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Fine-Tuning Reception in the Bone: PPARγ and Company
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PPARγ plays a central role in the formation of fat. Regulation of PPARγ activity depends on numerous factors ranging from dietary
ligands to nuclear hormone coactivators and corepressors to oxygen-sensing mechanisms. In addition, the interplay of PPARγ with
other nuclear hormone receptors has implications for the balance between adipogenesis and osteogenesis in mesenchymal stem
cells of the bone marrow stroma. This review will explore a range of factors influencing PPARγ activity and how these interactions
may affect osteogenesis.

Copyright © 2006 Z. Elizabeth Floyd et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

INTRODUCTION

This special issue focuses on the latest findings relating to
the role of PPARs in bone metabolism. This review uses the
broader scope of the nuclear hormone receptor superfamily
to assess the relationship between adipogenesis and osteoge-
nesis, both in vitro and in vivo, and their underlying regula-
tory mechanisms. While PPARγ takes center stage, the vita-
min D3, estrogen, LXR (liver X receptor), and related recep-
tors are used as examples to explore the potential impact of
coactivators and corepressors on bone marrow-derived mes-
enchymal stem cell (MSC) differentiation. The role of dietary
and endogenous ligands, such as genistein, long chain fatty
acids, and resveratrol, are evaluated in the context of nuclear
receptor regulation of bone physiology and pathology.

Bone marrow stroma MSCs give rise to a number of cell
types, including osteoblasts and adipocytes [1, 2]. Bone for-
mation is regulated by Runx2/Cbfa 1, a member of the runt
homology domain transcription factor family [3–6] while fat
formation depends on the peroxisome proliferator-activated
receptor gamma (PPARγ) [7–9]. A number of studies sug-
gest that bone formation is related inversely to adipocyte for-
mation in the marrow cavity [2, 10]. In vitro studies using
bone marrow-derived MSCs find that induction of adipocyte
differentiation inhibits osteoblastic bone formation [2, 10].
Likewise, agents inducing osteoblast differentiation inhibit
adipogenesis [11]. These findings are consistent with the re-
sults of Akune et al [12] demonstrating that haploinsuffi-
ciency of PPARγ promotes bone formation.

The reciprocal relationship between PPARγ levels and os-
teogenesis is particularly evident with increased age [12, 13],
supporting a role for PPARγ in bone development and os-
teoporosis associated with aging. The increasing age of the
population and osteoporosis associated with aging indicates
a need to further explore the regulation of PPARγ with re-
spect to bone formation. The interplay of PPARγ with other
nuclear receptors and the regulation of PPARγ by a range of
cofactors in other tissue types may offer insights into poten-
tial therapeutic targets for regulating bone formation.

PPARγ: CROSSTALK WITH THE CLASSICAL
NUCLEAR RECEPTORS

Originally described as an “orphan” nuclear receptor [14–
17] having no known ligand, the peroxisome proliferator-
activated receptor-γ (PPARγ) has since been identified as
the target of the widely-used thiazolidinedione (TZD) class
of antidiabetic drugs. Although the thiazolidinediones are
well described as synthetic ligands of PPARγ, the endoge-
nous PPARγ ligand has remained elusive. Long chain fatty
acid derivatives are known to activate PPARγ [18–20], but
the affinity of these natural ligands for PPARγ is well be-
low the affinity of bona fide classical nuclear receptor ligands.
However, there is now an evidence that nitric oxide deriva-
tives of linoleic acid are potent adipogenic agonists at levels
of 133 nM, well within the physiological range [21].

In vitro analyses demonstrate that various PPARγ
ligands (rosiglitazone, 9,10 dihydroxyoctadecenoic acid,
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15-deoxy12,14-PGJ2) not only induce murine bone marrow
stromal cell adipogenesis but also inhibit osteogenesis [22].
However, in vivo models suggest that not all PPARγ ligands
exhibit the same effects [23–25]. For example, long term
treatment of mice with the thiazolidinedione troglitazone in-
creased bone marrow adipocyte content without reducing
bone mass and trabecular volume [23]. In contrast, treat-
ment of mice with rosiglitazaone, a thiazolidinedione with
higher affinity for PPARγ, decreased bone mineral content,
bone formation rates, and trabecular bone volume while in-
creasing adipogenesis [24, 25].

In addition to PPARγ, other nuclear hormone recep-
tors control critical adipogenic and osteogenic steps. Among
these are the estrogen and vitamin D receptors and the inter-
play between PPARγ and these receptors has implications re-
garding the regulation of bone and fat formation in the bone
marrow.

The effects of estrogen on bone and adipose tissue forma-
tion have long been recognized in rodent and canine ovariec-
tomy models. In vitro studies using murine bone marrow
MSCs have found that estrogen reciprocally promotes osteo-
genesis while inhibiting adipogenesis [26, 27]. In vitro stud-
ies using murine bone marrow MSCs have found that the
soy phytoestrogen diadzein exhibits a dose dependent bipha-
sic response: low concentrations of diadzein increase osteo-
genesis and decrease adipogenesis while higher doses have
the opposite effect [28]. The reciprocal relationship between
osteogenesis and adipogenesis is attributed to a balance be-
tween diadzein-induced activation of ER (estrogen receptor)
and PPARγ [28]. The importance of a balance between ER
and PPARγ activities is further illustrated by studies indi-
cating that activation of PPARγ with the thiazolidinedione
rosiglitazone in ovariectomized rats is associated with in-
creased bone resorption [29]. Indeed, recent studies show
that a point mutation in the ligand binding domain (exon
6, C161T) of PPARγ is associated with decreased levels of
osteoprotegerin in postmenopausal women [30]. However,
future studies are needed to determine the role of estrogen
receptor and PPARγ “cross-talk” in adipogenesis and osteo-
genesis. Estrogen can exert stimulatory effects on bone for-
mation in the absence of the estrogen receptor alpha (ERα)
[31]. Although estrogen-mediated changes in bone marrow
adipogenesis were not determined in the absence of ERα, the
results suggest that any reciprocal relationship between bone
and fat formation may not require activation of the estrogen
receptor.

Crosstalk between PPARγ and vitamin D receptor (VDR)
activated pathways also plays a role in the balance between
bone and fat formation. The inbred SAM-P/6 (senescence
accelerated mice-P/6) murine strain provides a model of
accelerated senescence characterized by osteopenia and in-
creased bone marrow fat mass [32]. Recent studies found
that 1.25 (OH)2 vitamin D3 treatment inhibited adipoge-
nesis in the SAM-P/6 mice [33]. This correlated with a
50% reduction in PPARγ mRNA and protein levels as well
as a decrease in Oil Red O positively stained cell num-
bers [33]. Additional studies indicate that 1.25 (OH)2 vita-
min D3 bound VDR blocks adipogenesis by downregulating
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Figure 1: PPARγ and vitamin D receptor interactions with RXRα
may function as a switch between adipogenesis and osteogenesis.

C/EBPβ (CAAT/enhancer binding protein), a critical inducer
of PPARγ transcription early in adipogenesis [34]. However,
ligand-free VDR appears to be necessary for adipogenesis as
“knockdown” of VDR using siRNA prevents the formation
of fat cells [34].

It is tempting to speculate that the inverse relation-
ship between adipogenic and osteogenic differentiations in
the bone marrow stroma may involve competition between
PPARγ and other nuclear receptors such as the vitamin D
receptor for their common obligate heterodimeric partner,
RXRα (retinoid X receptor) [35] (see Figure 1). In this role,
RXRα is well positioned to regulate the transcriptional ac-
tivity of its binding partners. PPARγ activity is regulated by
PPARγ ligands as well as the RXRα ligand, 9-cis-retinoic acid,
even in the absence of PPARγ ligand binding [36]. Indeed,
adipogenesis is inhibited in the presence of 9-cis-retinoic acid
in the murine TMS-14 stromal cell line [37]. Inhibition of
adipogenesis is accompanied by a decrease in PPARγ pro-
tein levels and suggests a decrease in PPARγ transcriptional
activity [37]. Conversely, VDR activity is not affected by 9-
cis-retinoic acid binding to RXRα alone [38]. However, 1.25
(OH)2 D3-bound VDR enhances heterodimerization with
RXRα, resulting in increased VDR activity [38]. The variable
response of PPARγ and VDR to RXRα ligand binding is con-
sistent with the idea that RXRα heterodimerization may serve
as a dynamic switch in the “decision” to undergo adipogene-
sis or osteogenesis.

PPARγ AND LXR: A CONNECTION BETWEEN LIPID
METABOLISM AND BONE FORMATION

The liver X receptor subfamily of nuclear receptors, LXRα
and LXRβ, are pivotal in the conversion of cholesterol to
bile acids. While the LXR gene was originally identified as an
“orphan receptor” based on its heterodimerization with the
9-cis retinoic acid receptor RXR, subsequent studies identi-
fied cholesterol metabolites as endogenous LXR ligands [39].
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LXR proteins are abundant in adipocytes and recent stud-
ies suggest cross-talk between PPARγ and the LXRs dur-
ing adipogenesis [40–43]. Although the effect of LXR ago-
nists on adipogenesis is unclear [41, 44], several studies in
murine 3T3-L1 cells link LXR to adipogenesis [41–44]. Ho-
mozygous LXRα/β−/− mice have smaller adipose tissue de-
pots compared to their wild type littermates, suggesting that
LXR regulates lipid storage [42, 43]. This effect is attributed
to LXRβ since adipose tissue is decreased in LXRβ−/− but not
LXRα−/− mice [43]. There is evidence that LXR activates the
PPARγ promoter and enhances adipogenesis in 3T3-L1 cells
[44] while other studies indicate that the LXR promoter in
adipocytes is regulated by PPARγ [42]. These findings sug-
gest that PPARγ and the LXR proteins positively interact in
the formation of adipocytes. However, LXR ligands, such as
the oxysterols 20S and 22R hydroxycholesterol, inhibit adipo-
genesis induced by the PPARγ ligand troglitazone [45]. These
studies did not determine if the effects of the oxysterols in
adipogenesis were LXR-mediated, leaving open the possibil-
ity that the effects are LXR-independent. It would be inter-
esting to examine the effects of the LXR ligands on adipose
tissue and PPARγ activity in the LXRα−/−β−/− mouse model.

The interplay of LXR and PPARγ in bone formation
is relatively unexplored. While inhibiting adipogenesis, the
oxysterols 20S and 22R hydroxycholesterol enhance osteoge-
nesis [45, 46]. However, inhibition of cholesterol synthesis
and presumably 20S and 22R hydroxycholesterol by the statin
compounds also enhances bone formation [47], and suggests
decreases in LXR ligands that are associated with osteogene-
sis. At present, these contradictions are difficult to reconcile
and future studies examining the relationship between LXR
(liganded or unliganded) and PPARγ in adipogenesis and os-
teogenesis should provide important insights into these com-
plex interactions.

PPARγ AND THE NUCLEAR RECEPTOR COREGULATORS:
POTENTIAL ROLES IN BONE FORMATION

The transcriptional activity of the nuclear receptors is also
mediated by interactions of the receptors with a large group
of proteins classified as coactivators and corepressors of nu-
clear receptor activity. A major category of the coactivators is
the p160 family of proteins that includes the cAMP response
element binding protein (CBP)/p300 and steroid receptor
coactivators (SRC)-1,-2,-3, which recruit histone modifiers
to the chromatin structure (reviewed in [48]). A second
category of coactivators includes subunits of the mediator
complex such as the PPAR-binding protein (PBP)/thyroid
hormone receptor-associated protein (TRAP) 220/vitamin D
receptor-associated protein (DRIP) 205 [49–51]. These coac-
tivators interact with the general transcriptional machinery
to control assembly of the transcription preinitiator com-
plex [49]. TRAP220/DRIP205, originally cloned as a coac-
tivator of the vitamin D receptor [50], interacts directly with
PPARγ [51]. TRAP 220 (−/−) fibroblasts fail to undergo
adipogenesis, indicating that TRAP 220 acts as a PPARγ-
selective coactivator [51]. An additional coactivator, peroxi-
some proliferator-activated receptor gamma interacting pro-

tein (PRIP), serves to link TRAP220/DRIP205 bound PPARγ
to the CBP/p300 coactivator [52]. PRIP (−/−) mouse fi-
broblasts are also refractory to PPARγ-stimulated adipoge-
nesis [53]. Although these coactivators are relatively unex-
plored in the regulation of osteogenesis, the essential role of
PPARγ in regulating the balance between fat and bone for-
mation strongly implies a role for PPARγ-coactivator inter-
actions in osteogenesis. This possibility is supported by stud-
ies examining the effects of loss of SRC-1 [54–56]. In brown
adipocytes, PPARγ activity is regulated by interaction with
SRC-1 and the PPARγ cofactor 1(PGC-1) [57]. PPARγ tar-
get genes involved in adipogenesis are decreased in SRC-1
and p/CIP (p/300 cointegrator-associated protein) knockout
mice [54]. This is associated with increased metabolic rates
and activity levels, indicating a role for SRC-1/PPARγ inter-
actions in energy balance [54]. Other studies using SRC-1
(−/−) mice have demonstrated that SRC-1 plays a role in
bone responses to estrogen following ovariectomy, particu-
larly in the metabolically active trabecular bone [55, 56]. Fur-
ther studies will be needed to determine if SRC-1 interactions
with PPARγ influence responses to estrogen in metabolically
active bone. However, the effects on bone formation associ-
ated with the loss of SRC-1 are expected to be complex given
the general interaction of SRC-1 with nuclear receptors, in-
cluding the estrogen and vitamin D receptors.

A second group of coregulators of PPARγ activity are the
nuclear corepressors, nuclear hormone receptor-corepressor
(N-CoR) [58], and silencing mediator of retinoid and thy-
roid hormone receptor (SMRT) [59]. Repression of nuclear
receptor activity by N-CoR/SMRT involves recruitment of
histone deacetylases to the transcriptional machinery (re-
viewed in [60]). PPARγ and VDR belong to a group of nu-
clear receptors that interact with N-CoR and SMRT in the
absence of ligand [61, 62]. Ligand binding results in disen-
gagement with the corepressors and recruitment of coac-
tivators (reviewed in [60]). Studies using siRNA “knock-
down” of N-CoR and SMRT in murine 3T3-L1 adipocytes
show that these corepressors regulate PPARγ activity dur-
ing adipogenesis [63]. These results are consistent with other
studies indicating that the loss of fat mass associated with
calorie restriction is due to increased interaction of PPARγ
with N-CoR and SMRT [64]. Calorie restriction activates the
histone deacetylase Sirt1, which recruits the N-CoR/SMRT
corepressor to PPARγ leading to inhibition of PPARγ activ-
ity in adipocytes [64]. Very little is known about the effects of
calorie restriction on bone formation. However, studies us-
ing resveratrol, a plant polyphenol that, like calorie restric-
tion, activates Sirt1, may offer some insight. Recent stud-
ies in ovariectomized rats show that resveratrol treatment
increases bone mineral density [65]. In addition, resvera-
trol increases the expression of osteocalcin and osteopon-
tin in human bone marrow MSCs [66]. This upregulation
of osteoblast markers is associated with increased responses
to 1, 25 (OH)2 vitamin D3 that are accompanied by in-
creases in expression of the vitamin D receptor [66]. These
results hint at a relationship between repression of PPARγ
activity in adipocytes via interaction with N-CoR/SMRT and
activation of vitamin D receptor responses in osteoblasts.
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Unraveling a potential relationship between repression of
PPARγ activity via interaction with N-CoR/SMRT and en-
hancement of bone formation may provide new therapeutic
targets in treating osteoporosis in the aging population. An
important area for exploration involves regulation of PPARγ
transcriptional activity via ubiquitin-proteasome-dependent
degradation. The ubiquitin-proteasome system is responsi-
ble for the degradation of short-lived proteins in eukaryotes,
including the nuclear receptors (reviewed in [67]). PPARγ
is targeted for degradation under basal [68] and ligand-
activated conditions [69]. Recent studies show that com-
ponents of the ubiquitin-proteasome system responsible for
targeting substrates for degradation also function as nu-
clear receptor coactivators and corepressors [70–72]. Indeed,
subunits of the N-CoR/SMRT complex are ubiquitin lig-
ases that target substrates for degradation by the 26S pro-
teasome [72]. These components, TBL1/TBLR1 (transducin
β-like 1/transducin β-like 1 related protein), are required for
exchange of corepressors for coactivators upon ligand bind-
ing for a number of nuclear receptors, including PPARγ [72].
TBL1/TBLR1 act as adaptors for recruiting components of
the ubiquitin-proteasome system to the liganded receptor
[72]. In addition, deletion of TBL1 from mouse embryonic
stem cells precludes the ability of these cells to undergo adi-
pogenesis as judged by staining for neutral lipids and de-
creased gene expression of PPARγ and PPARγ targets such as
adipsin [72]. Given the reciprocal relationship between adi-
pogenesis and osteogenesis, these results suggest a role for
interactions of components of the ubiquitin-proteasome sys-
tem with PPARγ (and other nuclear receptors) in determin-
ing the balance between bone and fat formation.

OTHER COREGULATORS OF PPARγ

Additional components of the transcriptional complex also
influence PPARγ activity and the differentiation of mes-
enchymal stem cells into either adipocytes or osteoblasts.
New findings have identified a coactivator protein, known
as the transcriptional coactivator with PDZ binding motif
(TAZ), that is shared between Runx2 and PPARγ [73, 74].
In murine cell models, the TAZ protein localized to the os-
teocalcin promoter in the presence of bone morphogenic
protein-2 (BMP-2) and coactivated Runx2 and osteogenesis
while directly suppressing PPARγ and adipogenesis [73]. Al-
though not structurally related to β-catenin, TAZ is proposed
to be functionally similar to β-catenin as a regulatory switch
in determining the balance between osteoblast and adipocyte
development [74]. Wnt signaling stimulates osteogenesis by
induction of osteogenic factors such as Runx2 [75] while
suppressing adipogenesis in mesenchymal stem cells [76, 77].
Activation of the Wnt signaling pathway leads to activation of
β-catenin, which interferes with PPARγ transcriptional activ-
ity [78]. Conversely, suppression of Wnt signaling [77] and
activation of PPARγ [78] destabilize β-catenin, resulting in
adipogenesis. Future studies will be needed to determine if
β-catenin functions as a direct corepressor of PPARγ activity
in a manner analogous to the TAZ protein. Finally, ligand-
activated PPARγ itself suppresses both the expression and

activity of Runx2 [79], adding another regulatory layer to the
balance between bone and fat formation.

Any exploration of PPARγ’s influence over bone forma-
tion must take into account the effect of oxygen tension on
the development of fat and bone. It is here that the reciprocal
relationship between bone and fat formation seems to disap-
pear. The bone marrow mesenchymal stem cells (bone mar-
row MSC) are normally exposed to oxygen tensions lower
than the atmospheric oxygen tension of 21%. In vitro studies
indicate that low oxygen levels block induction of adipogen-
esis from human and murine MSCs [80]. Human MSCs ac-
cumulate lipid inclusions at low oxygen tensions, but the ap-
pearance of lipids is unaccompanied by expression of PPARγ
or the downstream PPARγ target genes required for adipo-
genesis [81]. Adipogenesis is similarly inhibited under low
oxygen conditions in human adipose-derived mesenchymal
stem cells (ASC) [82]. However, reduced oxygen tension is
also associated with decreased osteogenesis in the human
ASCs [82, 83], suggesting parallel regulation of bone and fat
development under these conditions. While hypoxic condi-
tions (2% oxygen) do not inhibit Runx2 transcriptional ac-
tivity [84], PPARγ transcriptional activity is inhibited un-
der the same conditions [85]. PPARγ inhibition is mediated
by HIF-1α, a hypoxia inducible transcription factor govern-
ing a range of cellular responses to low oxygen levels [85].
HIF-1α mediated repression of PPARγ activity depends on
an HIF-1α regulated transcriptional repressor, DEC1/Stra13
[85]. Interestingly, HIF-1α/DEC1 inhibition of PPARγ under
hypoxic conditions does not involve histone deacetylation,
raising the possibility that the classical nuclear receptor coac-
tivators and corepressors are not required in this process.

CONCLUSIONS AND FUTURE QUESTIONS

These observations suggest that regulation of PPARγ activity
may lie at the heart of determining if bone and fat develop-
ment proceed along parallel or reciprocal directions. Efforts
to understand the regulation of PPARγ transcriptional ac-
tivity have uncovered interplay of PPARγ and other nuclear
hormone receptors that is intricately regulated by a range
of coregulators. The coregulators extend beyond the classi-
cal coactivators and corepressors to include enzymes of the
ubiquitin-proteasome system, components of the Wnt and
BMP-2 signaling pathways, β-catenin and TAZ, and oxygen-
sensing factors such as DEC1/Stra13. As research progresses
in defining the role of PPARγ and other nuclear hormone re-
ceptors in osteogenesis, some of the questions to be answered
will include the following

(1) Will new insights into MSC adipogenesis and osteo-
genesis be gained as the ligands for “orphan” nuclear
hormone receptors are identified?

(2) How do additional components of the transcrip-
tional apparatus, such as histone acetylases and histone
deacetylases, contribute to the effects of PPARγ and re-
lated nuclear hormone receptors?

(3) How does ubiquitin-proteasomal targeting of PPARγ
and related nuclear hormone receptors coordinately
regulate MSC adipogenesis and osteogenesis?
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(4) Will these avenues of investigation have the poten-
tial to yield novel therapeutic targets or identify small
molecules for osteoporosis, osteopenia, and related
bone disorders?

(5) Do adipokines exert either an anabolic or catabolic ef-
fect on osteogenesis?

This field of research has advanced rapidly since the discov-
ery of PPARγ over a decade ago. As new investigators are re-
cruited to this intriguing and clinically relevant field, we an-
ticipate that the pace of scientific progress will continue to
accelerate.
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