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Abstract

A plant’s performance and interactions with other trophic levels are recorgnized to be contin-

gent upon plant diversity and underlying associational dynamics, but far less is known about

the plant traits driving such phenomena. We manipulated diversity in plant traits using pairs

of plant and a substitutive design to elucidate the mechanisms underlying diversity effects

operating at a fine spatial scale. Specifically, we measured the effects of diversity in sex

(sexual monocultures vs. male and female genotypes together) and growth rate (growth

rate monocultures vs. fast- and slow-growing genotypes together) on growth of the shrub

Baccharis salicifolia and on above- and belowground consumers associated with this plant.

We compared effects on associate abundance (# associates per plant) vs. density (# associ-

ates per kg plant biomass) to elucidate the mechanisms underlying diversity effects; effects

on abundance but not density suggest diversity effects are mediated by resource abun-

dance (i.e. plant biomass) alone, whereas effects on density suggest diversity effects are

mediated by plant-based heterogeneity or quality. Sexual diversity increased root growth

but reduced the density (but not abundance) of the dietary generalist aphid Aphis gossypii

and its associated aphid-tending ants, suggesting sex mixtures were of lower quality to this

herbivore (e.g. via reduced plant quality), and that this effect indirectly influenced ants. Sex-

ual diversity had no effect on the abundance or density of parasitoids attacking A. gossypii,

the dietary specialist aphid Uroleucon macolai, or mycorrhizae. In contrast, growth rate

diversity did not influence plant growth or any associates except for the dietary specialist

aphid U. macolai, which increased in both abundance and density at high diversity, suggest-

ing growth rate mixtures were of higher quality to this herbivore. These results highlight that

plant associational and diversity effects on consumers are contingent upon the source of

plant trait variation, and that the nature of such dynamics may vary both within and among

trophic levels.

PLOS ONE | https://doi.org/10.1371/journal.pone.0183493 September 8, 2017 1 / 18

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Abdala-Roberts L, Pratt R, Pratt JD,

Mooney KA (2017) Traits underlying community

consequences of plant intra-specific diversity.

PLoS ONE 12(9): e0183493. https://doi.org/

10.1371/journal.pone.0183493

Editor: Cesar Rodriguez-Saona, Rutgers The State

University of New Jersey, UNITED STATES

Received: March 13, 2017

Accepted: August 5, 2017

Published: September 8, 2017

Copyright: © 2017 Abdala-Roberts et al. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Data files used for

statistical analyses performed in this study are

available at DRYAD (doi:10.5061/dryad.g7f45).

Funding: This work was funded by NSF awards

DEB-1354734 and DEB-1120794 to KAM, and LAR

was supported by CONACyT repatriation grant

250934.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0183493
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0183493&domain=pdf&date_stamp=2017-09-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0183493&domain=pdf&date_stamp=2017-09-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0183493&domain=pdf&date_stamp=2017-09-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0183493&domain=pdf&date_stamp=2017-09-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0183493&domain=pdf&date_stamp=2017-09-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0183493&domain=pdf&date_stamp=2017-09-08
https://doi.org/10.1371/journal.pone.0183493
https://doi.org/10.1371/journal.pone.0183493
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.5061/dryad.g7f45


Introduction

A plant’s performance and interactions with other trophic levels are recognized to be influence

its neighbours. The study of such dynamics have adopteded the differing, but complementary

perspectives of associational effects and diversity effects. Herbivore abundance and damage

may be increased or decrease by plant neighbors, termed associational susceptibility and resis-

tance, respectively, with these outcomes depending on the identities and traits of the plants

and their associated herbivores [1,2]. Plant associational effects can also influence higher tro-

phic levels. For example, a plant’s herbivores or predators may be influened by spillover of her-

bivores or predators from neighbouring plants, but may also arise from the effects of

neighbouring plants on host plant plant growth or quality [3–5]. Such associational effects on

higher trophic levels can in turn influence a plant’s growth and reproduction [6]. The aggre-

gated of such associational effects among a set of plant neighbors are in turn the basis for the

higher-order effects of plant diversity. Here, polyclutures of co-occurring genotypes or species

(intra- and inter-specific diversity, respectively) are compared to monocultures to test for non-

additive effects with respect to plant performane and interactions with higher trophic levels

(reviewed in [7]). Accordingly, plant heterogeneity can affect community and ecosystem pro-

cesses across multiple trophic levels with a common set of mechanisms operating across differ-

ent scales [8].

Plant intra-specific or genotypic diversity has been shown to boost primary productivity

[9], increase arthropod diversity [9–11], and alters plant-herbivore and herbivore-predator

interactions [12–14]. Despite the documented importance of plant intra-specific diversity and

its underlying associational effects, the mechanisms underlying such effects are poorly under-

stood. In past studies, genotypes have been sampled at random and without regard to particu-

lar traits (but see [15]) and, as a result, such studies fail to address the plant traits mediating

observed patterns [16,17]. Although a posteriori correlations can be made between plant traits

and effects on higher trophic levels, this approach may be burdened by low statistical power if

many traits are studied and may suffer from increased risk of spurious associations. In addi-

tion, intra-specific effects are in many cases likely mediated by simultaneous effects of multiple

plant traits, yet relatively little is known about the relative importance and independent effects

of such traits. Accordingly, the experimental manipulation of specific traits of a focal species is

of fundamental importance towards developing a mechanistic understanding of diversity

effects [15,18].

Plant genetic diversity may influence associated communities through several complemen-

tary mechanisms. First, genotype resource partitioning and facilitation may lead to increased

plant biomass (e.g. [9, 10, 13]), thus increasing plant-based resources–i.e. resource abun-

dance–with concomitant increases in associate abundance [9, 19]. Second, increased plant-

based heterogeneity may influence associate behavior (e.g. host plant selection or residence

times; [2, 14]). And third, diversity may alter plant traits associated with plant quality (e.g.

plant defenses in the case of herbivores; [20]). Diversity effects acting through changes in plant

heterogeneity or quality should influence associates independently of changes in plant-based

resource abundance, and such effects should thus be detectable as changes in associate density,

i.e. effects on associates occurring having accounted for any change in plant biomass [14, 21].

Plant genetic variation in growth rate represents an axis of phenotypic variation underlain

by multiple correlated traits that may be an important driver of plant intra-specific diversity

effects on plant productivity and consumers. On the one hand, genetically-determined differ-

ences in growth rate may promote increased plant productivity because contrasting growth

rates are associated with different nutrient acquisition strategies [22]. It is also possible that

competition among genotypes with differing growth rate is weaker in mixtures than in
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monoculture, particularly for fast-growing genotypes, and this would lead to increased pro-

ductivity in mixtures due to dominance effects by productive genotypes [15]. Greater plant

biomass should in turn cascade-up to positively influence consumer abundance [9,10]. On the

other hand, differences in growth rate among genotypes may also influence plant quality

when, for example, higher growth in neighbourhoods with genotypic mixtures leads to lower

investment in plant defenses if growth and defenses trade off [13,23]. Such effects on plant

traits are expected to influence consumer behavior (e.g. feeding rates, foraging time) but are

not explained by differences in plant abundance per se. Alternatively, differences in growth

rate may influence consumer behavior through processes occurring independently of plant-

plant interactions if fast- and slow-growing genotypes vary in traits influencing plant heteroge-

neity and thus consumer recruitment [24].

Plant genetic differences between sexes represent another important proxy of correlated

trait variation, which might act as a source of intra-specific diversity effects [18]. Dioecy is

present in 6–10% of all angiosperm species [25–27], is most often genetically determined [28],

and plant sex is associated with a substantial degree of ecological dimorphism [29]. Females

frequently invest more in reproduction than males or hermaphrodites [30,31], grow more

slowly, and invest more in traits conferring herbivore resistance [26,32]. These phenotypic dif-

ferences may influence above- [29,33,34], and below-ground [35,36] plant-associated commu-

nities. Accordingly, as for plant growth, phenotypic differences between sexes may positively

influence consumer abundance through increases in plant growth if plants of sexes exhibit

complementary resource acquisition strategies. Alternatively, variation in sex may influence

consumer behavior due to changes in plant quality underlain by growth-defense trade-offs or

via associational effects influencing consumer recruitment independently of plant-plant inter-

actions. To our knowledge, only one study has tested for associational effects of plant sex and

found no effect on levels of rust (Melampsora spp.) infection in the shrub Salix viminalis [18].

In a previous study with the dioecious shrub Baccharis salicifolia (Ruiz and Pav.) Pers.

(Asteraceae), we reported on patterns of variation in above- and belowground plant associates

among genetic lines of fast- and slow-growing male and female plants, namely two aphid spe-

cies, aphid-tending ants, aphid parasitoids, and mycorrhizae [21]. Here we build from these

findings using data from the same experiment to test for intra-specific diversity effects arising

from differences in plant growth rate and sex. We documented variation in associate density

(number of consumers per unit of plant biomass) to test for effects occurring through plant-

based heterogeneity or quality (controlling for effects of plant biomass), and variation in asso-

ciate abundance to test for effects occurring through both plant quality and abundance

(including effects of plant biomass). Specifically, we address the following questions: (i) Does

diversity in plant sex and growth rate influence plant productivity? (ii) What are the effects of

sex and growth rate diversity on plant associates? (iii) Does sex and growth rate diversity influ-

ence associate abundance through changes in resource abundance (i.e. plant biomass) and/or

associate density through changes in plant quality or heterogeneity? And finally, (iv) how do

sex and growth rate diversity effects compare in their strength and mechanism of action on

plant performance and associated communities? In so doing, this study provides unique mech-

anistic insight into the community-wide effects of intra-specific plant diversity.

Materials and methods

Natural history

Baccharis salicifolia is a woody perennial, dioecious shrub that is native to the Southwestern

United States and Northern Mexico, and is usually found growing in riparian sites. Flowering

takes place from March to May, which is when insect abundance is highest. In addition, this
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species frequently grows in high-density monospecific stands and multiple genotypes fre-

quently co-occur at small spatial scales. At our study sites, found within and adjacent to the

University of California San Joaquin Marsh Reserve (33˚39’47” N, 117˚51’7” W; CA, USA), the

two most abundant aboveground herbivores of this species are the generalist aphid Aphis gos-
sypii (Glover) and the specialist aphid Uroleucon macolai Blanchard [37]. Aphis gossypii
(Glover) (Aphis hereafter) is a generalist herbivore that feeds on several important crops [38],

whereas U. macolai (Uroleucon hereafter) is a dietary specialist that feeds only on B. salicifolia
and one other Baccharis species [38]. In addition, at our study sites Aphis is frequently tended

by the non-native argentine ant Linepithema humile Mayr, which feeds on the aphid’s honey-

dew [37,39]. In contrast, Uroleucon is not tended by ants. Parasitic wasps are the most com-

mon natural enemies of these aphid species (Hymenoptera: Braconidae) [37].

We previously documented the effects of plant sex (male vs. female genotypes) and growth

rate (fast- vs. slow-growing genotypes) on plant associates based upon analysis of the same

experiment and data used in the present study (S1 Table; [21]). Plant sex and growth rate did

not affect Uroleucon. In contrast, male plants had higher abundances and densities of Aphis
and its associated parasitoids (Braconidae) and aphid-tending ants (L. humile). Fast-growing

genotypes had higher abundances but not densities of Aphis and ants. Male genotypes had

lower abundances and densities of mycorrhizal colonization than females, while fast-growing

genotypes had higher abundances but lower densities of mycorrhizal colonization than slow-

growing genotypes. In the present study, we document the consequences diversity in sex and

growth for plant associates, reporting on complementary analyses of the same experiment to

compare mixtures (pairs) of plants that are either homogeneous (monocultures) or diverse

(polycultures) with respect to plant growth rate and sex.

General approach

Assessing the consequences of ecological heterogeneity has beeen made with resepct to both

associational effects and diversity effects. Studies on associational effects focus on how the per-

formance of the individual are affected by neighbors. Such studies typically compare two plant

types (e.g. genotypes, species) in monoculture and polyculture in order to quantify the two

separate (and potentially asymetrical) effects of each plant type on the other (i.e. treatments of

AA, BB, AB assess the associational effects of A on B and B on A). In contrast, studies on diver-

sity effects focs on how heterogneity scales up to dermine community and ecoystems level pro-

cesses. Such studies typically compare several (� 2) plant types and measure the net outcome

of all pairwise associational effects, where monocultures are used to make polycultures predic-

tions to compare with polyculture observations (i.e. treatments of AA and BB used to predict

AB, these predictions compared with observations of AB). Such studies can range from fine-

scale effects emanating from pairs of neighbouring plants to larger-scale effects emanating

from many plant types [40]. A common set of processes thus underlie associational and diver-

sity effects [8]. Because our goal was to investigate the consequences of plant heterogeneity in

sex and growth rate for multi-trophic communities, we adopted the conceptual and analytical

approach of diversity effects.

Genotype propagation and selection

The procedures for genotype propagation and selection are also described in Abdala-Roberts

(2016). All plants used in this experiment were collected from a “source” common garden con-

sisting of genotypes from a natural population of B. salicifolia in the San Joaquin Marsh

Reserve, from which wild-grown plants were randomly selected over a 35 ha area (the most

distant plants were approximately 900 m apart). This source common garden and the present
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experiment were adjacent to each other and to the Marsh Reserve. Therefore, the spatial scale

of these experiments and our sampling of the wild-grown genotypes were roughly equivalent,

which resulted in a realistic assessment of plant intra-specific effects on consumers [41].

In February 2008, we collected shoot cuttings from 20 male and 20 female wild-grown plants

from the UC San Joaquin Marsh Reserve under the permission of the reserve manager. The cut-

ings were transplanted them to 1L pots containing a soil mixture of equal parts silica sand, red-

wood compost, peat moss, and pumice and grown in a greenhouse. In May 2008, cuttings were

randomly planted out into an open area with 1.0 m separation among plants. Sample size ran-

ged from eight to 13 cuttings per genotype (mean 11.5 ± 0.2; mode = 12), with a total of 459

plants. In December 2008, all plants were assessed for size by measuring the cumulative length

of all shoots longer than 10 cm in length. All plants were initiated at the same size and time,

thus any subsequent measurements of plant size represented an estimate of plant growth rate.

Across all genotypes, there was significant (3.7-fold) variation in growth rate (total cumula-

tive plant length after 10 months of growth) between the fastest and the slowest-growing geno-

types, as well as a weak effect of plant sex with females growing 8% faster than males [21]. The

three fastest and four slowest growing male and female genotypes (N = 14 genotypes total)

were identified based on the above results and cloned for the present study. A greater number

of slow- than fast-growing genotypes (four vs. three for each sex, respectively) were used

because of lower propagation success of the former. In the source common garden, the average

growth of the six fast male and female genotypes was two-fold greater than the average growth

of the eight slow male and female genotypes, but there was no significant difference in growth

between males and females [21].

In April 2009, three cuttings were collected from each of the approximately 12 copies of

each plant of the selected genotypes in the source common garden (ca. 36 cuttings from each

of 14 genotypes). Having replicate copies of each genotype come from unique source plants

eliminates non-genetic (maternal) effects. These cuttings were treated as described above,

grown in perlite until early June when they were transplanted into individual pots, and then

maintained in a greenhouse until November 2009 when they were planted into the field

experiment.

Experimental design

The experimental design is also described in Abdala-Roberts (2016). In November 2009, we

planted B. salicifolia individuals in 10 separate 2 × 2 m plots, each covered by 2.4 × 2.4 m cages

made of PVC pipe frames encased with 70% transparent lumite fabric, and 1.4 m spacing

between plots. For five plots, these cages were open on one side, although aphids, their natural

enemies (parasitoids, coccinellids), and aphid-tending ants gained access and were common

in all plots. Each plot was in turn divided into nine planting locations, each with a pair of plants

(18 plants per plot) (S1 Fig). Planting locations were on a three-by-three grid, with 0.67 m

spacing among locations and with edge planting locations being 20 cm from the cage wall.

Plants within a pair were transplanted into a single excavated hole with plant root masses

touching. Upon plant excavation at the end of the experiment (for biomass measurements, see

ahead), roots had spread laterally only approximately 5 cm from the original planting loca-

tions, suggesting that while plants within pairs interacted, belowground interactions among

pairs was unlikely. Plant canopies within pairs were consistently touching whereas plant cano-

pies among pairs only touched occasionally, and in all cases canopy contact was greater within

than among pairs.

With respect to plant sex, pairs of plants were either two males or two females (sex mono-

cultures) or two plants of different sex (sex polycultures), with three repetitions of each
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combination per plot (S1 Fig). Similarly, with respect to growth rate plant pairs were either

two fast- or two slow-growing genotypes (growth monocultures) or a fast- and slow-growing

genotype (growth polycultures), also with three repetitions of each combination per plot (S1

Fig). These plant sex and growth rate combinations were crossed for a total of nine treatment

combinations, with one repetition of each treatment combination in each plot. Across the

entire experiment there were 10 replicate pairs per treatment combination, 30 replicate pairs

for each sex monoculture, sex polyculture, growth monoculture, and growth polyculture, and

overall a total of 90 plant pairs and 180 plants. With respect to individual genotypes, these

were assigned such that each replicate of a treatment consisted of unique genotypic combina-

tions. Sample sizes varied based upon plant material available, ranging from 10 to 20 plants

per genotype (median of 13), with the exception of one slow-growing female genotype for

which sample size was five. All plots were irrigated daily for the first six weeks and as needed

throughout the summer and early fall of 2010 (May-November) and were weeded every other

month from January through June of 2010 and 2011. All plants were inoculated with approxi-

mately 10 adults of the two dominant aphid species (A. gossypii and U. macoli) in January 2010

and again in January 2011. Our design was substitutive, and did not address the separate effects

of plant density (intra-plant type effect) and frequency (i.e. inter-plant type effect) [24] as

doing so would have required replicating the current experiment at multiple densities (e.g. [4])

which was not logistically feasible based upon available resources.

Insect sampling and plant biomass measurements

We sampled insects twice during the experiment, once in March 2010 and again in March

2011. We recorded the abundance of Uroleucon, Aphis, ants, and Aphis parasitoids by care-

fully examining the stems and leaves of each plant. Parasitoid abundance was estimated from

the number of visibly parasitized aphids per plant. There was no detectable parasitism on

Uroleucon. Plants were harvested in May 2011 (18 months after planting), and plant material

was divided into above- (i.e. shoot) and belowground (i.e. root) biomass, dried and weighed.

We estimated insect abundance (counts) and density, where the latter was estimated as the

number of insects per kilogram of shoot dry biomass. For statistical analyses, we used the

sum of biomass and the mean of insect (abundance or density) values across plants within

each pair.

Mycorrhizal colonization

Fine roots (0.5–1.0 g) were soaked in 10% KOH for 4–5 days and then transferred to a 1% HCl

solution for one minute. Roots were stained by placing them in a 0.01% acid fuschin in 14:1:1

lactic acid: glycerol:diH2O for one day. To de-stain, samples were transferred to 14:1:1 lactic

acid: glycerol:diH2O solution for one day. Percent root colonization by arbuscular mycorrhizal

fungi was calculated by examining 100 random intersect points of a slide with stained fine

roots on it. An intersection point was defined as any time an observer encountered a root sam-

ple. Transect lines ran vertically through the slide; an observer then completed enough transect

lines until 100 intersection points were recorded. At every intersection point, the presence or

absence of mycorrhizal colonization was recorded and we calculated percent root colonization

(i.e. proportion of intersection points colonized), considered a proxy of density of mycorrhizal

colonization. Mycorrhizal abundance was estimated as the amount of colonized root mass by

multiplying the proportion of colonized points by the root dry mass (g). Although this estimate

of abundance is based upon both fine and coarse root biomass and therefore overestimates the

mass of colonized roots as only fine roots are colonized, it nevertheless provides a relative esti-

mate for comparison among levels of diversity.
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Statistical analyses

We used general linear mixed models to test for the effects of sex diversity and growth rate

diversity on plant growth (total biomass, shoot biomass, and root biomass), mycorrhizae,

Aphis, Uroleucon, parasitoids, and ants using plant pair (i.e. monoculture or polyculture) as

the unit of replication. We tested for effects on both the abundance (number of insects or

hyphae; hereafter "abundance" models) and density (number of insects or hyphae/kg of dry

weight; hereafter “density” models) of insects and mycorrhizae. All insect abundance and den-

sity models were performed using values per plant averaged across years, as we found no evi-

dence of inter-annual variation in sex or growth rate diversity effects for any group of insects

(non-significant year × sex diversity and year × growth rate diversity interactions: F� 1.28,

P� 0.27 and F� 1.05, P� 0.35, respectively). Comparing results for abundance vs. density

distinguishes between effects of each source of diversity occurring through differences in

resource abundance (e.g. there being greater plant biomass in polyculture than monoculture)

vs. those occurring due to changes in plant-based heterogeneity or quality. Changes in plant

quality can take place due to some unknown combination of effects of plant traits (e.g. defenses

or nutrients), mutualist services, the strength of competition and predation, plant mediation

of the abiotic environment or habitat complexity, and potentially other factors as well. By

inference then, differences in findings between density and abundance models provide insight

into the mechanisms at work. If there are significant diversity effects on abundance but not

density, this suggests such effects are mediated by differences in resource abundance alone.

Conversely, if diversity effects on abundance are equal to those on density, this suggests that

diversity effects are mediated by plant quality rather than resource abundance.

All models included the effect of plot (treated as random) to control for spatial heterogeneity.

To test for diversity effects, we performed pre-planned contrasts comparing the difference in

the mean of both monoculture types (of male and female, slow and fast) relative to the mean of

polycultures, separately for each source of diversity. For simplicity, we only report results from

these contrasts because the test of main effects in the models was not of interest because it treats

monoculture types as separate levels. For this same reason, we did not test for the growth-by-

sex interaction in any case. Residuals for plant biomass variables and mycorrhizal percent root

colonization were normally distributed, whereas other variables required transformations; Uro-
leucon, ant, and parasitoid abundance and density were log-transformed, Aphis abundance and

density were log- and square-root transformed, respectively and mycorrhizae abundance was

arcsine-square root transformed. We report least-square means and standard errors (S.E.) from

untransformed data as descriptive statistics. In all cases, results are based upon Type III sums-

of-squares and all analyses were carried out in PROC MIXED, SAS ver. 9.2 [42].

Whenever a diversity effect was significant in the above models, we determined if such

effects were additive or non-additive. The former are due to sampling effects, where the occur-

rence of genotypes with higher growth or quality is more likely at high diversity. In contrast,

non-additive effects are due to interactions among genotypes leading to emergent patch-level

properties that cannot be explained by genotype-specific effects [43]. Following Johnson et al.

(2006) [44], we calculated plant genotype means for each consumer group at low diversity (i.e.

expected values) and compared these values to the mean of each genotype at high diversity (i.e.

observed values) separately for each source of diversity (across levels of the other source of

diversity). To do so, we used one-way general linear models with the PROC MIXED in SAS,

including plot as a random effect and genotype nested within plot. A significant difference

between observed and expected values is necessarily due to non-additivity as the comparison

is performed by specifying the monoculture values of each genotype, i.e. sampling effects are

accounted for by including genotype-specific expected values.
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Assessing inflation of Type I Error

Because we separately test for sex diversity and growth rate diversity on three components of

plant biomass (roots, shoots, total) and the density and abundance of five plant associates (two

aphids, ants, parasitoids, mycorrhizae), overall we conduct 26 analyses and thus increase the

chance for Type I error (“false positives” or incorrectly rejecting the null hypothesis). Rather

than reduce the number of analyses and the inference from our study, we instead took mea-

sures to assess the likelihood of inflated Type I error as described by Garcia (2004) [45]. First,

we performed a binomial expansion test to determine the probability of obtaining the observed

number of significant results by chance alone. Second, we perform a p-plot analysis based

upon the distribution of p values produced from all analyses. With this approach, the number

of true null hypotheses (i.e. non-significant results) is estimated by plotting 1-p values, sorted

in ascending order, versus their rank. The points corresponding to true null hypothesis (large

p-values) tend to fall along a straight line passing through the origin, whose estimated slope

gives an estimate of the total number of true null hypotheses, calculated as (1/slope)-1. This

estimated number of true null hypotheses can then be compared against the observed number

to assess inflated Type I error.

Results

Effects of plant sex and growth rate diversity on plant biomass

Total biomass. There was a marginally significant effect of sex diversity on total plant bio-

mass (Table 1), with polycultures having 20% greater total biomass (893.31 ± 69.64 g) than the

mean of male and female monocultures (764.56 ± 74.06 g) (Fig 1A). In contrast, there was no

effect of growth rate diversity on total biomass (Table 1; Fig 1A).

Shoot biomass. There were no effects of either sex diversity or growth rate diversity on

aboveground plant biomass (Table 1), although in the former case sex polycultures

(787.13 ± 61.90 g) had 14% more shoot biomass than sex monocultures (689.01 ± 59.00 g) (Fig

1B), consistent with effects on total biomass.

Root biomass. Sex diversity had a significant effect on root biomass (Table 1), with sex

polycultures having 30% more root biomass (115.31 ± 11.67 g) relative to the mean of male

and female monocultures (89.10 ± 11.40 g) (Fig 1C). Further analyses indicated that this effect

tended to be non-additive (F1,54 = 3.50, P = 0.06), meaning that the increase in biomass in sex

polycultures tended to be greater than expected based upon sampling effects alone. In contrast,

there was no effect of growth rate diversity on root biomass (Table 1; Fig 1C).

Table 1. Effects of plant diversity on plant biomass.

Source Total Shoots Roots

[1,56] [1,69] [1,56]

Sex diversity 3.15(0.081) 2.72(0.103) 4.21(0.045)

Growth diversity 0.30(0.583) 0.75(0.388) 1.07(0.306)

Results of pre-planned contrasts from general linear mixed models testing for effects of Baccharis salicifolia

sex diversity and growth rate diversity on total plant biomass, shoot biomass, and root biomass. F-values

and P-values (in parenthesis) correspond to contrasts testing for the difference in the mean of both

monocultures relative to the mean of polycultures, separately for each source of diversity. Significant

(P < 0.05) and marginally significant (0.05 < P < 0.10) results are in bold and italics, respectively. Degrees of

freedom are shown in brackets below each response variable, and were the same for both tests of diversity

in each case.

https://doi.org/10.1371/journal.pone.0183493.t001
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Fig 1. Least-square means (± S.E.) for total biomass (A), shoot biomass (B), and root biomass (C; g,

dry weight in all cases) for growth rate monocultures (“mono”) and polycultures (“poly”) of fast- and

slow-growing genotypes, and plant sex monocultures and polycultures of male and female

genotypes of the shrub Baccharis salicifolia. Least-square means account for the effect of plot to control

for effects of spatial heterogeneity. * = significant (P < 0.05); ms = marginally significant (0.05 < P < 0.10). The

mean of sex and growth rate monocultures is the mean of male and female monocultures or of slow- and fast-

growing monocultures, respectively.

https://doi.org/10.1371/journal.pone.0183493.g001
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Effect of plant sex and growth diversity on associate abundance

Aphids. We found no effect of sex diversity or growth rate diversity on the abundance of

Aphis (Table 2A; Fig 2A). In contrast, there was a significant effect of growth rate diversity on

Uroleucon abundance (Table 2A), with growth rate polycultures (25.83 ± 7.20 aphids) exhibit-

ing a 68% greater abundance relative to the mean of slow and fast-growing monocultures

(15.23 ± 7.10 aphids) (Fig 2B). Follow-up analyses indicated that this effect was additive (test

of non-aditivity: F1,64 = 0.87, P = 0.35). In addition, the effect of sex diversity on Uroleucon
abundance was not significant (Table 2A; Fig 2B).

Ants and parasitoids. There were no significant effects of either sex diversity or growth

rate diversity on ant abundance (Table 2A; Fig 2C) or on the abundance of parasitic wasps

attacking Aphis (Table 2A; Fig 2D).

Mycorrhizae. We found no effect of either sex diversity or growth rate diversity on the

abundance of mycorrhizae (Table 2A; Fig 2E).

Effect of plant sex and growth diversity on associate density

Aphids. We found a significant effect of plant sex diversity on Aphis density (Table 2B;

Fig 3A), with sex polycultures (25.53 ± 9.31 aphids/kg) exhibiting a 40% lower density of this

aphid than sex monocultures (43.62 ± 9.11 aphids/kg) (Fig 3A). This negative effect, however,

was additive (F1,66 = 1.98, P = 0.16), i.e. driven by sampling effects. There was no effect of

growth rate diversity on Aphis density (Table 2B; Fig 3A). On the other hand, we found instead

a significant effect of growth rate diversity but no effect of sex diversity on Uroleucon density

(Table 2B), where growth rate polycultures (57.53 ± 19.52 aphids/kg) exhibited a 98% greater

density than monocultures (29.05 ± 19.05 aphids/kg) (Fig 3B). Such effect, however, was addi-

tive (F1,61 = 0.33, P = 0.56).

Ants and parasitoids. We found a significant effect of plant sex diversity on the density of

ants (Table 2B), with sex polycultures (1.36 ± 0.77 ants/kg) exhibiting on average a 58% lower

density of ants than sex monocultures (3.21 ± 0.75 ants/kg) (Fig 3C). This negative effect of

diversity was non-additive (F1,62 = 4.65, P = 0.03). In contrast, there was no effect of growth rate

diversity on ant density (Table 2B; Fig 3C). In addition, there were no effects of either sex diver-

sity or growth diversity on the abundance of parasitic wasps attacking Aphis (Table 2B; Fig 3D).

Mycorrhizae. We found no effect of either plant sex diversity or growth rate diversity on

mycorrhizal percent root colonization (Table 2B; Fig 3E).

Table 2. Effects of plant diversity on insect abundance and density.

Source Aphis Uroleucon Aphis pars Ants Mycorrhizae

A) Abundance [1,76] [1,76] [1,74] [1,76] [1,58]

Sex diversity 0.56(0.457) 1.02(0.314) 0.22(0.639) 1.35(0.249) 0.01(0.959)

Growth diversity 0.01(0.965) 4.63(0.034) 0.49(0.484) 1.83(0.178) 0.05(0.830)

B) Density [1,69] [1,69] [1,67] [1,69] [1,62]

Sex diversity 5.02(0.028) 1.19(0.278) 0.54(0.467) 4.87(0.030) 0.15(0.704)

Growth diversity 0.01(0.919) 5.46(0.022) 0.75(0.388) 1.56(0.216) 0.01(0.993)

Results from general linear mixed models testing for effects of Baccharis salicifolia genotype sex and growth rate diversity on the abundance (A) and

density (B) of Aphis gossypii, Uruleucon macolai, parasitoids (Braconidae) of A. gossypii (“Aphis pars”), ants (Linepithema humile), and mycorrhizae. Insect

density = number of consumers per kg of shoot dry biomass; mycorrhizae abundance = proportion colonization by root dry mass; mycorrhizae

density = percent root colonization (see Methods). F-values and P-values (in parenthesis) correspond to contrasts testing for the difference in the mean of

both monocultures relative to the mean of polycultures, separately for each source of diversity. Significant (P < 0.05) results are in bold. Degrees of freedom

are shown in brackets below each response variable, and were the same for both tests of diversity in every case.

https://doi.org/10.1371/journal.pone.0183493.t002
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Assessing inflation of Type I Error

The probability of obtaining 5 significant results from 26 analyses is extremely low based upon

the binomial expansion test (p = 0.007). Based upon a p-plot analysis (S2 Table; S2 Fig), the

Fig 2. Least-square means (± S.E.) of abundance of the generalist aphid Aphis gossypii (A), the specialist aphid Uroleucon

macolai (B), ants (Linepithema humile; C), A. gossypii parasitoids (Braconidae; D), and mycorrhizae (percent root

colonization × dry root biomass; E) for growth rate monocultures (“mono”) and polycultures (“poly”) of fast- and slow-growing

plant genotypes, and plant sex monocultures and polycultures of male and female genotypes of the shrub Baccharis salicifolia.

Least-square means account for the effect of plot. * = Significant (P < 0.05). The mean of sex and growth rate monocultures is the mean of

male and female monocultures or the mean of slow- and fast-growing monocultures, respectively.

https://doi.org/10.1371/journal.pone.0183493.g002
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estimated number of true null hypotheses (non-significant results) is 21 when the regression

slope is fit to only the non-significant (p> 0.05) p values, which qualitatively appear to fall

along a straight line passing through the origin, whereas the significant (p< 0.05) p values

qualitatively appear to follow a different slopes. However, the estimated number of true null

hypotheses is 22 if the regression line is fit to all p values (the most conservative approach).

Fig 3. Least-square means (± S.E.) of density (# insects per kg of dry shoot biomass) of the generalist aphid Aphis gossypii (A),

the specialist aphid Uroleucon macolai (B), ants (Linepithema humile; C), A. gossypii parasitoids (Braconidae; D), and

mycorrhizal percent root colonization (E) for growth rate monocultures (“mono”) and polycultures (“poly”) of fast- and slow-

growing plant genotypes, and plant sex monocultures and polycultures of male and female genotypes of the shrub Baccharis

salicifolia Least-square means account for the effects of plot. * = Significant (P < 0.05). The mean of sex and growth rate monocultures

is the mean of male and female monocultures or the mean of slow- and fast-growing monocultures, respectively.

https://doi.org/10.1371/journal.pone.0183493.g003

Traits underlying plant diversity effects

PLOS ONE | https://doi.org/10.1371/journal.pone.0183493 September 8, 2017 12 / 18

https://doi.org/10.1371/journal.pone.0183493.g003
https://doi.org/10.1371/journal.pone.0183493


These estimates in turn correspond to the 21 non-significant results observed in our study,

suggesting a minimal increase in Type I error.

Discussion

We provide novel evidence for the influence of intra-specific diversity in two axes of plant phe-

notypic variation, sex and growth rate, on plant growth and associated consumers. Specifically,

we compared monocultures of male or female genotypes to sexual mixtures, and monocultures

of fast- or slow-growing genotypes to growth-rate mixtures. Sexual diversity increased plant

growth and reduced the density of the dietary generalist aphid Aphis and its associated aphid-

tending ants, but had no effect on this aphid’s parasitoids, the specialist aphid Uroleucon or

mycorrhizae. In contrast, growth rate diversity did not influence plant growth or any plant

associates except for the specialist aphid Uroleucon, which exhibited higher abundance and

density in growth rate mixtures. These findings indicate that plant diversity effects on consum-

ers are contingent upon the source of plant trait variation and that such effects may vary both

within and among higher trophic levels.

We found that sex diversity but not growth rate diversity influenced plant growth. In partic-

ular, the positive effect of sex diversity on root biomass and shoot biomass was non-additive

(the later marginally significant), suggesting incomplete niche overlap (and thus weaker com-

petition) or facilitation between sexes (but not among genotypes of varying growth rate).

Because B. salicifolia genotypes of differing sexes did not vary in growth, we conclude that sex

diversity effects on biomass were not mediated by growth-related traits. Similarly, both sex

(male vs. female) and growth (fast vs. slow) had effects of similar magnitude on mycorrhizal

colonization (S1 Table), suggesting that this also was not the factor underlying the effects of

sex diversity on plant growth. Regardless of the specific mechanism at work, we emphasize the

importance of identifying key traits or axes of variation in correlated traits to gain a predictive

understanding of plant intra-specific diversity effects on plant performance. For example, dif-

ferences in resource acquisition (e.g. timing and uptake levels) among genotypes with con-

trasting growth rates (e.g. [22]) could help explain diversity or associational effects on plant-

plant interactions.

Plant diversity effects are presumably mediated by variation in plant traits influencing

plant-plant interactions (and thus growth) and associate faunas. Previous analyses from this

experiment indicated that the selected fast- and slow-growing B. salicifolia genotypes varied

substantially in growth, and such effects in turn influenced aphids, ants, and parasitoids (S1

Table). In addition, while male and female genotypes did not vary in growth, we found sex-

based differences in consumer density indicating that plant sexes vary in quality to herbivores

and higher trophic levels (S1 Table). It then follows that these genetic effects should underlie

concomitant effects of sex and growth diversity. Accordingly, we found differences between

male and female genotypes in Aphis and ant density (S1 Table) and in turn effects of sex diver-

sity on these consumers. However, in other cases we did not find a correspondence between

genotypic effects and diversity effects. For example, fast- and slow-growing genotypes differed

in growth rate but this did not translate into growth diversity effects on plant biomass, while

male and female genotypes did not differ in growth rate, but there were sex diversity effects on

plant biomass. Similar inconsistencies were observed for genotype identity vs. diversity effects

on Uroleucon and mycorrhizae. Taken together, these findings indicate that genotype identity

effects are not necessarily predictive of diversity effects, presumably due to genotype and trait

interactions which complicate translating identity effects directly to diversity effects [18].

Our findings emphasize the context-dependency of plant diversity effects on higher trophic

levels as a function of the source of plant trait variation [11,46] and consumer traits [47,48].
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For example, we found contrasting effects of each source of diversity on the two aphids. Sex

(but not growth rate) diversity negatively influenced the generalist aphid Aphis, with cascading

negative effects on ants (but not parasitoids). In contrast growth rate (but not sex) diversity

positively affected the specialist aphid Uroleucon. Accordingly, different axes of trait variation

cascaded up to higher trophic levels in unique ways.

The fact that sex diversity increased plant growth but reduced Aphis density is surprising

based upon past studies and plant defense theory. The negative effect of sex diversity on Aphis
density suggests lower plant quality (e.g. due to higher plant defenses, greater predation, etc.)

in sex mixtures, even though such mixtures demonstrated faster growth (relative to monocul-

tures). This result challenges previous work showing higher plant quality (Resource Availabil-

ity Hypothesis) [13,23] and increased herbivory (Plant Vigor Hypothesis) [49] for fast-

growing plants. Alternatively, sex diversity may have reduced Aphis performance indirectly

through direct negative effects on mutualist ants. Along these lines, Moreira and Mooney

(2013) investigated the interactive effects of B. salicifolia genotypic diversity (one vs. four ran-

domly selected genotypes) and ants (control vs. exclusion) on Aphis. This study found geno-

typic diversity had no effect on plant growth, increased Aphis abundance, but did not mediate

(interact with) the top-down effects of aphid-tending ants. While these results for genotypic

diversity suggest that sexual diversity may also not alter ant protection of aphids, a definitive

answer would require an experiment measuring the effects of sex diversity on Aphis both in

the presence and absence of ants.

In contrast to Aphis, we found a positive effect of growth diversity on both the abundance

and density of the specialist aphid Uroleucon. In particular, a positive effect on density indi-

cates that growth rate polycultures boosted the abundance of this aphid through changes in

habitat heterogeneity or increased plant quality. We note that the magnitude of the effect of

growth diversity on Uroleucon density was greater than for abundance despite the fact that a

stronger effect would be expected on abundance since this variable responds to both resource

abundance and quality. These findings, combined with the fact that growth diversity did not

influence plant biomass, indicates that effects of growth diversity on Uroleucon through

changes in resource abundance were lacking or weak at the most.

Conclusions

Our results indicate that different sources of plant genetic diversity operate via different

mechanisms and may exert contrasting effects on plant growth and consumers. Therefore,

we emphasize the importance and need of manipulating known axes of plant genetic varia-

tion or genetically-based traits in order to gain a predictive understanding of plant intra-spe-

cific diversity effects [15,18]. Future work should involve the use of plant genetic lines that

vary in target traits and use experimental designs that allow both the independent and com-

bined effects of such traits to be examined. In doing so, we will move from a descriptive

realm confined to addressing the presence or magnitude of plant genetic diversity effects

towards identifying and assessing the relative importance of independent traits or axes of

correlated traits.

Supporting information

S1 Fig. Experimental design. Experimental design for the treatment combinations of growth

diversity crossed with sex diversity. Each treatment combination consisted of a pair of plants

and was replicated once in each of 10 plots, with the planting location within plot being ran-

domized such that each plot represented a randomized complete block. Plants were drawn

from a pool of 14 genotypes consisting of 7 males and 7 females and 8 slow-growing and 6
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fast-growing genotypes. Each of the 10 replicates of each treatment combination consisted of a

unique genotypic pair.

(TIF)

S2 Fig. P-plot for assessment of Type I error (after Garcia 2004). The number of true null

hypotheses (i.e. non-significant results) is estimated by plotting 1-p values, sorted in ascending

order, versus their rank (listed in S2 Table). The points corresponding to true null hypothesis

(large p-values) tend to fall along a straight line passing through the origin, whose estimated

slope gives an estimate of the number of true null hypotheses, calculated as (1/slope)-1. Signifi-

cant (p< 0.05) p values are shown with hollow circles, non-significant (p> 0.05) p values are

shown with filled circles. The best-fit line passing through the origin and the non-significant p

values (slope = 0.0457, solid line) provides an estimate of 21 true null hypotheses (non-signifi-

cant results). The best-fit line passing through the origin and all p values (slope = 0.0432,

dashed line) provides an estimate of 22 true null hypotheses. The observed number of true null

hypotheses was 21 out of 26 total tests (S2 Table).

(TIF)

S1 Table. Plant genotype variation in plant biomass and consumers. Differences in plant

biomass (total, above- and below-ground, g), consumer abundance, and consumer density (#

of insects or hyphae / kg of shoot biomass) between male and female, as well as between slow-

and fast-growing genotypes of Baccharis salicifolia reported in Abdala-Roberts et al. (2016).

Consumers included the generalist aphid Aphis gossypii (“Aphis”), specialist aphid Uroleucon
macolai (“Uroleucon”), parasitoids (Braconidae) attacking A. gossypii (“parasitoids”), argentine

ants (Linepithema humile, “ants”), and mycorrhizae. Values are least-square means (± S.E.)

from general linear mixed models testing for effects of sex, growth rate, their interaction, and

plot (random), using data from both monocultures and polycultures (Abdala-Roberts et al. in

review). Based on results from these models, we specify whether differences between levels of

each factor were significant (�P< 0.05, ��P < 0.01, ���P< 0.001), marginally significant

(“ms”: 0.05< P< 0.10) or not significant (“ns”: P� 0.10).

(DOCX)

S2 Table. Compiled values for construction of P-plots. Compiled values for p, p-1 and ranks

for construction of p-plot and assessment of inflated Type I error (after Garcia 2004).

(DOCX)
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