus and
throughout the tubular epithelium but particularly the proximal
tubular brush border [10, 38, 39]. The ACE2/Ang-1–7 pathway
generally opposes Ang II’s actions to promote renal vasodilation
and sodium and water excretion and to prevent or attenuate in-
flammation and fibrosis [40, 41]. In most experimental models
and clinical studies, acute and chronic kidney injuries increase
the ACE/Ang II pathway relative to decreasing the ACE2/Ang-1–
7 pathway [42–44]. Furthermore, there are numerous feedback
loops within the RAS. For example, Ang II downregulates ACE2
expression in kidney tubular cells via extracellular regulated 1/2
and p38 mitogen-activated protein kinases [45].

In rats, ischemia–reperfusion decreased renal ACE2 mRNA
and protein expression and enzymatic activity, altered renal
Ang-1–7 content and increased renal Mas receptor mRNA
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Potential mechanism 1: ACEIs and ARBs harmful

Potential mechanism 2: ACEIs and ARBs helpful

Potential mechanism 3: ACEIs are harmful and ARBs are neutral
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FIGURE 1: Three proposed mechanisms of ACEI and ARB effect in COVID-19. ACE, angiotensin-converting enzyme; ACEI, angiotensin-converting enzyme inhibitor;

ARB, angiotensin II receptor blocker; ACE2, angiotensin-converting enzyme 2; Ang I, angiotensin I; Ang II, angiotensin II; Ang-(1–7), angiotensin-(1–7); MasR, mas recep-

tor; AT1R, angiotensin II type 1 receptor; DABK, [des-Arg9]-bradykinin; B1, G-protein-coupled receptor for DABK; B2, G-protein-coupled receptor for bradykinin. Red

dashed lines: harmful effects of ACEI/ARB; blue dashed lines: beneficial effects of ACEI/ARB; black dashed lines: effects of SARS-CoV-2; black solid lines: normal path-

ways; red Xs: downstream detrimental effects of ACEI on normal pathways; purple Xs: downstream detrimental effects of SARS-CoV-2 on normal pathways. This

three-panel figure shows proposed mechanisms of ACEIs and ARBs in COVID-19 infection. Mechanism 1: ACEIs and ARBs are harmful. ACEIs and ARBs upregulate

ACE2 expression on respiratory epithelial cells, thus increasing available receptors to bind SARS-CoV-2 and facilitate cell entry. Mechanism 2: ACEIs and ARBs are bene-

ficial. ACEIs inhibit conversion of Ang I into Ang II, while ARBs inhibit Ang II binding to AT1R, thereby both ACEIs and ARBs block Ang II-AT1R–mediated deleterious

effects in the lungs. Also shown are SARS-CoV-2-mediated ACE2 downregulation and subsequent Ang II cleavage into Ang-1–7 and Ang-1–7-MasR–mediated anti-in-

flammatory and anti-fibrotic effects. In the presence of SARS-CoV-2, there is less ACE2 available to cleave Ang II and hence more Ang II is available to bind to AT1R.

Additionally, less Ang-1–7 is available to bind to MasR, leading to increased inflammation and fibrosis. Mechanism 3: ACEIs are harmful and ARBs are neutral. ACEIs in-

hibit bradykinin breakdown into harmless products, thus increased bradykinin either binds to the B2 receptor or is converted to DABK that binds to the B1 receptor,

leading to increased lung inflammation. ARBs play no role in the bradykinin cascade and are not pictured. Additionally, SARS-CoV-2 downregulates ACE2, which nor-

mally breaks down DABK. More DABK is then available to bind to the B1 receptor, further promoting lung inflammation.
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expression [42, 44]. These effects were magnified in ACE2
knockout mice and mitigated in ACE2 transgenic mice [44].
Diabetes reduced renal ACE2 mRNA and protein expression and
renal Ang-1–7 concentration despite increased renal and
plasma ACE2 activity, effects that MLN-4760 enhanced [46]. Loss
of ACE2 and the Mas receptor leads to Ang II–dependent glomer-
ular injury and kidney dysfunction [47, 48]. Recombinant hu-
man ACE2 increased plasma ACE2 activity, increased Ang-1–7,
decreased Ang II renal and plasma concentrations and im-
proved kidney function and BP in diabetic mice [46]. Further,
conditions of endogenous RAS activation likely enhance, or are
required for, Ang-1–7’s counterregulatory actions [49].

Brain. The role of the brain RAS in the central regulation of car-
diovascular physiology and the autonomic nervous system is
clear from studies of wild-type and transgenic animals. As in
other tissues, the balance between the ACE/Ang II and ACE2/
Ang-1–7 pathways in the brain is crucial for cardiovascular
health [50]. Ang II AT1 receptor signaling in the brain increases
BP via enhanced sympathetic outflow [51, 52], vasopressin
release [53] and cardiac baroreflex resetting [50, 54, 55]. In the
spontaneously hypertensive rat, upregulation of brain RAS com-
ponents (i.e. angiotensinogen, ACE, Ang II and AT1 receptor)
preceded and sustained hypertension development, which
intracerebroventricular captopril injection reversed [56].

Meanwhile, the brain ACE2/Ang-1–7 pathway
counterregulates Ang II’s effects on cardiovascular function, au-
tonomic function and cognition. ACE2 is expressed throughout
the brain, including nuclei involved in central regulation of car-
diovascular function in the brainstem and noncardiovascular
areas such as the motor cortex and raphe [57]. In humans, ACE2
mRNA expression in the brain was at least 10-fold lower than
ACE [58]. Ang-1–7 decreased BP and improved baroreflex func-
tion in animal models of hypertension [54, 59–61].

ACE2 knockout mice exhibited reduced cardiac baroreflex
function compared with wild-type, which intracerebroventricu-
lar losartan injection restored [62]. ACE2 overexpression in the
rostral ventrolateral medulla reduced BP in spontaneously hy-
pertensive rats [63], which could be due to ACE2-induced Ang II
degradation as well as AT1 receptor downregulation in this re-
gion. In addition, ACE2 overexpression in the subfornical organ
prevented Ang II–mediated pressor and thirst responses [64].
ACE2 overexpression in select areas of the brain in transgenic
mice reduced sympathetic outflow and improved autonomic
function [65]. Frontal cortex ACE2 activity was reduced in an
Alzheimer’s disease mouse model [66]. Intraperitoneal dimina-
zene aceturate administration, an established ACE2 activator,
lowered hippocampal Ab and restored cognition in middle-aged
symptomatic mice via increased ACE2 activity, restored Mas re-
ceptor levels and decreased extracellular regulated kinase 1/2
signaling [67].

ACE2 and the lung

The RAS regulates pulmonary vascular tone, the integrity of the
alveolar capillaries and the immune system response to lung
injury, among other functions. While several pulmonary cell
types express the RAS, including alveolar epithelial cells, resi-
dent immune cells and pulmonary vascular endothelial and
smooth muscle cells, ACE/Ang II pathway expression is typically
much stronger than ACE2/Ang-1–7, which is predominantly
limited to type II alveolar epithelial cells [32, 68]. Notably, lung
injury increases ACE/Ang II but downregulates ACE2/Ang-1–7,

further driving inflammation and fibrosis [69, 70]. Ang II–AT1

receptor signaling increases pulmonary vasculature perme-
ability, promotes immune system cell migration, activation
and differentiation and induces alveolar epithelial cell apopto-
sis and fibroblast differentiation [71–74]. Ang-1–7 acts in part
through the Mas receptor to block these Ang II–mediated
effects [75].

In various models of acute lung injury (acid, sepsis, endo-
toxin, influenza), ACE2 knockout mice had greater increases
in inflammatory cell infiltration and lung edema that were
associated with increased pulmonary vascular permeability,
hyaline membrane formation and elastance and greater
decreases in oxygenation compared with wild-type mice [76,
77]. Intraperitoneal recombinant human ACE2 administration
improved elastance and edema and decreased Ang II content in
acid-treated ACE2 knockout and wild-type mice [76]. Similarly,
acid exposure decreased ACE2 protein expression in wild-type
mice and increased lung Ang II concentrations to a greater ex-
tent in ACE2 knockout mice compared with wild-type mice [76].
SARS-CoV Spike protein binds to ACE2 on type II alveolar epi-
thelial cells and subsequently downregulates ACE2 expression,
increases lung Ang II concentration and enhances AT1 receptor–
mediated injury [6]. While this has been postulated to occur in
SARS-CoV-2 as a mediating factor in COVID-19, to date there
have been no studies to confirm this pathophysiologic process
[7]. Mast cells recruited to areas of lung injury can release chy-
mase, which could lead to further increases in Ang II [78, 79].
Loss of pulmonary ACE2 activity can also drive lung inflamma-
tion via increased [des-Arg9]-bradykinin (DABK)/bradykinin re-
ceptor B1 activation and possibly via alterations to the apelin
pathway [80, 81].

In rats exposed to lipopolysaccharide plus mechanical venti-
lation, treatment with losartan or cyclic Ang-1–7 increased
ACE2 activity and Ang-1–7 concentrations in bronchoalveolar
lavage fluid, improved oxygenation and reduced lung injury
compared with placebo [69]. Pretreatment or treatment with
losartan or Ang-1–7 reduced acute lung injury and fibrosis,
while pretreatment or treatment with the Mas receptor antago-
nist A-779 not only reversed this protective effect, but enhanced
progression to fibrosis [82, 83]. In humans, limited clinical evi-
dence supports the experimental evidence. ACE and ACE2 activ-
ity in bronchoalveolar lavage fluid correlated weakly with
inflammatory markers in patients with acute respiratory dis-
tress syndrome [84]. In a pilot study in patients with acute respi-
ratory distress syndrome, intravenous recombinant human
ACE2 decreased Ang II levels and increased Ang-1–7 levels in
plasma but did not affect lung physiology or outcomes [85].

ACE2 and thrombosis

The ACE2/Ang-1–7 pathway is crucial to maintaining vascular
endothelial integrity, in part via nitric oxide release, and is
expressed by platelets and thus mediates vascular inflamma-
tion and the clotting cascade [32, 86–88]. Ang II–AT1 receptor
binding stimulates inflammatory cell recruitment and cytokine
release to promote thrombosis, which ACE2/Ang-1–7 can miti-
gate in part via negatively modulating plasminogen activator
inhibitor-1, extracellular signal-regulated kinase 1/2 and nico-
tinamide adenine dinucleotide phosphate oxidase and decreas-
ing oxidative stress [89–93].

ACE2 knockout mice demonstrate increased expression
of interleukin-6, monocyte chemoattractant protein-1 and vas-
cular cell adhesion molecule-1, increased macrophage response
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to Ang II and increased endothelial cell activation and respon-
siveness to tumor necrosis factor-a [94]. In a hypertension
rat model, greater thrombus formation was associated with
decreased ACE2 activity, and ACE2 inhibition increased throm-
bus weight while ACE2 activation attenuated thrombus forma-
tion and reduced platelet attachment [95]. Decreased ACE2
could also promote thrombosis via modulation of bradykinin/
kallikrein [96]. SARS-CoV-2 decreased platelet ACE2 levels
in vitro and patients with COVID-19 had lower platelet ACE2
levels compared with healthy controls [87]. Platelets express
transmembrane protease serine 2, and SARS-CoV-2, via the
Spike protein, was shown to bind directly to platelets, potenti-
ate platelet activation, enhance platelet spread and stimulate
coagulation factor and inflammatory cytokine release from pla-
telets via mitogen-activated protein kinase pathways in vitro
and in vivo, while recombinant human ACE2 suppressed these
effects [87].

PROPOSED ROLE OF ACEIs AND ARBS ON ACE2 IN COVID-19.
Proposed mechanisms for adverse effects. Despite the critical roles
that ACEIs/ARBs have in diminishing adverse cardiovascular
and kidney outcomes, concern emerged early in the pandemic
that these drugs might be leading to adverse outcomes in
patients with COVID-19. These concerns stemmed from the the-
ory that ACEIs/ARBs may promote SARS-CoV-2 viral entry into
cells by increasing ACE2 expression in respiratory epithelial
cells (Figure 1) [8]. Some animal model studies have shown that
ACEIs/ARBs can upregulate ACE2 expression and activity in
heart and kidney tissue [9, 10]. Furthermore, a 2015 study in
humans found that participants taking the ARB olmesartan had
higher urinary ACE2 levels compared with control participants
[97], while a recent study looking at ACEI/ARB use in patients
with and without COVID-19 found that plasma ACE2 activity
was higher in patients with COVID-19 who were taking ACEIs
compared with those with COVID-19 who were not taking
ACEIs/ARBs [98]. It was thus postulated that ACEIs/ARBs may
upregulate ACE2 in the lungs.

While higher ACE2 mRNA expression in the lungs has been
noted in patients who have comorbidities that are frequently
found in patients with severe COVID-19 [99], such as diabetes
mellitus, hypertension and chronic obstructive lung disease,
there have yet to be any animal or human studies to definitively
demonstrate that ACEIs/ARBs upregulate ACE2 in the lungs. In
fact, Wysocki et al. [100] demonstrated in a mouse model that
ACEI/ARB administration had no detectable effect on ACE2 lev-
els or activity in the lungs. Additionally, conflicting evidence
exists in human studies in that there is no consistent associa-
tion between ACEIs/ARBs and circulating ACE2 concentration or
activity [101–103]. Furthermore, it is unclear if the overexpres-
sion of ACE2 and its theoretical effect of SARS-CoV-2 viral entry
in the lungs of patients with chronic illnesses is the cause of
worse outcomes in COVID-19 or if patients with these comor-
bidities are simply more prone to adverse outcomes because of
their underlying illnesses.

Proposed mechanisms for beneficial effects. Further complicating
the issue is the fact that there exists limited evidence (in both
animal models and human studies) that ACEIs/ARBs may actu-
ally be beneficial in patients with various viral pneumonias.
Henry et al. [104] described a cohort of >500 patients with viral
pneumonia in Texas from 2011 to 2014 in which patients who
continued their ACEI during hospitalization had 75% lower odds
of intubation and mortality. However, patients who were taking
ACEIs prior to admission had 3-fold higher odds of death

compared with those not taking ACEIs, raising the question of
whether ACEIs may have been preferentially continued in
healthier patients (i.e. implying several sources of bias including
collider and selection bias [105]). A 2005 study using a mouse
model examined the original SARS-CoV, which was responsible
for the SARS epidemic in 2002 [6]. The authors found that in a
mouse model of acid aspiration–induced acute lung injury who
were treated in vivo with the SARS-CoV Spike protein, losartan
attenuated pulmonary edema and lung injury severity. This
was thought to be due to losartan’s effect of blocking the AT1 re-
ceptor and hence attenuating the effect of the excess Ang II gen-
eration and subsequent AT1 receptor signaling from Spike
protein-induced ACE2 downregulation (Figure 1) [6].

Potential differential roles of ACEIs versus ARBs in COVID-19.
Given their differential effects on the RAS, it is possible that
ACEIs may be detrimental in patients with COVID-19 while
ARBs may be neutral or beneficial. ACE, in addition to convert-
ing Ang I to Ang II, breaks down bradykinin. Bradykinin is a va-
soactive peptide that contributes to BP regulation and
inflammation via its ability to increase vascular permeability
and cause vasodilatation of blood vessels throughout the body.
Bradykinin and its active metabolite, DABK, act on two G-pro-
tein-coupled receptors, B1 and B2; DABK binds mainly to B1

while bradykinin binds mainly to B2 [80, 106, 107]. The B2 recep-
tor is constitutively expressed in many cell lineages and is re-
sponsible for a number of bradykinin-mediated effects such as
vasodilation, hypotension and increased vascular permeability.
The B1 receptor, however, is often absent in normal tissues and
is instead expressed during inflammatory states such as septic
shock and lung inflammation [108]. Furthermore, B1 receptor
activation can occur concomitantly with the pro-inflammatory
chemokine C-X-C motif chemokine 5 (CXCL5) release and neu-
trophil recruitment to the lung [80]. Since ACEIs act by competi-
tively inhibiting ACE, the addition of ACEIs can result in
decreased bradykinin breakdown and elevated bradykinin lev-
els, causing the cough and occasionally angioedema that can
occur in patients taking ACEIs, along with possible lung injury
[12, 109–112].

Roche et al. [113] discuss a separate bradykinin hypothesis
that suggests that SARS-CoV-2-mediated ACE2 depletion may
lead to bradykinin dysregulation, including increased bradyki-
nin and DABK, leading to worsened acute lung injury and respi-
ratory distress. Since ARBs do not competitively inhibit ACE,
they have no known role in contributing to elevated bradykinin
levels and thus should not precipitate further bradykinin-
mediated lung injury. If dysregulated bradykinin signaling turns
out to be a major mechanism by which patients with COVID-19
experience lung injury, it is plausible that concomitant ACEI use
could be detrimental whereas ARB use would not (Figure 1).

CURRENT EPIDEMIOLOGIC EVIDENCE OF RAS
BLOCKADE IN COVID-19
Summary of existing observational studies

The conflicting evidence and hypotheses regarding the relation-
ship of RAS blockade with ACE2 expression and COVID-19-
related outcomes resulted in a surge of studies aiming to assess
the safety of continuing and the effectiveness of initiating
ACEIs/ARBs in the management of COVID-19 [4, 11, 16]. In a rela-
tively brief time frame, dozens of observational studies, system-
atic reviews and meta-analyses evaluating the association
between RAS blockade, SARS-CoV-2 infection and development
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and/or severity of COVID-19 were published and posted on pre-
print servers [114]. Notably, NephJC.com created a dynamic,
open-access document that provided updates and critical
reviews as new literature emerged related to the physiology and
epidemiology of these relationships [4]. Similarly, Mackey et al.
[115] developed a ‘living’ systematic review in the Annals of

Internal Medicine that is continually updated as new epidemio-
logic evidence emerges and has identified >80 distinct observa-
tional studies at the time of submitting the current review. To
date, the authors have repeatedly concluded that ACEIs/ARBs
do not seem to be associated with testing positive for SARS-
CoV-2 among symptomatic patients or patiients with more se-
vere COVID-19. They have also concluded that evidence
remains lacking on the effect of ACEIs/ARBs on the risk for mild
or asymptomatic disease or for the treatment of COVID-19.

Thus most observational studies support physiologic evidence
suggesting that ACEIs/ARBs do not affect ACE2 expression, con-
centration or activity [100–103].

Strengths and limitations of existing observational
studies

Given the enormous potential public health impact, the urgency
of the study question yielded a paradigm for the utility of real-
world evidence in identifying safety and effectiveness of phar-
macologic therapies [116]. Observational evidence can be partic-
ularly helpful for answering study questions where randomized
trials are infeasible, impractical or unethical, for example, due
to the need for large sample sizes, long duration of follow-up or
evaluation of the natural history of a disease process [117].
Observational study designs were best suited to evaluate the
safety of prior ACEI/ARB use compared with other antihyperten-
sive therapies with regard to the risk of developing symptom-
atic COVID-19. This question necessitated urgent answers to
guide the ongoing care of patients during the pandemic and
could not be readily or quickly answered with randomized con-
trolled trials (RCTs). Accordingly, observational studies provided
rapid, crucial evidence to support the safety of continuing
ACEIs/ARBs during the COVID-19 pandemic among outpatients

who have already been prescribed these medications [115, 118,
119].

However, understanding the rapid pace of implementation,
many of the observational studies published early in the pan-
demic had important limitations [105]. Table 1 defines and
describes common limitations of these studies that are essen-
tial to consider when interpreting the findings. For example,
many studies did not address potential major confounders
[117], such as confounding by indication for use of ACEIs/ARBs
as opposed to other antihypertensive agents (e.g. due to protei-
nuric chronic kidney disease or heart failure with reduced ejec-
tion fraction) and unmeasured confounding due to inadequate
access to healthcare or SARS-CoV-2 testing. Several studies may
have introduced collider bias by restricting the study samples to
individuals who were hospitalized or had symptomatic COVID-
19, which can result in spurious associations between ACEIs/
ARBs and COVID-19 [121, 122]. Additionally, several studies
reported a lower risk of COVID-19 severity among hospitalized
patients on ACEIs/ARBs compared with those not on these
agents; however, a number of these studies introduced time-
dependent bias, or failing to adequately account for the timing
and duration of ACEIs/ARBs while hospitalized [124–126, 128].

Approaches to improve upon the epidemiologic
evidence and future directions

Several of the limitations of existing observational evidence can
be addressed with careful considerations about study design
and the use of analytic methods that facilitate causal inference
[105]. For example, directed acyclic graphs are diagrams that
demonstrate the causal relationships between exposures and
outcomes, as well as antecedents (causes) and descendants
(effects) of these factors that can be sources of several types of
bias [129]. Thus directed acyclic graphs are helpful tools in visu-
alizing and identifying potential sources of bias, such as con-
founding, selection bias and collider bias, which can then guide
the identification of an optimal data source, study sample,
study design and analytic method to appropriately address
these potential sources of bias. For example, in studies of hospi-
talized patients, the use of methods that address ACEI/ARB use
as a time-varying exposure can mitigate time-dependent bias.
Sensitivity analyses, such as evaluation of carefully selected
negative controls, can also provide important insights into the
potential effects of biases on the primary findings [130].

Ultimately, RCT evidence provides the highest-quality evi-
dence to identify the safety of continuing RAS blockade and the
potential efficacy of treatment with RAS blockade in COVID-19
(Table 2). Similar to observational evidence, early reports from
trials demonstrate no elevated risk of COVID-19 incidence or se-
verity in interim analyses of high-risk participants randomized
to ACEI versus placebo [134] or from continuation versus with-
drawal of ACEIs/ARBs in patients hospitalized with COVID-19
[133, 135]. The first peer-reviewed RCT results were published
from the Randomized Elimination or ProLongation of ACEI/
ARBs in COVID-19 (REPLACE COVID) trial in January 2021, cor-
roborating early reports from other trials presented at scientific
meetings or via preprint [131]. In this multicenter, international
study, 152 patients hospitalized with COVID-19 were random-
ized to continue versus discontinue their ACEI/ARB upon ad-
mission. Patients were excluded with contraindications to
continuing or discontinuing ACEI/ARB therapy, such as hyper-
kalemia or heart failure with reduced ejection fraction, respec-
tively. The authors observed no difference between
randomization arms with regard to the primary endpoint (a hi-
erarchical global rank score in which patients were ranked by
time to death and severity of illness), death, mechanical ventila-
tion or intensive care unit admission, length of hospitalization,
length of intensive care unit admission or multiorgan dysfunc-
tion measured by the area under the curve of a modified se-
quential organ failure assessment score [131]. Additionally,
there were no differences in blood pressure, serum potassium
and serum creatinine during hospitalization across the two ran-
domization groups [131]. Strengths of the trial include its prag-
matic approach and wide scope of participants enrolled from
seven countries across three continents, making the findings
generalizable to a broad range of hospitalized patients with
COVID-19. The main limitation is the small sample size [136];
the authors noted that the small sample size was supported by
the use of the global rank score as the primary endpoint, which
allows for smaller sample sizes than other commonly used end-
points [131, 132].

While RCTs provide the highest quality evidence, they have
important limitations to consider, some of which are amplified
during a pandemic. RCTs are often not practical or feasible to
answer important study questions due to issues of cost, ethical
concerns and/or rapid pace of recruitment necessary to provide
answers early in the course of a pandemic. For example, while a
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randomized trial was initiated to evaluate the risk of continuing
versus discontinuing ACEI/ARB use and testing positive for
SARS-CoV-2 among outpatients (NCT04330300), the study re-
quired a very large sample size (>2400 participants) and was
suspended, in part due to challenges with efficient enrollment.
Additionally, randomized trials are unlikely to have adequate
statistical power to be able to evaluate potentially high-risk sub-
groups and important effect modifiers. For example, the
REPLACE COVID trial could not assess whether ACEIs have dif-
ferential effects than ARBs with regard to COVID-19-related out-

comes. High-quality observational studies that appropriately
apply methods to facilitate causal inference have the potential
to provide critical insights into these relationships.

CONCLUSION

In conclusion, the RAS plays a major role in mediating many
physiological and inflammatory responses in a variety of im-
portant cardiovascular tissues. RAS blockade has an important
role in treating hypertension, cardiovascular disease and kid-
ney disease. However, mixed physiologic evidence exists
regarding the role of ACEIs/ARBs in COVID-19. Observational

evidence thus far has important limitations but suggests no el-
evated risk from continuing ACEIs/ARBs in patients already
prescribed these medications. Randomized trials will provide
important information on the safety and effectiveness of
continuing and introducing RAS blockade in the treatment
of COVID-19. Future observational studies, when carefully
designed to appropriately address important sources of bias,
can provide crucial information on potential differential
effects of ACEIs and ARBs in acute lung injury and other ad-
verse outcomes in COVID-19.
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Table 1. Common limitations of existing observational studies examining the association of ACEI or ARB therapy with development and sever-
ity of COVID-19

Limitation Definition Examples

Confounding [117] Presence of a factor that is associated
with the outcome, that is not on the
causal path between the exposure and
outcome, and is distributed unequally
across exposure levels

• Different indications for use of ACEI or ARB therapy versus an-
other antihypertensive class that may also be associated with
worse outcomes (e.g. proteinuric chronic kidney disease and
heart failure with reduced ejection fraction)

• Unmeasured factors such as sociodemographics, access to
healthcare, medication adherence

Selection bias [120] Restriction of the study sample based on
a confounding factor such that the
sample is not representative of the
population

• Restriction of the study sample to only individuals with diabetes
mellitus, hypertension, chronic kidney disease, or heart failure

Collider bias
[121, 122]

Restriction of the study sample based on
a descendent factor that can induce a
spurious association between the expo-
sure and outcome

• Restriction of the study sample to only individuals with a posi-
tive COVID-19 test

• Restriction of the study sample to only individuals hospitalized
with COVID-19

Information
bias [123]

Error in collecting or documenting
information

• Non-differential: use of invalidated administrative codes in the
electronic health record to identify past medical history

• Differential: ACEI/ARB exposure history only reliably verified or
updated in hospitalized individuals, in an electronic health re-
cord-based study evaluating COVID-19 hospitalization as the
endpoint

Time-dependent
bias [124–126]

Failure to appropriately account for the
timing of the initial exposure or expo-
sure during follow-up

• Immortal time bias: in a cohort of hospitalized patients, defining
ACEI/ARB use at the time of ICU admission

• Immeasurable time bias: in a cohort of hospitalized patients, de-
fining exposure to ACEI/ARB use as having occurred at admis-
sion even among patients whose ACEI/ARB was held until they
stabilized later in the admission/close to the time of discharge

Table 2 fallacy [127] Evaluation of multiple effect estimates
from the same multivariable model
that confounds the interpretation of di-
rect-effect and total-effect estimates

• Reporting the association of multiple different medications with
COVID-19-related outcomes that were all analyzed in a single
multivariable model

Table provides examples of common pitfalls of observational studies that were rapidly published to address concerns regarding the relationship of ACEI or ARB therapy

with COVID-19-related outcomes. Most of these limitations can substantially alter the interpretability of the results but can be overcome or addressed with careful ini-

tial observational study design or ideally (but often not feasibly) by performing an RCT. Portions of the table were adapted from Cohen et al. [105].
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