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Abstract: In modern digital microscopy, deconvolution methods are widely used to eliminate a
number of image defects and increase resolution. In this review, we have divided these methods
into classical, deep learning-based, and optimization-based methods. The review describes the
major architectures of neural networks, such as convolutional and generative adversarial networks,
autoencoders, various forms of recurrent networks, and the attention mechanism used for the
deconvolution problem. Special attention is paid to deep learning as the most powerful and flexible
modern approach. The review describes the major architectures of neural networks used for the
deconvolution problem. We describe the difficulties in their application, such as the discrepancy
between the standard loss functions and the visual content and the heterogeneity of the images.
Next, we examine how to deal with this by introducing new loss functions, multiscale learning,
and prior knowledge of visual content. In conclusion, a review of promising directions and further
development of deconvolution methods in microscopy is given.

Keywords: image processing; deconvolution; deep learning; digital microscopy

1. Introduction

Progress in modern imaging optics is still limited by the physical limitations of image
resolution caused by the wave nature of light. The major fundamental constraint is the
diffraction limit, but there are also limitations associated with the individual technical
features of devices [1]. Deconvolution can be used to work around these constraints; it is
one of the possible approaches for obtaining super-resolution. It allows us to obtain images
with a higher resolution than allowed by physical methods [2]. In addition to optical
limitations, various distortions are encountered in microscopy. These include scattering
(random disturbance of light caused by differences in the sample’s refractive index and its
environment), glare (random disturbances caused by the unexpected appearance of a beam
of light with inappropriate polarization), and blur. Blur often appears when recording an
image of a moving sample or if the camera does not have enough temporal resolution—this
is referred to as motion blur [3]. When this sample is displaced from focus, this is referred
to as defocusing blur [4]. In addition, blurring appears with a simple shaking of the optical
device itself [5] (this is also a kind of motion blur). Modern microscopy methods based
on structured illumination (for example, light microscopy [6]) work with complex-shaped
light beams that can introduce serious geometric distortions [7], which affect the visible
shape of cells and particles in the image. Therefore, they can serve as a good example of the
distortion that is inevitable when using an optical system. In addition, due to the beam’s
profile, these distortions can have spatial inhomogeneity of—different parts of the image
will have different degrees of distortion. However, the advantages of these methods (high
acquisition speed with low photodamage, high resolution, and contrast) are enormous.
Therefore, it is necessary to use computational methods to unleash their potential without
interfering with the physical mechanisms of their work.
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It is possible to eradicate artifacts using purely instrumental methods. Special anti-
reflective coatings and polarizing filters in modern microscopes make negligible the likeli-
hood of glare and scattering [8]. High-speed acquisition systems and the synchronizing of
particle flow with image acquisition (virtual freezing [9]) can reduce problems with motion
blur [10]. To solve problems with defocusing, autofocus systems are used in modern
designs [11]. However, the use of these tools is not always justified. They are expensive,
make optical systems complex, and are often difficult to operate and maintain. At the same
time, there are several modern applications, such as the composite cameras of a smart-
phone or sensor fusion in autonomous driving, which are computational photography
technologies, where the true images of objects are restored from a series of low-quality
images obtained by a group of sensors with different characteristics. The adaptation of the
modern techniques of machine image compositing can significantly simplify the design of
optical microscopy systems. These methods are based on the deconvolution of the resulting
image. In its mathematical form, the deconvolution of images can be represented through
the definition of a distorted image. The distorted image is represented as a convolution of
two functions (Figure 1):

h ∗ x = y (1)

Here, x is the original function of the image to be restored, h is the distortion function
(in other terminology, blur kernels, the response of the optical system, and point spread
function), y is the final image, and ∗ symbol denotes the convolution operation. Usually, it
is also necessary to somehow take into account the presence of additive noise:

(h ∗ x) + ε (2)

In actuality, after carrying out the inverse transformation of Expression (2), you can
again obtain the original image x. This operation will be the deconvolution of the image. It
should be noted that one of the main difficulties arising during the deconvolution operation
is the amplification of additive noise. The amount of amplification will significantly depend
on the nature of the noise and the method used. For example, we can say that the more
restrictions the methods contain (for instance, they can take into account only Gaussian
noise), the more they are susceptible to noise amplification and the appearance of artifacts.
This problem has led to a shift towards methods that extract the required parameters
directly from the provided data.
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Figure 1. Convolution example. The original undistorted image is shown on the (left). In the (center), there is the
convolution kernel of complex-shaped motion blur. The resulting blurred image is shown on the (right). All images are
taken from [12].

Deconvolution is widely used in modern microscopy systems, from confocal and
structured light illumination techniques [13,14] to specialized systems designed for oph-
thalmology [15]. Even without using some special techniques, it increases the resolution in
optical microscopy several times and significantly improves image quality for detecting
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objects’ shape and size. These parameters are essential in various areas of biomedical and
clinical research.

2. Deconvolution Types

The works mentioned above use the well-known point spread function (PSF) of the
optical system. The PSF describes the imaging system’s response to the infinitely small
object (single point size). The PSF of an imaging system can be measured using the small
calibration objects of the known shape or the calculated from the first principles if we know
the parameters of the imaging system. Therefore, these and similar methods are classified
as non-blind deconvolution methods. However, more often than not, the PSF cannot be
accurately calculated for several reasons. First, it is impossible to take into account all the
noise and distortions that arise during shooting. Second, the PSF can be very complex in
shape. Alternatively, the PSF can change during the experiment [16,17]. Therefore, methods
have been developed that extract the estimated PSF directly from the resulting images. These
methods can be either iterative (the PSF estimate is obtained from a set of parameters of
sequentially obtained images that are refined at each pass of the algorithm) or non-iterative
(the PSF is calculated immediately by some parameters and metrics of one image).

The mathematical formulation of the blind deconvolution problem is a very ill-posed
problem and can have a large (or infinite) number of solutions [18]. Therefore, it is still
necessary to impose certain restrictions on the condition—to introduce regularization, for
example, in the form of a so-called penalty block, such as a kernel intensity penalizer [19]
or a structured common least norm [20] (STLN), or in other ways. A typical problem, in
this case, is the appearance of image artifacts [21,22], which appear due to an insufficiently
accurate PSF estimate or because of the nature of the noise. This problem is especially
acute for iterative deconvolution methods, since there is a possibility that PSF and noise
in different images will not coincide with real ones, and therefore the error accumulates
at each iteration (Figure 2). In this regard, machine learning algorithms are of particular
interest because they are specifically geared towards extracting information from data and
their iterative processing.
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Figure 2. Difference between blind and non-blind deconvolution. On the left is an example of
convolution and non-blind deconvolution with the same kernel and some regularization. On the
right is an example of poor estimation of PSF with blind deconvolution. A generated image of the
same- shaped objects similar to an atomic force microscopy (AFM) image is used as the source. A
real AFM tip shape is used as a convolution kernel in this case. Blind deconvolution based on the
Villarrubia algorithm [23] confuses object shape and tip shape, resulting in poor image restoration.
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An important issue when solving the deconvolution problem is the nature of the
distortion. It can be uniform (that is, the same distortion kernel and/or noise is applied
to all parts of the image) or non-uniform (different blur kernels are applied to different
parts of the image and/or the noise on them is also not the same). The absence of a
uniform distortion for the image further complicates the task. In these cases, it is no longer
possible to proceed with a general estimate that we derive from large-scale dependencies
between pixels. Instead, we have to consider local dependencies in small areas of the
image, which makes global dependencies more complex structures in a mathematical sense,
and much more expensive from a purely computational perspective. Figure 3 shows an
example of non-uniform blur. Accordingly, to different types of distortion must be applied
different deconvolution types, either uniform or non-uniform. In the future, we will use as
synonyms the concepts of homogeneous and uniform, heterogeneous and non-uniform.

In real-life problems, one must confront the problem of inhomogeneous distortions
most often.
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Figure 3. An example of non-uniform distortion. Image is taken from [24]. The operator tracks
and focuses on the player with the ball, so there is no blur for his image and the small area around
him (red outline). The area indicated by the green outline will show slight defocusing distortion
and motion blur (direction of movement is shown by arrows). To adequately restore such an image,
it will be necessary to establish the relationships between such areas and consider the transitions
between them.
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3. Deconvolution Methods Classification

Modern deconvolution algorithms include linear, nonlinear, statistical, and cluster
analysis methods. Additionally, these can be separated into non-blind and blind deconvo-
lution algorithms.

Linear methods include similar algorithms for the inverse filter and Wiener deconvo-
lution, Tikhonov filtering [25], and linear least squares [26]. Take Wiener’s deconvolution
as an example [27]. The observed image can be expressed as:

y = (h ∗ x) + ε (3)

In this formulation, y is the observed image, x is the undistorted image, h is the linear
time-independent response of the system (introducing distortions), and ε is the unknown
additive noise that is independent of x. A rough estimate of the undistorted image will
look like this:

x̂ = (g ∗ y) (4)

where g is the new deconvolution kernel. The main idea of the method is to use not the
functions themselves, but their Fourier transforms. With their help, it will be possible to
obtain the inverse operator (based on the convolution theorem). Capital letters correspond
to the Fourier transforms of the corresponding functions. The formula is as follows:

G( f ) =
H( f )S( f )

|H( f )|2S( f ) + N( f )
(5)

and

G( f ) =
1

H( f )

[
1

1 + 1/(|H( f )|2S( f )SNR( f ))

]
(6)

where S( f ) = E|X( f )|2 and N( f ) = E|V( f )|2 are the average spectral powers of x and ε,
respectively.

Since linear methods are inferior at handling complex noise and image representation
functions, various forms for introducing nonlinearity are provided by the nonlinear meth-
ods. This group of methods includes the classic Richardson–Lucy algorithm [28], Janson
van Cittert [29], a nonlinear least-squares method [30], and the iterative Tikhonov–Miller
method with regularization [31].

Statistical methods are based on various methods for estimating parameters from
mathematical statistics. These include methods based on a maximum likelihood estimates
or an estimate of the posterior maximum [32–34]. Many deconvolution algorithms are
either entirely based on statistical methods or use many of their elements to one degree or
another.

Cluster analysis methods can be roughly represented as methods that divide specific
pixels of the image according to the degree of similarity with their neighboring pixels
and further grouping them according to the resulting classes. This includes the nearest-
neighbor, k-nearest-neighbor, and k-weighted nearest-neighbor methods [35,36]. Today
this group of methods is very rarely used.

Methods from each group can be either iterative or non-iterative. As a rule, itera-
tive methods of computational deconvolution find broader applications in practice since
they allow one to achieve better results, while the general trend towards an increase in
computing power means that their hardware requirements are no longer a serious issue.

To one degree or another, iterative algorithms often include statistical methods for
evaluating the resulting image parameters, which are refined with each new pass of the
algorithm [37]. A classic example of an iterative algorithm is the modified Richardson–
Lucy algorithm [15,28]. With non-iterative methods, a strict definition of some metric
is often required, from which the algorithm will build on in its work. For example,
the APEX algorithm [38] requires a rough idea of the PSF shape, while the SeDDaRA
algorithm [39] requires a reference scene image. In ref. [40], Tikhonov’s regularization
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was used with the Sobolev smoothing operator under periodic boundary conditions (this
method was extended in [41]). Since the modern problems facing optics, computer vision,
and astronomy are often blind deconvolution problems, the review will focus on the
corresponding methods.

Since, in the case of heterogeneous distortion, the relations between local regions will
most often be nonlinear, classical methods have limited possibilities for their deconvolution.
Therefore, one has to independently build complex mathematical models [42], which can
be transferred only poorly to other cases. However, the use of machine learning can solve
this problem.

Machine learning algorithms find common patterns in the training dataset (in our
case, a set of images) and predict their appearance in new data. The algorithm will receive
a training set of images as an input and iteratively find spatial patterns in them. They will
encode the true PSF or a set of features typical of distorted or undistorted images directly.
Then, the operation of the algorithm is checked on a test set. If the results are satisfactory,
then the model reconstructs images from natural experimental data. They can also be used
with non-blind cases (e.g., see [43–45]) and blind deconvolution [46,47].

Another advantage of using computational deconvolution methods is that they are
weakly domain specific. Of course, there are certain peculiarities of the data used in
microscopy and imaging cytometry. However, in general, it can be argued that algorithms
that show good results in other areas can be used in this area without major modifications.
For example, the Richardson–Lucy algorithm is widely used in microscopy [48,49]. Thus,
it successfully handles both the case of structured illumination and the case of three-
dimensional image reconstruction. Use of the van Cittert algorithm and Wiener filter can
be seen in [50]. Statistical [51,52] and various nonlinear methods [53,54] are also used.

A striking example of the power of computational deconvolution methods can be
found in their application to microscopy. They have given rise to significant progress in
obtaining ultra-high resolution and with cleaning the image of artifacts and distortion.
In article [55], which uses frequency analysis and expansion according to the Gaussian
function, the possible limits of the algorithm for maximizing the mathematical expectation
are indicated. It was shown that, theoretically, it could be used to distinguish objects that
are eight times smaller than the diffraction limit that the used optical system allows. On the
one hand, it was possible to achieve super-resolution by purely computational methods.
On the other hand, these methods have disadvantages; the main one is the high complexity
of computations, which requires the use of high-performance systems. Today, the parallel
improvement of physical and computational methods makes it possible to distinguish
objects that are orders of magnitude smaller, including those tens of nanometers across.

4. Application of Deep Learning in a Deconvolution Problem

Machine learning is divided into classical (ML) and deep learning (DL). Classical
algorithms are based on manual feature selection or construction. Deep learning transfers
the task of feature construction entirely to the neural network. This approach allows the
process to be fully automated, and performs blind deconvolution in the complete sense, i.e.,
restoring images only using information from the initial dataset. Therefore, the solution
to the deconvolution problem using DL is an auspicious direction at the moment. The
automation of feature extraction allows these algorithms to be adapted to the variety of
resulting images, which is crucial since it is almost impossible to obtain an accurate PSF
estimate and reconstruct an image by using it in the presence of random noise and/or
several types of parameterized noise. A more reasonable solution would be to build its
iterative approximation, which will adjust when the input data changes, as DL does. Today,
two main neural network types are used for deconvolution.

The first is convolutional neural networks (CNN). In CNN, alternating convolutional
and downsampling layers extract from the image a set of spatially invariant hierarchical
features, a set of low-level geometric shapes, and transformations of pixels that line up into
specific high-level features [56]. In theory, in the presence of “blurred/non-blurred image”
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pairs, CNN can learn a specific set of transformations for image pixels that lead to blur
(i.e., evaluate the PSF) (Figures 4 and 5). For example, in [57], the authors show that, on
the one hand, such considerations are relevant; on the other hand, they do not work well
for standard CNN architectures and do not always produce a sharp image. The reason is
that small kernels are used for convolutions. Because of this, the network is unable to find
correlations between far-apart pixels.

Nevertheless, using CNNs for image restoration problems leads to the appearance
of artifacts. The simple replacement of small kernels with large kernels in convolutions
does not generally allow the network to be trained due to the explosion of gradients.
Therefore, the authors replaced the standard convolutions with the pseudoinverse kernel of
the discrete Fourier transform function. This kernel is chosen so that it can be decomposed
into a small number of one-dimensional filters. Standard Wiener deconvolution is used for
initial activation, which improves the restored image’s sharpness.
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problem of a blurred/non-blurred image, the neural network adjusts its weights and filters in
convolutional layers during training. The sequence of applied filters will be approximately equivalent
to the blur kernel.

However, the convolution problem is not the only one. When using the classic CNN
architectures (AlexNet [58], VGG [59]), researchers have found that they perform poorly
at reconstructing images with non-uniform backgrounds, often leaving certain areas of
the image blurry. One can often find such a phenomenon as the fluctuation of blur during
training—under the same conditions and on the same data, with frozen weights, the
network after training still gives both sharp and blurry images. What seems paradoxical
is that an increase in the training sample number and an increase in the depth of the
model led to the fact that the network began to recover images with blur more often. This
is due to some properties of the CNN architectures, primarily the use of standard loss
functions. As shown in [60,61], blur primarily suppresses high-frequency areas in the
image (which means that the L-norms of the images decrease). This means that with the
standard maximum a posteriori approach (MAP) with an error function that minimizes the
L1 or L2 norm, the optimum of these functions will correspond to a blurry image, not a
sharp one. As a result, the network learns to produce blurry images. Some modification of
the regularization can partially suppress this effect, but this is not a reliable solution. In
addition, the estimation for minimizing the distance between the true and blurred image is
inconvenient because, if there are strongly and weakly blurred images in the sample, neural
networks are trained to display intermediate values of blur parameters. Thus, they either
underestimate or overestimate blur [62]. Therefore, using CNN for the deconvolution task
requires specific additional steps.
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The use of multiscale learning looks promising in this regard (Figure 6). To obtain a
clean image after deconvolution, we need to solve two problems. First, find local patterns
on small patches so that small details can be restored. Second, consider the interaction
between far-apart pixels to capture the distortion pattern typical to the image. This requires
the network to extract spatial features from multiple image scales. It also helps to learn
how these traits will change as the resolution changes. In ref. [63], the authors propose
using a neural network architecture called CRCNN (concatenated residual convolutional
neural network). In this approach, residual blocks are used as the elements of spatial
feature extraction in an implicit form, and are then fed into an iterative deconvolution (IRD)
algorithm. They are then concatenated at the output to obtain multiscale deconvolution. In
addition, the approach described in [64] integrates the encoder–decoder architecture (see,
for example, [65]) and recurrent blocks. A distorted image at different scales is fed into the
input of the network. When training a network, the weights from the network’s branches
for smaller scales are reused, with the help of the residual connection when training
branches for larger ones. This reduces the number of parameters and makes learning
easier. Another important advantage of multiscale learning is the ability to completely
abandon the kernel assessment and end-to-end modeling of a clear image. The general
idea [66] is that co-learning the network at different scales and establishing a connection
between them using modified residual blocks allows a fully fledged regression to be carried
out. We are not looking for the blur kernel, but approximating a clear image in spatial
terms (for example, the intensity of the pixels at a specific location in an image). At the
moment, the direction of using multiscale training looks promising, and other exciting
results have already been obtained in [67–69]. We can separately note an attempt to use the
attention mechanism to study the relationship between spatial objects and the channels on
an image [70].

The second type of architecture used is generative models, which primarily includes
various modifications of generative adversarial networks (GANs) [71]. Generative models
try to express a pure latent image explicitly. Information about it is implicitly contained
in the function space (Figure 7). GAN training is closely related to the previous issue
discussed above: prioritization and the related training adjustments. The work [72] used
two pre-trained generative models to create non-blurred images and synthetic blur kernels.
Next, grids were used to approximate the real kernel of the blur using a third, untrained
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generator. In ref. [73], a special class network—spatially constrained generative adversarial
network (SCGAN) [74]—was used, which can directly isolate spatial features in the latent
space and manipulate them directly. This feature made it possible to modify it for training
on sets of images projected along three axes, implementing their joint deconvolution,
and obtaining a sharp three-dimensional image. When using GAN, the problem of the
appearance of image artifacts almost always plays a unique role. At the beginning of the
training cycle, the network has to make strong assumptions about the nature of the noise
(for instance, Gaussian, Poisson) and its uniform distribution across all of the images. The
article [75] proposes eradicating artifacts without resorting to additional a priori constraints
or additional processing. The authors set up a convolutional network as a generator and
trained it to produce sharp images with its error function independently. At the same time,
there remained a common error function for the entire GAN, which affected setting the
minimax optimization. A simplified VGG was taken as a generator, which determined
whether the input image was real or not. As a result, CNN and GAN worked together. The
generator updated its internal variable directly to reduce the error between x and G(z). The
GAN then updated the internal variable to produce a more realistic output.
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explicit, spatially consistent clean image (2) from the latent representation of a clean picture (1).
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Figure 7. Using GAN for deconvolution. The generator network creates a false image G(z) from the
initial distribution z (at first, it may be just noise). It is fed to the input of the network discriminator,
which should distinguish it from the present. The discriminator network is trained to distinguish
between blurred and non-blurred images, adjusting the feature values accordingly. These values
form the control signal for the main generator. This signal will change G(z) step by step to approach
the latent clean image iteratively.



Micromachines 2021, 12, 1558 10 of 25

The general problems affecting blind deconvolution are still present while using
a DL approach, albeit with their own specificities. Blind deconvolution is an inverse
problem that still requires sufficiently strong prior constraints, explicit or implicit, to work
(Figure 8). As an example of explicit constraints, one can cite the above assumptions about
the homogeneity of noise in images, the assumption that optical aberrations are described
by Zernike polynomials [76], or directly through special regularizing terms [77]. A good
example of implicit constraints is the pretraining generator networks in a GAN or the
training discriminator networks that use certain blurry/sharp images sets. These actions
automatically determine the specific distribution in the response space corresponding
to the training data. According to this distribution, control signals are generated and
supplied to the generator. It will adjust to this distribution and produce an appropriate
set of synthetic PSFs or parameters for a clean image. This approach allows extracting
prior constraints directly from the data. This property is typical for generative models
in general; for example, the combination of an asymmetric autoencoder with end-to-end
connections and a fully connected neural network (FCN) is used in [78]. The autoencoder
creates a latent representation of the clean image, and the FCN learns to extract the blur
kernels from the noise and serves as an additional regularizer for the autoencoder. The
coordinated interaction of these networks makes it possible to reduce the deconvolution
problem, contributing to a MAP optimization of the network parameters.

The clear advantages of the neural network approach include the already mentioned
full automation, the ability to use the end-to-end pipeline (which significantly simplifies the
operation and debugging of the method, or its modification if necessary), and its high accu-
racy. The disadvantages include problems common to DL—the need for sufficiently large
and diverse datasets for training and computational complexity (especially for modern
CNN and GAN architectures). However, it is worth highlighting the weak interpretability
of the results—even with the deconvolution problem, it is often necessary to restore the
image, estimate the PSF, and understand how it was obtained.
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Figure 8. The principle of using the prior constraints. It narrows the infinite set of all possible values
of the parameters of image 1 to the final one. Stronger prior constraints allow the narrowing of this
set more precisely to the one corresponding to the true pure image 2 (shown by blue arrows). In turn,
a more accurate and flexible model will iteratively refine its estimate of the clean image 3 (depicted
by red arrows).
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In addition to GAN and CNN, other architectures are used for the deconvolution
problem. An autoencoder consists of two connected neural networks—an encoder and
a decoder. The encoder takes input data and transforms it, making the representation
more compact and concise. In the generating subtype, the variational autoencoder, the
encoder part produces not one vector of hidden states but two vectors—mean values and
standard deviations—according to which the data will be restored from random values. In
addition to [78], the article [79] can be noted. It uses the output of a denoising autoencoder,
which is typically the local average of the true density of the natural image, while the
error of the autoencoder is the vector of the mean shift. With a known degradation, it is
possible to iteratively decrease the value of the average shift and bring the solution closer
to the average value, which is supposed to be cleaned of distortions. In the article [80],
an autoencoder was used to find invariants on a clean/blurry image, based on which the
GAN was trained to restore clean images. Autoencoders are commonly used to remove
noise by transforming and compressing data [81–83].

For the case of video (when there is a sequential set of slightly differing images), some
type of recurrent neural network (RNN) is often used, most often in combination with
CNN. In work [84], individual CNNs first obtained the pixel weights of the incoming
images from the dynamic scene and extracted its features. The four RNNs then processed
each performance map (one for each direction of travel), and then the result was combined
by the final convolutional network. This helped increase the receptive field and ensured
that spatial non-uniformity of the blur was taken into account. In work [85], based on the
convLSTM blocks, a pyramidal model of the interpolation of blurred images was built,
which provided continuous interpolation of the intermediate frames, building an averaged
sharp frame, and distributing information about it to all modules of the pyramid. This
created an iterative de-blurring process. An interesting approach is proposed in [86], which
offers an alternative to multiscale learning, called multi-temporal learning. It does not
restore a clean image at small scales then go to the original resolution, but rather works in
a temporal resolution. A strong blur is a set of weak blurs that are successive over time.
With the help of the RNN, the correction of weak initial blurring is iterated over the entire
time scale.

Interest in the use of attention mechanisms in the task of deconvolution is beginning
to grow. Attention in neural networks allows one to concentrate the processing of incoming
information on its most important parts and establish a certain hierarchy of relations
between objects to each other (initially, attention mechanisms were developed in the field
of natural language processing and helped to determine the context of the words used).
Attention mechanisms can be implemented as separate blocks in classical architectures
and used, for example, to store and further summarize global information from different
channels [87] or to combine hierarchical functions from different points in time in a video
in a similar way [88]. Attempts are being made to use an architecture entirely based on
attention—the so-called transformers [89]. An illustrative example of their use is shown
in [90]. The authors take advantage of one of the main advantages of the transformer—the
ability to handle global dependencies. Using residual links and building the architecture in
a similar Y-net style allows the user to obtain local dependencies and link them to larger
ones. As mentioned above regarding multiscale learning, this is one of the main problems
in image deconvolution and, perhaps, the attention mechanism will allow one to solve
it more efficiently—in some tasks (for example, removing rain and moiré patterns), the
increase in PSNR and SSIM is very noticeable.

Deep learning is also beginning to be widely used in microscopy and related tech-
niques. Yang et al. showed an example of non-blind deconvolution by using neural
networks for 3D microscopy with different viewing angles for samples [91]. Usually,
CNNs have some difficulty recognizing rotations, so the authors used GANs with a self-
controlled approach to learning. It allowed them to surpass the standard algorithms for
three-dimensional microscopy (CBIF [92], EBMD [13]) in terms of quantitative and qualita-
tive characteristics: PSNR (peak signal–noise ratio), SSIM (structural similarity index), and
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CC (correlation coefficients). The flexibility of deep learning can also be seen in [93], which
shows how it can be combined with the classical method. In this work, adaptive filters
were used with the Wiener—Kolmogorov algorithm. The neural network predicted the
optimal values of the regularizer and adjusted the filter kernel for it. It helped to improve
the quality of the resulting image. In this case, the computational time was less than
with direct image restoration using neural network training. It is an important point—in
microscopy, especially in imaging cytometry, a transition to real-time image processing is
needed. Examples can be given where super-resolution is achieved using the GAN [94,95],
the encoder–decoder [96], and the U-Net-based architectures [97]. The use of deep learning
in these works made it possible to significantly improve the quality of the reconstructed
image and remove the connection to the optical properties of the installations, reducing the
problem to a purely computational one. Despite the demanding computational power of
deep learning algorithms, against the background of classical methods (especially nonlin-
ear ones), they can show excellent performance [98] precisely due to their ability to build
hierarchical features. Their other feature is the need for large datasets for training. On
the one hand, the need is satiated by the appearance of large databases of cellular images
in the public domain; on the other hand, it is still a problem. However, in imaging flow
cytometry, a large dataset is relatively easy to collect. Therefore, it is convenient to use
neural networks in flow cytometry with visualization; for example, the residual dense
network can be used to eradicate blurring [99].

The use of deep learning made it possible to cope with non-uniform distortion, which
classical methods could hardly achieve, and therefore weakened the requirements for the
quality of the restored images. In addition to increasing the numerical characteristics, deep
learning allows one to automate the image recovery process thoroughly and, therefore,
expand its use for non-specialist users.

Furthermore, deep learning is used in medical imaging, by which we mean here all
non-microscopic instruments (e.g., CT, MRI, and ultrasound). In ref. [100], a standard
approach was used to extract the main features of images with a convolutional network
at a low resolution and restore a pure image at a higher resolution. A similar but slightly
complicated method is shown in [101], where the so-called upsampling layer was ad-
ditionally used in the network architecture (the terminology requires caution: the layer
was previously called the deconvolution layer, but it did not perform the deconvolution
operation and this caused confusion). The methods were tested on MRI and retinal images.
Chen et al. proposed adding residual bandwidth to the U-net encoder/decoder network
to improve the quality of low dose CT scans [102]. The encoder branch reduces noise and
artifacts, and the decoder recovers structural information in the CT image. In addition,
a residual gap-filling mechanism will complement the details lost when going through
multiple layers of convolution and deconvolution. Finally, in [103], the convolutional
network was trained to recognize the difference between low- and high-resolution MRI
heart slices, and then taught to use this information as a recovery operator.

Deep learning is being used to improve image quality in photography and video. In
addition to the usual adaptation of algorithms to, for example, mobile devices (see the
review [104]), it can also be found being applied to the restoration of old photographs [105]
or shooting fast-moving objects [106].

Moreover, deep learning deconvolution is used in astronomy [107–109]. In this area,
observations are inevitably prone to distortion due to the presence of the atmosphere. In
addition, they are often inhomogeneous due to the turbulence of the air masses, so the use
of DL helps a lot.

5. Features of Training, Testing, and Validation in Deep Learning

Engineering plays an important role in deep learning, especially with data collection
and preparation, model training, and validation. However, we will not dwell on the general
pipelines in detail, and instead we will consider the features associated with solving the
deconvolution problem.
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As mentioned above, neural networks usually require many data. Therefore, any deep
neural network is a nonlinear algorithm with a high possible variance for the parameters in
the input data. Therefore, drawing up a representative sample for its training will require
a significant number of examples. This is doubly true for solving the problem of blind
deconvolution because it is an ill-posed problem. Without an explicit transformation of
pixels in the image (blur kernels, PSFs), the network will be much more difficult to optimize
during training. This will require either an increase in the training time and an adjustment
of the hyperparameters, a complication of the model to increase its expressive ability, or
an increase in the training sample to increase the statistical significance of the required
pattern in the data. The latter method will be, in a sense, the most reliable since it uses the
fundamental properties of machine learning algorithms.

At the moment, there are a fairly large number of datasets in the public domain that
focus on the problem of removing blur from images. However, the limited amount of data
is still a problem. Some of these datasets are too small [60,110]. Some are sharp images that
are distorted by synthetic PSFs [66,111,112]. This makes them not quite suitable for real
distortion cases. On this side, efforts are already being made to rectify the situation [113].
Furthermore, a significant problem is a lack of datasets for specific areas, for instance, in
microscopy and medical imaging.

As a rule, distorted/undistorted image pairs are used for training.
It is important to note some of the features associated with the training stage in DL. A

commonplace feature is that GANs (and models with their inclusion) are more difficult to
train than models based on convolutional networks. Typical problems (collapsing modes,
training stability) are critical, specifically for image deconvolution. Mode collapse is a
phenomenon in which the output space of the generator becomes noticeably smaller than
the space of the original images. In other words, the generator learns to produce a narrow
set of images that the discriminator recognizes as plausible. In this case, the error gradient
quickly begins to tend to zero, and the generator output seems to “freeze”, always giving
answers from the resulting distribution. The training instability occurs due to the minimax
nature of the cost function optimization, which can lead to the fact that the sought-after
functions of the discriminator and generator may not converge at all. In real-life problems,
various image distortions are often encountered, even in one sample, which creates the
danger that the generator will adjust to some specific ones. The difference between this
and overfitting is that the model will not necessarily show bad results with new data;
instead, we can say that it will be sharpened under one of the distributions encountered
and that that part of the images will be restored poorly. There is no general solution to
these problems, but there are many tricks that allow one to solve them in specific cases. For
example, using the Wasserstein metric inside the error function [12] or the introduction
above of a prior generator [72] excludes mode collapse.

As for the testing and validation of DL models, it can be noted that when solving
real deconvolution problems, it is better not to use the standard deferred data scheme,
i.e., randomly separating from the dataset 80% of examples for a training set and 20% of
examples for a test set (or 80% for a training set, 10% for a test set, 10% for a validation
set). This is again due to noticeable variance in the data and the possibility of encountering
non-uniform blur patterns. Therefore, it is better to use cross-validation, for example, on
k-folds or Live-P-Out, even if this creates a large computational load.

Since now we can expect the widespread use of architectures with attention in decon-
volution, it is necessary to mention them as well. In a way, they were not immediately
used to working with the images served them. Initially, these architectures were very
heavyweight, so the search for their optimization immediately began. They were at least
partially successful, because using tricks, such as non-overlapping and cyclically shifting
attention windows (see [114]), can significantly reduce the number of parameters used by
the network and hence the requirements for video memory. With this parameter, networks
using transformers can already be compared with CNN.
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6. Optimization-Based Deconvolution Methods

This group of methods concentrates on a more “mathematical” solution to the decon-
volution problem. These methods are (mostly) convex optimization techniques applied
to various structures in a sparse matrix representation (Figure 9). They were applied, first
of all, to atoms and the atomic norm (the mathematical basis is summarized, for example,
in [115]).

The deconvolution problem can be represented as a search for a non-trivial solution to
a system of equations. It is the matrix of the observed signals, multiplied by the system’s
inverse linear response filter, and will be equal to the undistorted signal. The columns
in the undistorted signal matrix are represented as sparse linear combinations of atoms.
Non-trivial solutions will be found for the minimum possible number of these atoms. We
can reformulate the deconvolution problem in terms of the optimization problem [116].

This approach is better suited for single-image deconvolution. However, it has a
significant drawback. In ref. [117], one can see the complexity of using this method. It is
based on looking out for similar patches on the image and adding them to dictionaries
(Figure 10). GSR (group sparse representation) constraints are imposed on similar patches
based on images and kernels to ensure the sparsity of the intermediate latent images and
kernels, and L0 regularization is added. It is important to note that in the study of sparse
data representations, L0-regularization is understood not as a regularization based on a
mathematically correct L0-norm, but as the number of non-zero elements. Although the
optimization problem becomes non-smooth and NP complex when using such a regularizer,
it allows one to find similar elements accurately. The use of approximate methods fully
admits the use of L0-regularization [118]. These actions form an understanding of the
structure of the image. Then, a multistage optimization is carried out for the image atoms
in the dictionaries. The result is a latent representation of a clear image. The PSF is
obtained from it and the distorted image. Next, they simply use the standard non-blind
deconvolution algorithm and restore the rest of the images. Despite the promising results,
the method has problems with non-uniform noise distributions.
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Most importantly, the forced presence of non-smooth regularizers leads to compu-
tational complexity. The authors were forced to resort to various tricks (such as approxi-
mating an L0-regularizer using an L1-regularizer). A similar problem can be seen in [120].
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The authors used spatially adaptive sparse representation (SASR) as a prior constraint.
Blind deconvolution of a single image was carried out with it, and blurring was removed.
Then, extended iteration was used in combination with a fast Fourier transform function
to solve the joint minimization problem. Despite a different approach to using sparse
representation, the same complexities appeared—non-smooth regularization terms.

In other words, very often, a more accurate approximation of the process being
optimized will be a non-convex function. At the moment, one can observe how researchers
are moving away from convex optimization or fitting for it by examining related problems.
An example is the work on multichannel deconvolution [121,122].

Besides atomic optimization, there are other optimization-based deconvolution meth-
ods, such as methods involving gradient statistics. They are widely used as standard
methods, or as a mixture of Gaussian distributions [123,124] or Laplacians [125] with
hyper-Laplacians [126], and specially designed, as in article [127], where a local maximum
gradient prior was used. The author’s idea is that blurry images should have fewer gradi-
ent values than sharp ones. In work [128], the image is represented as a super-Gaussian
field with adaptive structures. This makes it possible to eliminate the inherent problem
of the lack of correlation between pixels distant from each other. The field itself is built
using high-order Markov random fields, which will integrate the potential of small areas
of pixels into a joint probability distribution.
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Figure 10. One of the examples of using sparse representation for image deconvolution (in particular,
group sparse representation described in [117]). A clear image differs from a blurred image in that
the overlapping areas will be very similar in a clear image. This means that a similar combination
of atoms will describe them. The same spots in a blurred image will lose their similarity due to the
influence of the blur kernel (especially a complex shape). The idea of patch similarity can be used as
an initial idea. 1, 2 corresponds to different areas in the images and their representations.
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A common disadvantage of all optimization-based methods is that it is rarely possible
to create an end-to-end pipeline. Additional actions are always required (forward/backward
Fourier transforms, or applying classical deconvolution algorithms at the end). This com-
plicates their application. In addition, the need to carry out many operations with sparse
matrices leads to significant computational capacity. The advantages of these methods
include a good ability to restore edges.

Optimization methods also find applications in microscopy, for example [129–133].
Their shortcomings are not so critical for this area, since the optical schemes correspond
much more strictly to the concept of a linear spatially invariant system. This is much
easier to achieve in a laboratory setting. Thus, the convex optimization heuristic does not
encounter any particular obstacles in its work. However, this can no longer be said about
structured illumination systems. Deep learning is still a more adaptive method.

Since there are situations in which it is impossible to collect data in astronomy, and
it is necessary to carry out deconvolution on one image, optimization methods are used
there [134–136].

7. Tools and Instruments

Some differences between the tools for implementing the two modern types of decon-
volution algorithms can also be distinguished. First, deep learning-based techniques use a
more standardized technology stack. The explosive development of the entire field of deep
learning and the growing demand for its application from the business side quite early on
required introducing a common denominator for development tools.

In the early stages of the boom, one could still see the variability in the languages
and libraries used. Algorithms could be written entirely in pure C/C++ or use special
libraries that are written in it (OpenNN, CNTK), use libraries in Java (Deeplearning4j)
or a specialized computer algebra system (Mathematica, MATLAB), or a combination
of a compiled/scripting language for low-level implementation and an interface (Torch,
Caffe [137]). The latter is currently the most widespread. The use of a (usually statically)
compiled language allows for heavy optimization computations; a scripting language
(more often with dynamic typing) as an interface facilitates rapid prototyping of the model.

Today, as a rule, one of two deep learning libraries is used—Tensorflow [138] (sup-
ported by Google) or Pytorch (supported by Facebook). It can be argued that they represent
a kind of standard. Both are written using the C++, Python, and CUDA languages, and
have a special C-like interface for efficient parallel programming on video cards from
NVIDIA. This capability is significant for deep learning applications. In Pytorch, however,
there are elements written in pure C and Fortran. The interface of both libraries can use
several languages, but most often it is Python. Both Tensorflow and Pytorch represent com-
putation as an automatically differentiable dynamic graph. Not so long ago, Tensorflow
used a static graph, but this feature was less convenient.

In optimization-based methods, there is no such unity of the tools used. As a rule,
algorithms are implemented in C, C++ (since high computational speed is critical), or
MATLAB. However, specialized libraries have not yet appeared due to the noticeably
lower prevalence of these methods.

Table 1 below shows the specialized deep learning software tools that are common
today.

As for the hardware, most computing uses GPUs from NVIDIA, in a desktop or cloud
version. Graphics processors were initially designed for the efficient parallel computation
of many vector algebra operations and are well suited for deep learning. Recently, even
more specialized devices have appeared, such as a tensor processor from Google, but they
are not yet common in the open market and are either prototypes or only available through
the cloud.
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Table 1. A list of the deep learning software.

Software Written in Interface Open
Source

Auto
Differentiation

Parallel Computing
Support

Pre-Trained
Model

Pytorch C, C++, Fortran,
CUDA, Python Python, C++, Julia Yes Yes (dynamic

graph)
Yes (CUDA, OpenMP,
OpenCL) Yes

Tensorflow 2 C++, CUDA,
Python

Python (Keras),
C/C++, Java, Go,
JavaScript, R, Julia,
Swift

Yes Yes (dynamic
graph) Yes (CUDA) Yes

MATLAB+
Deep Learning
Toolbox

C, C++, Java,
MATLAB. MATLAB No Yes

Possible using
additional modules
(CUDA)

Yes

Deeplearning4j C++, Java
Java, Scala, Clojure,
Python (Keras),
Kotlin

Yes Yes Yes (CUDA, OpenMP) Yes

MXNet C++

C++, Python, Julia,
Matlab, JavaScript,
Go, R, Scala, Perl,
Clojure

Yes Yes Yes (CUDA, OpenMP) Yes

8. Discussion

Modern neural network architectures require quite significant computational resources
for their operation. This is an obstacle to their widespread use. This problem is solved
through the optimization of the architecture. The results of training a neural network can
be represented as sparse data representations, the specific configuration of which is highly
dependent on the specific hyperparameters used during training [139]. It can be argued
that most weights and ratios between them will not be used at some point in the workout.
Therefore, neural networks have a huge reserve for “reduction”. This is confirmed by the
recent emergence of a multitude of so-called “lightweight architectures”, which are not that
inferior in accuracy compared to complex ones, but which are much simpler and require
less computational resources [140–142]. Most likely, we can expect the same to appear in
architectures for deconvolution. In many areas of its application, it is desirable to switch
to real-time mode (or at least obtain the minimum delay possible) either for devices with
limited computational power (for example, smartphones) or with sufficient power, but
with a huge data volume (for example, in the imaging flow cytometry [143]). For example,
modern microscopy and cytometer devices are based on smartphone cameras [144], which
makes it possible to provide low-cost microscopy facilities for the field research.

A more theoretical direction of research is the search for a better mathematical rep-
resentation of the concept of “image sharpness” and its assessment. It has already been
said above that the standard error functions for neural networks do not quite adequately
describe the desired result. At present, intensive research work is already underway in this
area. For example, in [145], in their two-phase pipeline, the authors proceeded from the
assumption that human perception in recognizing blurry and clean images concentrates on
the sharpness of the edges, and in [146] they used maps for comparing images of special
points in a higher dimension. The similarity of the values of the points in high-order
dimensions indicates the similarity of the images. Based on these considerations, the
so-called continuous loss is constructed, with the help of which the images closest to sharp
are selected. In general, we can talk about a significant field of work in this area. It is not
entirely clear what form the objective functions should take in the deconvolution problem.

Optimization-based techniques are now used in certain areas where the use of neural
networks is difficult, for example, in rendering for 3D scanning data [147]. Currently, these
techniques are used directly in conjunction with deep learning to deconvolve images.
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For example, in [148] the problem of the nonlocality of the attention mechanism was
solved using a sparse representation. Combining these methods can give noticeable practi-
cal results (increase the learning rate, provide convergence with non-convex optimization);
therefore, further developments in this area of research can be expected.

Soon, we should expect a purely engineering-focused and rather simple, but at the
same time significant step—the unification of datasets and metrics for verification. Table 2
summarizes the most generic described methods. They use standard metrics for the peak
signal-to-noise ratio (PSNR) and the structural similarity index (SSIM) and work well with
publicly available open datasets.

Summing up the examples given in Sections 5 and 6, we can safely say that, today,
practically no visualization area can move forward without modern computational de-
convolution methods. This is most clearly seen in consumer video and photo equipment
(including smartphones cameras). Deconvolution and super-resolution techniques have
made it possible to reduce the requirements for the optical systems used (and the user’s
skills) to a certain extent. Now any user can take high-definition photos and videos without
access to professional equipment.

Table 2. A list of the most unified methods for testing and the maximum metric values they achieve.

Method Dataset Metrics Metrics Value

CRCNet [63]
Levin

PSNR/SSIM 35.39/0.96
GSR-K [117] PSNR 31.5
SASR [120] PSNR/SSIM 30.91/0.92338

SRN-DeblurNet [64]

GoPro

PSNR/SSIM 30.1/0.9323
Deep Multiscale CNN for

Dynamic Scene Deblurring [66] PSNR/SSIM 29.08/0.9135

RCAN [149] PSNR/SSIM 32.85/0.962
MSCAN-GoPro [150] PSNR/SSIM 31.24/0.9423

SRN-DeblurNet

Koehler

PSNR/SSIM 26.80/0.8375
Deep Multiscale CNN for

Dynamic Scene Deblurring PSNR/SSIM 26.48/0.8079

RCAN PSNR/SSIM 26.08/0.810

In knowledge-intensive fields, using these methods, especially DL, also made a signif-
icant difference in the situation. For example, researchers could go beyond the diffraction
limit and obtain clear images under non-uniform blurring conditions. This has seriously
increased the potential of optical imaging methods—microscopy and flow cytometry with
imaging—and therefore will expand the possibilities of studying biological objects in vivo.
For example, today, it is already much easier to observe dynamic changes in single cells
using the same flow cytometry with visualization.

Modern deconvolution methods can have the same significant impact on medical
imaging, but DL methods are used much less frequently in this area. The reason lies not
so much in some technical problems, but rather in strict control in this area. However,
the existing examples of use tell us about broad prospects—the possibility of using low-
resolution tomographic scans (and with a lower proportion of irradiation) is worth a lot.

In astronomy, the use of deconvolution on optimization methods can still be found as
often as DL. Nevertheless, they also produce very clean images without a significant dataset.
Astronomy is characterized by the use of adaptive optics and various inhomogeneous
effects in images due to the presence of the atmosphere. Since modern methods are better at
dealing with blind deconvolution, they are especially valuable for astronomy. In particular,
they allow one to eliminate the problem of the fusion of distant light sources due to better
denoising.

In the end, it should be added that the automatic DL approach can successfully
create software that can be used by scientists with minimal knowledge in the field of
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computational image restoration, such as biologists, ecologists, doctors, and astronomers.
Thus, the time for routine procedures of initial data processing can be reduced.

9. Conclusions

Today, it is safe to say that deep learning has become the mainstream approach to
image deconvolution. This has allowed researchers to both significantly increase purely
quantitative characteristics (for instance, spatial resolution and PSNR) and solve previously
inaccessible problems, such as working with spatially inhomogeneous PSF and noise,
including blind deconvolution. One way or another, the disadvantages of deep learning
can be largely compensated for by various engineering tricks or the accumulation of a
sufficient amount of data. Furthermore, the strengths of deep learning (such as adaptability,
power, and automatism) far outweigh the disadvantages at this point. Unfortunately, there
are not many applications left for optimization-based methods.

The development of new approaches to deconvolution includes new architectures,
new techniques, new forms of loss functions, and the collection of huge datasets for training,
testing, and validation. An important aspect of modern deep learning for deconvolution
is the transfer of learning to low complexity/low power architectures with little loss in
accuracy metrics but huge reductions in computational requirements.

However, there is still considerable room for further work. The demand for the
resources of modern, powerful neural network architectures, the lack of a consensus on the
form of the loss function, and the use of new techniques, such as attention, require further
research.
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