
HIGHLIGHTS
• The Δ Phase angle showed significant linear inverse correlation with motor function of 

upper extremity (UE).
• Bioelectrical impedance analysis has the potential of additional index for predicting the 

motor function of UE in early stroke rehabilitation unit.
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ABSTRACT

Bioelectrical impedance analysis (BIA) has been used to investigate the body compositions 
and predict functional outcomes in patients with stroke, while the role of BIA to predict 
motor function or recovery in stroke has not been clarified. This study aimed to investigate 
relationship between body composition measured by BIA and upper limb motor function 
and recovery. Body compositions (soft tissue lean mass, phase angle, body fat mass and body 
water) of fifty patients who are admitted to the stroke rehabilitation unit were segmentally 
analyzed via BIA. The motor recovery of upper extremity (UE) was evaluated via Fugl-Meyer 
Assessment (UE-FMA) at the time of transfer and discharge. Correlations between body 
composition and UE-FMA at discharge were analyzed using Spearman correlation coefficient. 
Multiple regression analysis was used to determine the regression between body composition 
and motor function and recovery. The Δ Phase angle, the difference of both sides was 
significantly linearly inversely correlated with UE-FMA at discharge. However, in multiple 
regression analysis, body compositions including phase angle did not significantly predict 
motor function at discharge or motor recovery. The Δ Phase angle is related to the severity of 
upper limb motor function at discharge in subacute stroke patients, and further studies are 
needed to determine its value as a predictor for motor recovery.
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INTRODUCTION

Stroke is the second leading cause of death worldwide [1]. Many patients suffer from the 
prolonged physical dysfunction after hospital discharge, and the recovery of motor function 
is crucial for the patients to regain independence. Hemiplegic stroke leads to various muscle 
abnormalities including denervation, disuse, inflammation, remodeling and spasticity 
underlying changes in muscle tissue phenotype and atrophy [2]. Evaluating muscle changes 
and function on the hemiplegic side in patients with subacute hemiplegic stroke is important 
for predicting the degree of functional disability.
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Several methods are used to assess skeletal muscle mass or other body composition after 
stroke, including computed tomography (CT), ultrasound, bioelectrical impedance analysis 
(BIA), dual-energy X-ray absorptiometry, biomarkers, and anthropometry [3]. BIA is 
commonly used to evaluate total body composition in clinical and community settings due 
to the simple and non-invasive method involved. Several studies have recently reported the 
utility of BIA after stroke to predict clinical outcomes. Nagano et al. [4] investigated whether 
the gain in muscle mass may be positively associated with functional recovery in patients 
with sarcopenia after stroke. Kim et al. [5] investigated the body composition of affected and 
unaffected limbs after hemiplegic stroke.

Nutritional supply and status during rehabilitation are important factors for the prevention 
of muscle loss and to promote functional recovery in patients diagnosed with stroke. In 
addition, poor nutritional status on admission is predictive of long-term functional outcome 
in stroke patients [6]. The geriatric nutritional risk index (GNRI) has been used as an 
objective indicator of nutritional status based on serum albumin levels and body mass index 
(BMI). In BIA, phase angle has been regarded as an indicator of membrane integrity and 
water distribution between intra- and extracellular spaces [7]. Because phase angle has been 
used to predict body cell mass, it has also been used as a nutritional indicator in adults and 
children [8,9]. Recent studies have reported that phase angle of the whole body measured 
by BIA at the onset of stroke was independently associated with functional independence 
measure motor score at discharge [10,11]. Until now, various variables such as age, sex, 
lesion site, initial motor impairment, motor-evoked potentials and somatosensory-evoked 
potentials have been considered as predictors of upper limb motor recovery. The systematic 
review of literature suggested that the most significant predictor is the initial severity of 
motor impairment or function [12]. However, BIA can be used as a screening tool in the 
early stage of stroke in patients who cannot accurately measure motor function due to lack of 
cooperation. Although there have been studies on the correlation between body component 
and upper limb function [13,14], the regression between body component and upper limb 
motor function at discharge and motor recovery in stroke patient is still unknown.

Given the need for an objective method to predict upper limb motor function and recovery, 
the present study aimed to determine the prognostic value of BIA recorded from subacute 
stroke patients in predicting upper limb motor function at discharge and motor recovery.

MATERIALS AND METHODS

Participants
Patients with stroke who were transferred to the inpatient neurorehabilitation unit after 
treatment for the subacute phase in a tertiary hospital from January 2019 to December 2020 
were selected for the study.

The inclusion criteria were: 1) stroke detected via CT or magnetic resonance imaging (MRI), 
2) hemiparesis after stroke, 3) no previous ischemic or hemorrhagic stroke, 4) a Mini-Mental 
State Exam (MMSE) score ≥ 10, 5) subacute (within 50 days) stage, and 6) rehabilitation 
treatment for about 4 weeks. The exclusion criteria were: 1) any musculoskeletal disorder or 
neurological disorders causing weakness or muscle atrophy, 2) severe edema of upper limb, 
3) severe medical conditions, 4) MMSE score < 10, and 5) severe apraxia or attention deficit.
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This study was conducted in accordance with the Declaration of Helsinki. The use of patient 
data for research purposes was approved by the research Ethics Committee at the Incheon St. 
Mary’s Hospital, Catholic University of Korea (Approval No. OC21RASI0083).

Measurements
The study design was a retrospective study based on a review of medical records. Data 
collected included the age at stroke onset, sex, type of stroke, hemiplegic side, Days from 
onset (the period between the stroke onset and the BIA measurement date), Charlson 
Comorbidity Index (CCI) [15], initial National Institutes of Health Stroke Scale (NIHSS) 
score, Modified Barthel Index (MBI) for functional status of patients, and MMSE for cognitive 
assessment. NIHSS was measured at the onset of stroke, and MBI, and MMSE were measured 
within 3 days of transfer to the stroke rehabilitation unit. To evaluate initial nutritional status, 
we assessed the GNRI on transfer to the stroke rehabilitation unit, which was calculated as 
follows [16]:

1.489 × Serum Albumin (g/L) + 41.7 × Weight at Transfer (kg)/Ideal Body Weight (kg)

BMI (kg/m2) was calculated from the patients’ height and weight at the time of BIA.

Motor function assessment
To analyze the motor function of hemiplegic side of upper extremity (UE), Fugl-Meyer 
Assessment of UE (UE-FMA) involving affected side was also evaluated at the time of 
transfer and 4 weeks after rehabilitation to assess motor function at discharge. The FMA 
was developed to evaluate recovery from hemiplegic stroke [17]. It is divided into 5 domains: 
motor function, sensory function, balance, joint range of motion, and joint pain. Each 
domain contains multiple items, each scored on a 3-point ordinal scale (0 = cannot perform, 
1 = performs partially, 2 = performs fully). The motor domain includes items measuring 
movement, coordination, and reflex of the shoulder, elbow, forearm, wrist and hand. The 
motor score ranges from 0 to a maximum of 66 for the UE. We also calculated the difference 
(Δ UE-FMA) by subtracting the UE-FMA at transfer from that at discharge. The Δ UE-FMA 
value reflects the degree of motor recovery after 4 weeks of rehabilitation.

BIA
BIA was performed using a portable BIA device (InBody S10; InBody Corp., Seoul, Korea) 
within 3 days of transfer to the stroke rehabilitation unit by a single trained physical therapist 
in the study center. Measurements were taken in a supine position. Body composition was 
evaluated under 4 categories: 1) soft tissue lean mass (SLM; kg), 2) phase angle at 50 kHz, 
3) body fat mass (kg), and 4) body water (L). Segmental body composition analysis provides 
segmental measurement of SLM, phase angle and body water.

First, the SLM of whole body and segmental SLM on the affected and unaffected sides of UE 
were measured. SLM represents the total body water, protein, and non-osseous minerals. 
Thus, SLM is mostly composed of muscle mass, and represents the skeletal muscle mass 
within extremities [3]. We also calculated the difference (Δ SLM) by subtracting the SLM of 
affected side from that of the unaffected side. Second, the phase angle of whole body and 
segmental phase angle of the affected and unaffected sides of UE at 50 kHz were calculated 
from the impedance values. If the structural integrity of the cell membrane or cell function 
is high, the phase angle increases, and any plasma luminal structural damage of the cell 
decreases the phase angle. Therefore, we assumed that the phase angle of the affected side 
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was smaller than that of the unaffected side, and calculated the difference (Δ Phase angle) 
between the 2 sides. Third, body fat mass was also measured. Finally, the whole-body water 
and segmental body water of the affected and unaffected sides were measured.

Statistical analysis
Data were analyzed using the Statistical Package for Social Sciences software package SPSS 
ver. 26.0 (SPSS Inc., Chicago, IL, USA). The distribution of body compositions measured by 
BIA was analyzed using descriptive statistics. Correlations between clinical measurements 
(Age, NIHSS, CCI, GNRI, BMI, Δ UE-FMA and UE-FMA at discharge) and body compositions 
measured by BIA was analyzed using Pearson correlation coefficient (for parametric data) and 
Spearman correlation coefficient (for nonparametric data). Simple linear regression analysis 
and stepwise multiple linear regression analysis were conducted to investigate the prognostic 
value of body composition measured via BIA with the UE-FMA at discharge and Δ UE-FMA. 
Residual analysis for the multiple linear regression model was performed, and then the 
hypothesis for normality, independence, and equal variance was satisfied. Body composition 
parameters used as independent variables were phase angle (whole body, affected side, 
unaffected side and differences between both sides), SLM (whole body, affected side, 
unaffected side and differences between both sides), body fat mass and body water (whole 
body, affected side and unaffected side). Other variables (sex, age, GNRI, BMI, UE-FMA at 
transfer, NIHSS and CCI) were also included. For multicollinearity, Variance Inflation Factor 
(VIF) was used, and VIF ≥ 10 was considered high correlation. A p value < 0.05 was used as 
the probability criterion for entry into the regression model.

RESULTS

Participant characteristics
The baseline characteristics of the study population are summarized (Table 1). Based on the 
screening of medical records, the body composition of 68 subjects diagnosed with stroke was 
measured using BIA, and 50 subjects met the eligibility criteria. All subjects belonged to the 
same ethnic group and were right-handed. The mean age was 62.1 years (range, 21–88 years) 
and included 20 males and 30 females. The types of stroke included cerebral infarction in 33 
(66.0%) and cerebral hemorrhage in 17 (34.0%) cases. Days from onset was 10 to 47 days.

Relationship between body composition and clinical measurements
The distribution of body composition was represented using a boxplot (Fig. 1). Phase 
angle (whole body, affected side and unaffected side), SLM (whole body, affected side 
and unaffected side) and body water (whole body, affected side and unaffected side) were 
inversely correlated with age, and positively correlated with GNRI and BMI. But Δ Phase angle 
and Δ SLM were not significantly correlated with these clinical measurements. The CCI was 
inversely correlated with phase angle (whole body, affected side and unaffected side), SLM 
(whole body and unaffected side) and body water (whole body) (Table 2).

Predictive value of UE motor function
First, in Spearman correlation analysis, the Δ Phase angle showed a significant linear inverse 
correlation with UE-FMA at discharge for each sex (Fig. 2A for men, rho = −0.620, p = 0.004; 
Fig. 2B for women, rho = −0.556, p = 0.001). However, other variables including body fat 
mass, phase angle (affected side, unaffected side), SLM and body water was not significantly 
correlated with UE-FMA at discharge and Δ UE-FMA for each sex.

4/10https://doi.org/10.12786/bn.2022.15.e20

Body Composition and Motor Function in Patients With Stroke Brain & NeuroRehabilitation

02

https://e-bnr.org

https://e-bnr.org


5/10https://doi.org/10.12786/bn.2022.15.e20

Body Composition and Motor Function in Patients With Stroke Brain & NeuroRehabilitation

02

https://e-bnr.org

Table 1. Baseline characteristics of subjects
Characteristics Value (n = 50)
Sex, male/female 20/30
Age (yr) 62.1 (21–88)
NIHSS 5.7 (0–30)
CCI 5.3 (3–9)
Side of brain lesion

Right 22 (44.0)
Left 28 (56.0)

Stroke pathology
Infarction 33 (66.0)
Hemorrhage 17 (34.0)

Ischemic type (TOAST)
Large-artery atherosclerosis 8 (24.3)
Small-artery occlusion 23 (69.7)
Cardio-aortic embolism 2 (6.0)
Other causes 0 (0)
Undetermined cause 0 (0)

Hemorrhagic type
ICH 13 (76.4)
IVH 0 (0)
SAH 1 (6.0)
Mixed 3 (17.6)

Days from onset 21.3 (10–47)
MMSE score 23.3 (12–30)
MBI at transfer 43.6 (0–89)
UE-FMA at transfer 37.0 (0–66)
UE-FMA at discharge 46.7 (3–66)
Δ UE-FMA 9.7 (0–39)
Baseline values are presented as mean (percent) or mean (range).
BIA, bioelectrical impedance analysis; NIHSS, National Institute of Health Stroke; CCI, Charlson Comorbidity 
Index; ICH, intracerebral hemorrhage; IVH, intraventricular hemorrhage; SAH, subarachnoid hemorrhage; Days 
from onset, the period between the stroke onset and the BIA measurement date; MMSE, Mini-Mental State Exam; 
MBI, Modified Barthel Index; UE-FMA, Fugl-Meyer Assessment of upper extremity; Δ UE-FMA, the difference 
calculated by subtracting UE-FMA at transfer from UE-FMA at discharge.
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data, as medians with 25th to 75th percentiles (interquartile range) for nonparametric data. (A) Body fat mass, SLM (whole body), body water (whole body). (B) 
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Second, Table 3 shows the results of the simple regression analysis with UE-FMA at discharge 
as the dependent variable and stepwise multiple linear regression analysis. When simple 
regression analysis with UE-FMA at discharge was performed, UE-FMA at transfer (β = 0.832, 
p < 0.01) and phase angle (affected side) (β = 7.654, p = 0.01) were significant predictors 
of UE-FMA at discharge. In simple regression analysis with Δ UE-FMA as the dependent 
variable, only UE-FMA at transfer and Days from onset were significant predictors of Δ 
UE-FMA. Multiple linear regression analysis with UE-FMA at discharge as the dependent 
variable (adjusted R2 = 0.814) indicated that UE-FMA at transfer (β = 0.864, p < 0.01) and Days 
from onset (β = −0.35, p = 0.018) were significant predictors of UE-FMA at discharge. Other 
variables (age, sex, CCI, NIHSS, GNRI, BMI, body compositions measured by BIA) were 
originally included in analysis but not presented because of insignificant relationships with 
UE-FMA at discharge after controlling for the variables. The largest VIF was 1.053, indicating 
lack of multi-collinearity among variables. The UE-FMA at transfer was a stronger predictive 
variable than Days from onset (standardized β coefficient: UE-FMA at transfer = 0.929, Days 
from onset = −0.155). The coefficient of determination was 81.4%. When multiple regression 
analysis was performed with the Δ UE-FMA as the dependent variable, the result was the 
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Table 2. Correlations between clinical measurements and body compositions measured by BIA
Body compositions Age* NIHSS† CCI† GNRI* BMI*
Body fat mass* 0.122 0.061 0.140 0.379§ 0.649§

Phase angle (whole body)* −0.592§ 0.208 −0.555§ 0.581§ 0.544§

Phase angle (affected side)* −0.521§ 0.238 −0.454§ 0.476§ 0.311‡

Phase angle (unaffected side)† −0.440§ 0.338‡ −0.517§ 0.397§ 0.475§

Δ Phase angle† −0.067 0.204 −0.059 0.055 0.261
SLM (whole body)† −0.468§ 0.112 −0.371§ 0.508§ 0.580§

SLM (affected side)† −0.351‡ 0.147 −0.265 0.456§ 0.608§

SLM (unaffected side)† −0.368§ 0.156 −0.293‡ 0.468§ 0.626§

Δ SLM† −0.130 0.112 −0.268 0.120 0.156
Body water (whole body)† −0.436§ 0.106 −0.326‡ 0.475§ 0.576§

Body water (affected side)† −0.365§ 0.155 −0.270 0.474§ 0.616§

Body water (unaffected side)† −0.355§ 0.164 −0.266 0.450§ 0.624§

BIA, bioelectrical impedance analysis; NIHSS, National Institute of Health Stroke; CCI, Charlson Comorbidity Index; GNRI, geriatric nutritional risk index; BMI, 
body mass index; Δ Phase angle, the difference calculated by subtracting the phase angle of the affected side from that of the unaffected side; SLM, soft tissue 
lean mass; Δ SLM, the difference calculated by subtracting the SLM of affected side from that of the unaffected side.
All data were shown as correlation coefficients. *Pearson’s correlation coefficient (r) was utilized to establish the correlation among the parametric data; 
†Spearman’s correlation analysis (rho) was utilized for nonparametric data.
‡p < 0.05, §p < 0.01.
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same, and only the adjusted R2 value showed a difference (R2 = 0.205). The largest VIF was 
1.053, indicating lack of multi-collinearity among variables.

DISCUSSION

This study investigated the relationship between body composition measured by BIA and 
motor function and recovery of UE based on UE-FMA in patients with subacute stroke. We 
found that the Δ Phase angle of the UE had significant linear inverse correlation with motor 
function of UE at discharge in patients with subacute stroke. The larger the difference in 
the phase angles of both upper limbs measured after stroke, the smaller the UE-FMA at 
discharge value tended to be. This is the first study to evaluate the correlation and regression 
between body composition measured by BIA and motor function of UE based on UE-FMA 
in patients with subacute stroke. Considering the significant relevance found in this study, 
these findings suggest that the BIA have the potential of additional index to predict severity 
of upper limb motor function at discharge.

When simple regression analysis was performed with the UE-FMA at discharge as the 
dependent variable, the phase angle (affected side) was analyzed as a significant predictor. 
However, in multiple regression analysis, body compositions including phase angle measured 
by BIA were not found to be a significant predictor of upper limb motor function at discharge 
and motor recovery. The probable reason for this result may be that UE-FMA at transfer 
had stronger prediction power for UE-FMA at discharge than the phase angle and greatly 
implies the meaning of the phase angle [12]. When stepwise multiple regression analysis 
was performed with the remaining variables except for the UE-FMA at transfer, the phase 
angle (affected side) was analyzed as a significant predictor. While the phase angle value is 
less powerful index of upper limb motor function at discharge than the upper limb motor 
function at the time of transfer, it could be helpful in patients who could not cooperate with 
the muscle strength measurement due to cognitive dysfunction or poor general condition.

Recent studies have reported that phase angle of the whole body measured by BIA at the 
onset of stroke was independently associated with functional independence measure 
motor score at discharge [10,11]. These studies investigated the association of motor score 
in functional outcome, and the present study focused on upper limb motor function and 
recovery using FMA tool. Yoo et al. [13] found significant difference between impedance 
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Table 3. Multiple linear regression analysis of variables predicting motor function of UE related to UE-FMA at discharge and Δ UE-FMA
Variables Crude Adjusted‡

β p β p Adjusted R2

UE-FMA at discharge 0.814
UE-FMA at transfer 0.832 < 0.010† 0.864 < 0.010†

Days from onset −0.350 0.018*
Phase angle (affected side) 7.654 0.010*

Δ UE-FMA 0.205
UE-FMA at transfer −0.168 0.007† −0.136 0.025*
Days from onset −0.424 0.005† −0.350 0.018*

β, unstandardized coefficient; UE-FMA, Fugl-Meyer Assessment of upper extremity; Δ UE-FMA, the difference calculated by subtracting UE-FMA at transfer from 
UE-FMA at discharge; Days from onset, the period between the stroke onset and the bioelectrical impedance analysis measurement date.
*p < 0.05; †p < 0.01.
‡Results from stepwise method adjusted for age, sex, Charlson Comorbidity Index, body mass index, National Institutes of Health Stroke Scale, geriatric 
nutritional risk index, UE-FMA at transfer, Days from onset, body compositions measured by bioelectrical impedance analysis (phase angle, soft tissue lean 
mass, body water and body fat mass).
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parameters measured by BIA between affected side and unaffected side of 5 severe stroke 
patients with upper limb hemiplegia. Although the small number of patients is a limitation of 
this study, it shows the potential of BIA as a clinically useful tool in stroke patients with upper 
limb hemiplegia.

Phase angle reflects quality of soft tissue [7] and muscle [18]. The subacute stage of 
hemiplegic stroke is associated with various muscle abnormalities that affect motor 
function [2]. Currently, the phase angle of the affected side reflects these effects. The main 
determinants of phase angle were age, sex and BMI [19], and analysis should be performed 
separately for male and female participants. In addition, underlying disease is also a 
determinant of phase angle [7]. For instance, there is a close correlation between phase angle 
and the state of liver disease [20]. The pathophysiology of disease may affect cell mass, cell 
membrane integrity, and cellular hydration, which can alter the phase angle. It has been 
reported that phase angle can detect nutritional risk in patients at hospital admission [8,21-
23]. Phase angle is an index that can be affected by various clinical situations that can lead to 
fluid imbalance. In the present study, phase angle correlated with age, CCI and GNRI. This 
is consistent with the characteristics of phase angle. In this study, the bilateral difference, 
not the absolute value of the phase angle of the affected side of the UE, was related to motor 
recovery. Therefore, it is thought to exclude the effect of underlying disease and reflect the 
change in hemiplegia due to stroke.

Hemiplegic stroke leads to structural adaptive changes in muscle tissue with a combination 
of denervation, disuse, remodeling and spasticity, and was predicted to be most pronounced 
during the early and subacute phase after a stroke [2,24]. We predict that the phase angle 
reflected these changes of muscles of affected side in hemiplegic stroke patients. In patients 
with good initial motor function, these muscle changes were less on the affected side, and 
patients with poor initial motor function more severe on the affected side. Therefore, it is 
thought that the greater the difference between the initial bilateral phase angle values, the 
more decreased the motor function at discharge. Further studies investigating the phase 
angle cutoff value in stroke patients are needed before it can be used as a prognostic tool.

The study has several limitations. First, the retrospective study design and the relatively small 
sample size based on a single center may decrease the statistical power. Second, because the 
BIA date was heterogenous for each patient, it is possible that the motor function measured 
4 weeks after transfer was affected by spontaneous motor recovery over time. Third, it is 
recommended to follow up motor recovery after 3 or 6 months from the time of transfer, but 
only the results after 4 weeks were used in this study. Finally, since our study investigated only 
the motor recovery of the upper extremities, further studies involving the lower extremities 
are needed.

CONCLUSIONS

The Δ Phase angle, the difference calculated by subtracting the phase angle of the affected 
side from that of the unaffected side measured by BIA showed significant linear inverse 
correlation with motor function of UE at discharge. However, for future use of phase angle 
as an additional index in predicting upper limb motor recovery after stroke, further studies 
are needed.
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