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Abstract Drug-induced cardiotoxicity and hepatotoxicity are major causes of drug attrition. To

decrease late-stage drug attrition, pharmaceutical and biotechnology industries need to establish

biologically relevant models that use phenotypic screening to detect drug-induced toxicity in vitro.

In this study, we sought to rapidly detect patterns of cardiotoxicity using high-content image

analysis with deep learning and induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs).

We screened a library of 1280 bioactive compounds and identified those with potential cardiotoxic

liabilities in iPSC-CMs using a single-parameter score based on deep learning. Compounds

demonstrating cardiotoxicity in iPSC-CMs included DNA intercalators, ion channel blockers,

epidermal growth factor receptor, cyclin-dependent kinase, and multi-kinase inhibitors. We also

screened a diverse library of molecules with unknown targets and identified chemical frameworks

that show cardiotoxic signal in iPSC-CMs. By using this screening approach during target discovery

and lead optimization, we can de-risk early-stage drug discovery. We show that the broad

applicability of combining deep learning with iPSC technology is an effective way to interrogate

cellular phenotypes and identify drugs that may protect against diseased phenotypes and

deleterious mutations.

Introduction
Drug development is a lengthy and expensive endeavor, often requiring an estimated 10 years and

$0.8–2.6 billion. The cost—and risk—grows exponentially as drugs advance toward the clinic

(DiMasi et al., 2016). To reduce costs and risk, pharmaceutical companies need effective screening

methods to prevent drug attrition at late stages of the development process.

Major causes of therapeutic attrition are drug-induced toxicity, including cardiotoxicity and hepa-

totoxicity. Cardiotoxicity alone accounts for approximately one-third of drugs withdrawn due to

safety concerns (Guo et al., 2011; Mathur et al., 2013; Weaver and Valentin, 2019). To decrease

the potential for toxicity, and for late-stage drug attrition, pharmaceutical and biotechnology indus-

tries seek in vitro systems that can identify drug-induced toxicity with phenotypic screening at early

stages of development (Moffat et al., 2014). This screening enables interrogation of a large number

of perturbagens (e.g., small molecules, siRNAs, CRISPR gRNAs) in a target-agnostic assay that meas-

ures phenotypic changes (Eder et al., 2014).

Some of the best in vitro models rely on human primary cells isolated directly from tissues. These

models retain the morphological and physiological characteristics of their tissue of origin (Kaur and
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Dufour, 2012). However, the supply of primary cells is finite. Primary cells also have limited potential

for proliferation, are technically complicated to culture for long periods, and are difficult to geneti-

cally manipulate. As a result, scientists often turn to immortalized cell lines, such as HEK293T cells,

HepG2 human liver cancer cells, and HL-1 cardiac muscle cells. Many of these cell lines have been

transformed (Ahuja et al., 2005; Prager et al., 2019), which may cause karyotypic abnormalities,

and they do not fully recapitulate their in vivo counterparts.

More recently, researchers have turned to cell types derived from human induced pluripotent

stem cells (iPSCs) (Takahashi et al., 2007). Cells derived from iPSCs more closely recapitulate human

biology than immortalized cells (Moffat et al., 2017; Scannell and Bosley, 2016). These derived

cells have been used for disease modeling (Judge et al., 2017; Lan et al., 2013; Pérez-

Bermejo et al., 2020; Ribeiro et al., 2017; Sharma et al., 2017; Sun et al., 2012), proposed for

drug discovery (Carlson et al., 2013; Grskovic et al., 2011; Robinton and Daley, 2012), and used

to assess arrhythmogenic and structural liabilities of drugs (Guo et al., 2011; Maddah et al., 2020).

Additionally, iPSCs can be derived from patients carrying deleterious mutations and genetically

modified using nucleases (Judge et al., 2017; Kime et al., 2016; Mandegar et al., 2016;

Miyaoka et al., 2012). They can also be expanded to sufficient quantities and cultured for extended

periods that facilitate screening at scale (Burridge et al., 2014; Ghazizadeh and Majd, 2020;

Sharma et al., 2017). Hence, iPSC-derived cell types enable high-throughput interrogation and

screening using arrayed libraries of perturbagens.

As of early 2021, few studies have used iPSC-derived cells for phenotypic screening in a high-

throughput manner that is truly scalable and, most importantly, has an assay readout with an appro-

priate window for screening and high signal-to-noise ratio. The screening window, commonly

assessed using the Z-factor, ensures detection of true-positive hits and limits the number of false-

negative and false-positive hits. Additionally, most published studies have been limited to single-

readout phenotypes, such as cell survival (Sharma et al., 2017; Sun et al., 2017), expression of a sin-

gle marker (Ghazizadeh and Majd, 2020), or reporter screens (McLendon et al., 2017). While these

studies revealed great insight into cardiomyocyte biology, they have not described a general and

unbiased screening strategy that can be applied to other cell types and used at scale.

Given the limitation of single-readout assays, researchers have turned to high-content screening

to assess cellular features using traditional image processing (Moen et al., 2019; Salick et al.,

2020). However, they must first choose which feature to quantify from a vast array of possible cellu-

lar phenotypes, such as nuclear fragmentation, protein aggregation, cell density, organelle damage

and distribution, and changes to cytoskeleton organization. While quantifying a combination of

these features may reflect the true state or importance of the phenotype, this approach can be chal-

lenging. Researchers may need to develop a new algorithm for each feature, and then decide on the

biological relevance of each parameter. This strategy is time-consuming and subject to bias.

An alternative approach uses machine learning to decipher cellular features at high accuracies.

For example, deep learning, a branch of artificial intelligence, uses a set of machine-learning techni-

ques to train neural networks and learn input data (LeCun et al., 2015). Previously, we used pheno-

typic interrogation with deep learning to identify drug-induced structural toxicity in hepatocytes and

cardiomyocytes (Maddah et al., 2020). Herein, we aimed to expand that work to induced pluripo-

tent stem cell-derived cardiomyocytes (iPSC-CMs) in a high-content screen (HCS) of 1280 bioactive

compounds with putative primary targets. We then sought to validate identified hits using orthogo-

nal assays to assess cellular stress, including mitochondrial respiration and brain natriuretic peptide

(BNP) levels. Finally, we aimed to use our deep learning approach to screen a library of 1280 diverse

compounds with no known targets and identify chemical structures and frameworks that show a car-

diotoxicity signal in iPSC-CMs.

Materials and methods

Key resources table

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Cell line
(Homo sapiens)

WTC Gladstone Institutes Human iPSC line

Antibody Primary
Anti-MYBPC3
Mouse (monoclonal)

Santa Cruz Sc-137237 1:200

Antibody Primary
Anti-ACTN2
Rabbit (monoclonal)

Thermo Fisher
Scientific

701914 1:200

Antibody Secondary
Donkey anti-Rabbit
IgG (H+L) Alexa Fluor 594

Thermo Fisher
Scientific

A-21202 1:500

Antibody Secondary
Donkey anti-Mouse
IgG (H+L) Alexa Fluor 488

Thermo Fisher
Scientific

A-21207 1:500

Sequence-
based reagent

MYH7 Thermo Fisher
Scientific

Hs01110632_m1 TaqMan qPCR probe,
cardiac marker

Sequence-
based reagent

MYH6 Thermo Fisher
Scientific

Hs01101425_m1 TaqMan qPCR probe,
cardiac marker

Sequence-
based reagent

TNNI3 Thermo Fisher
Scientific

Hs00165957_m1 TaqMan qPCR probe,
cardiac marker

Sequence-
based reagent

TNNI1 Thermo Fisher
Scientific

Hs00913333_m1 TaqMan qPCR probe,
cardiac marker

Sequence-
based reagent

MYBPC3 Thermo Fisher Scientific Hs00165232_m1 TaqMan qPCR probe,
cardiac marker

Sequence-
based reagent

TNNT2 Thermo Fisher
Scientific

Hs00943911_m1 TaqMan qPCR probe,
cardiac marker

Sequence-
based reagent

GAPDH Thermo Fisher
Scientific

Hs99999905_m1 TaqMan qPCR probe,
housekeeping marker

Chemical
compound,
drug

CHIR-99021 Selleckchem S1263 Small molecule

Chemical
compound,
drug

Y-27632 Selleckchem S1049 Small molecule

Chemical
compound,
drug

IWP2 Sigma I0536 Small molecule

Chemical
compound,
drug

Blasticidine S
hydrochloride

Thermo Fisher
Scientific

15205 Small molecule

Chemical
compound,
drug

Bortezomib Selleckchem S1013 Small molecule

Chemical
compound,
drug

Doxorubicin Selleckchem S1208 Small molecule

Chemical
compound,
drug

Givinostat Selleckchem S2170 Small molecule

Chemical
compound,
drug

Bafilomycin Selleckchem S1413 Small molecule

Chemical
compound,
drug

Paclitaxol Selleckchem S1150 Small molecule

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Chemical
compound,
drug

Cisapride Selleckchem S4751 Small molecule

Chemical
compound,
drug

Sorafenib Selleckchem S7397 Small molecule

Chemical
compound,
drug

FDA-approved
Drug Library

Selleckchem L1300 Compound library

Chemical
compound,
drug

Discovery
Diversity Set

Enamine DDS-10-Y-10 Compound library

Chemical
compound,
drug

Dimethyl
sulfoxide (DMSO)

Sigma D8418 Solvent

iPSC culture, iPSC-CM differentiation, and blasticidin selection
WTC iPSCs (Mandegar et al., 2016) and derivative lines were maintained under feeder-free condi-

tions on growth factor-reduced Matrigel (BD Biosciences) and fed daily with E8 medium (STEMCELL

Technologies) (Ludwig et al., 2006). Accutase (STEMCELL Technologies) was used to enzymatically

dissociate iPSCs into single cells. To promote cell survival during enzymatic passaging, cells were

passaged with p160-Rho-associated coiled-coil kinase (ROCK) inhibitor Y-27632 (10 mM; Selleck-

chem) (Watanabe et al., 2007). iPSCs were frozen in 90% fetal bovine serum (HyClone) and 10%

dimethyl sulfoxide (Sigma). iPSCs were differentiated into iPSC-CMs using the Wnt modulation-dif-

ferentiation method (Lian et al., 2012) with 7 mM CHIR (Selleckchem) and 5 mM IWP2 (Sigma) in

RPMI media supplemented with B27 (Thermo Fisher Scientific). iPSC-CMs were purified using 1 mM

blasticidin (Thermo Fisher Scientific). Then, 15 days after adding CHIR, iPSC-CMs were frozen in 90%

fetal bovine serum (FBS) with 10% dimethyl sulfoxide (DMSO). iPSC-CMs were thawed in RPMI with

B27% and 10% FBS directly onto Matrigel-coated 384-well plates at a density of 20,000 cells/well.

The next day, the media was switched to Tenaya’s cardiomyocyte (TCM) media for 6 days before

screening. TCM media comprises Dulbecco’s Modified Eagle Medium (DMEM) without glucose,

10% dialyzed FBS, 10 mM D-(+)-galactose, and 1 mM sodium pyruvate. To compare TCM against

previously published maturation protocols, iPSC-CMs were cultured in RPMI without glucose, sup-

plemented with 4 mM L-lactic acid and 100 nM triiodo-l-thyronine (RPMI/LT3 media) (Lin et al.,

2017).

Generation of blasticidin-selectable iPSC line
A plasmid containing the Bsd open reading frame and a selectable marker containing puromycin

and green fluorescent protein was knocked into the 30 end of the MYH6 locus of WTC iPSCs. Cells

were selected with puromycin. After the first round of selection, the selectable marker was removed

using a plasmid expressing Cre recombinase (Figure 1—figure supplement 1A). Clones were iso-

lated and verified using colony polymerase chain reaction (PCR) to ensure the presence of the Bsd

marker and absence of the selectable cassette. Finalized clones showing the appropriate iPSC mor-

phology were sent to WiCell for single-nucleotide polymorphism karyotyping (Figure 1—figure sup-

plement 1B).

Compound library screening
A library containing 1280 bioactive compounds consisting of FDA-approved drugs, tool compounds,

and pre-clinical drug candidates was sourced from Selleck Chemicals (Houston, TX). Screening and

validation studies on the bioactive compounds were performed at three doses of 0.3 mM, 1.0 mM,

and 3.0 mM in 0.1% DMSO. The library of diverse compounds was sourced from Enamine (Kyiv,
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Ukraine) and screened at 1.0 mM. StarDrop version 6.6.4.23412 (https://www.optibrium.com/star-

drop/) was used to analyze data from the screen of diverse compounds.

Immunocytochemistry
iPSC-CMs were fixed for 15 min in 4% (v/v) paraformaldehyde (Thermo Fisher Scientific) in phos-

phate buffered saline (PBS) and permeabilized in 0.1% (v/v) Triton X-100 (Thermo Fisher Scientific)

for 15 min. Cells were blocked in 5% (w/v) bovine serum albumin (BSA) (Sigma) with 0.1% (v/v) Triton

X-100 in PBS for 60 min. Primary antibodies were diluted in 5% (w/v) BSA and 0.1% (v/v) Triton

X-100 in PBS and incubated overnight at 4˚C. After treatment with primary antibodies, cells were

washed three times in PBS for 15 min each. Secondary antibodies were diluted in 5% (w/v) BSA and

0.1% (v/v) Triton X-100 in PBS, and then incubated for 1 hr at room temperature. After treatment

with the secondary antibody, cells were washed three times in PBS for 15 min each. Nuclei were

stained using Hoechst 33342 (Thermo Fisher Scientific) (1:1000 dilution). Images were taken using a

Cytation 5 microscope (BioTek Instruments) at 10� magnification (nine images per 384-well plate). A

list of primary and secondary antibodies with the appropriate dilution is listed in Supplementary file

4.

Sarcomere analysis using scanning gradient Fourier transform
Sarcomere organization and alignment were assessed using scanning gradient Fourier transform

(SGFT) with a pattern size of 1.8, scanning resolution of 16, and a Fourier threshold of >0.8

(Salick et al., 2020). Briefly, SGFT performs gradient analysis on ACTN2 images to determine the

myofibril directionality and then one-dimensional fast Fourier transforms to determine sarcomere

organization and alignment. The code for this SGFT algorithm is available on GitHub: https://github.

com/maxsalick/SGFT (Grafton, 2021 copy archived at swh:1:rev:

1413b18726172659dcb9a09e6f91653063ab3361).

Contractility measurements
Contractility video measurements were taken with an SI8000 Cell Motion Imaging System (Sony Bio-

technology) and analyzed using Pulse software (Maddah et al., 2015).

Construction of deep learning models and neural network architecture
To avoid complications associated with cell segmentation, we used block image segmentation and

seeded a confluent monolayer of iPSC-CMs. Deep learning artificial intelligence models were built

using the PhenoLearn platform (https://www.phenolearn.com/). We used PyTorch as the framework

for the deep learning library, and a ResNet50 architecture, a 50-layer-deep convolutional neural net-

work. Images from the DMSO control group were trained against the toxic groups (defined as either

mildly toxic, toxic, or highly toxic). Each input image was divided into 12 square sub-images to have

sizes ranging from 224 � 224 pixels to 300 � 300 pixels (Maddah et al., 2020). Each sub-image was

flipped and rotated to create seven more augmented sub-images, and then fed into the input layer

of ResNet50. Pseudo-image generation by rotation and flipping ensures enough diversity is seen by

the network so that the algorithm is not biased based on the orientation of the images (Moen et al.,

2019). We used 80% of the images to construct the neural network and the remaining 20% to vali-

date the deep learning model. A consistent set of parameters were used for all training operations,

including an initial learning rate of 0.01 and 20 epochs. For each training, the final neural network

was selected from the epoch with the highest validation accuracy. Z-factor was calculated using the

following formula:

Z��f actor¼ 1�
3 sp ��sn

� �

�p ���n

�

�

�

�

proBNP assay
The proBNP/NPPB human sandwich ELISA kit (Invitrogen) was used to determine the level of

secreted human proBNP. Cell culture media was collected from wells containing approximately 105

iPSC-CMs exposed to cardiotoxic drugs for 4 days. Media was diluted to obtain a proBNP concen-

tration between 0.137 and 100 ng/mL (1:3-1:5). A standard mixture of recombinant human proBNP

was diluted 1:3 from 0.137 to 100 ng/mL. Then 100 mL of diluted sample and standards were added
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to the human proBNP solid-phase sandwich ELISA microplate and incubated at room temperature

for 2.5 hr with gentle shaking. The plate was then washed four times with 300 mL of 1� wash buffer.

Next, 100 mL/well of biotin conjugate was added to a microplate and incubated at room tempera-

ture for 1 hr with gentle shaking. The plate was then washed four times with 300 mL 1� wash buffer.

Next, 100 mL/well of streptavidin-horseradish peroxidase solution was added to the microplate and

incubated at room temperature for 45 min with gentle shaking. The plate was then washed four

times with 300 mL 1� wash buffer. Next, 100 mL/well of TMB substrate was added, and the plate was

incubated in the dark at room temperature for 30 min. Then, 50 mL of stop solution was added

directly to the TMB substrate and gently mixed. Absorbance was measured using a Cytation 5

microscope at 450 nm and 550 nm. For analysis, background signal was removed by subtracting the

550 nm signal from the 450 nm signal. A linear regression was fit to the standard absorbance meas-

urements. ProBNP values from experimental samples were extrapolated from linear regression. Ini-

tial sample dilutions were accounted for when determining the final proBNP concentration.

RNA extraction and TaqMan qPCR analysis
Approximately 105 to 106 iPSC-CMs were lysed with TRI Reagent (Zymo Research) and frozen at

�80˚C to ensure complete cell lysis. Total RNA was extracted and washed from lysed cells using the

Direct-zol-96 RNA Kit (Zymo Research) according to the manufacturer’s instructions. Samples were

treated with DNase I for 15 min at room temperature. cDNA was reverse transcribed from 1 mg of

RNA through random hexamers using the SuperScript-III kit (Invitrogen) according to the manufac-

turer’s instructions. Real-time qPCR reactions were performed using the TaqMan universal PCR mas-

ter mix (Applied Biosystems) with the TaqMan probes listed in Supplementary file 5 (Life

Technologies). RT-qPCR reactions were performed using the QuantStudio7 Flex Real-Time PCR sys-

tems (Life Technologies). Each reaction was performed in triplicate for a given RT-qPCR run, and

each condition had four experimental replicates. Relative expression of the gene of interest was nor-

malized to glyceraldehyde 3-phosphate dehydrogenase (GAPDH) as the housekeeping control using

the 2–DDCT method (Schmittgen and Livak, 2008).

High-throughput transcriptional analysis using RNA-seq
Raw RNA-seq reads were aligned with Salmon (Patro et al., 2017) (version 1.3.0) to the GENCODE

(Frankish et al., 2019) version 33 reference transcript assembly (hg38 v.13) using best practice

parameters to ensure mapping validity and reproducibility (–seqBias –gcBias –posBias –useV-

BOpt –rangeFactorizationBins 4 –validateMappings –mimicStrictBT2). Next, tximport

(Soneson et al., 2015) was used to generate an expression matrix normalized to transcripts per mil-

lion (TPM). To ensure consistency, we limited our analysis to genes with detectable expression in at

least 90% of the samples. Protein-coding genes were determined using Ensembl release 100 human

annotation (Cunningham et al., 2019) (GRCh38, Apr 2020) and extracted by biomaRt

(Durinck et al., 2009) (version 2.45.9); non-protein-coding and mitochondrial genes were omitted

from the analysis. After this step, expression values were re-normalized to TPM. After adding 1 as

the pseudo-count, the expression matrix was log2-transformed. For the initial assessment, principal

component analysis (PCA) models were generated in the R environment using the prcomp function,

and the first two principal components were used for visualization. To quantify the distances

between each drug’s samples and generate a PCA-based similarity matrix, we used Euclidean dis-

tance in the PCA space, as calculated by the pca2euclid function from the tcR package. We calcu-

lated the distance using all replicates and used the averaged expression in replicates for each drug.

Visualizations were generated in R using the ggplot2 and ComplexHeatmap packages.

To compare the differential gene expression analysis of these clusters with the DMSO-treated

group, we limited our downstream analysis to the genes in our curated list of genes with high rela-

tive expression in cardiac tissue. We also applied the following filters: (1) protein-coding genes (as

defined by Ensembl) that had a median log2-transform TPM expression of >1 in at least one cluster

and (2) showed a minimum of 0.25-fold change compared to the DMSO control. Transcriptomes in

each cluster’s replicates were compared with DMSO-treated replicates by Welch’s t-test. A t-statistic

value for each gene’s expression vector was used to rank-order the transcriptome in each cluster.

To evaluate functional perturbations in each cluster, we limited our analysis to two gene sets:

those labeled with a ‘cardiac’ annotation in MSigDB (Liberzon et al., 2011) version 7.2 (127 gene
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sets), and the top 100 gene sets that significantly overlapped with our curated cardiac-rich expres-

sion gene set as defined by false discovery rate (FDR) q-value. The FDR q-value is the FDR analog of

the hypergeometric p-value after correcting for multiple hypothesis testing according to the Benja-

mini and Hochberg method. In each drug cluster, Welch’s t-test statistical values were used to iden-

tify and compare most perturbed gene sets to the DMSO-treated group. A p-value < 0.05 was

considered significant. We deposited our RNA-seq data on the Gene Expression Omnibus (GEO)

database: GEO Submission (GSE172181), https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=

GSE172181.

Seahorse assay
The Agilent Seahorse XFe96 Analyzer was used to measure mitochondrial function in iPSC-CMs. The

96-well Seahorse plates were coated with Matrigel (1/100 dilution) in a phenol-free medium over-

night. WTC iPSC-CMs were seeded at 30,000 cells per XFe96 well and recovered in TCM media for

1 week. Cardiotoxic compounds were diluted to 3 mM, 1 mM, 0.3 mM, and 0.1 mM in 1.0% DMSO in

TCM media. Drugs were administered in fresh media for 4 days. Following 4 days of exposure to

drugs, the cells were washed and incubated for 1 hr before the assay with Seahorse XF DMEM Basal

Medium supplemented with 2 mM glutamine, 2 mM pyruvate, and 10 mM glucose. The Seahorse

XFe96 cartridge was prepared according to the manufacturer’s guidelines. First, basal oxygen con-

sumption rate (OCR) was measured. Next, the Mito Stress Test was performed with inhibitors

injected in the following order: oligomycin (2.5 mM), carbonyl cyanide 4-(trifluoromethoxy) phenylhy-

drazone (FCCP; 1 mM), and rotenone and antimycin A (0.5 mM). OCR values were normalized to the

total nuclear count per well as quantified by Hoechst staining. Basal respiration was calculated as

(last rate measurement from the first oligomycin injection) – (minimum rate measurement after rote-

none/antimycin A). Maximal respiration was calculated as (maximum rate measurement after FCCP

injection) – (minimum rate measurement after rotenone/antimycin A). Spare respiratory capacity was

calculated as (maximal respiration) – (basal respiration). ATP production was calculated as (last mea-

surement before oligomycin injection) – (minimum rate after oligomycin injection).

Proteasome activity assay
Proteasome activity was measured in iPSC-CMs using the Proteasome-Glo Chymotrypsin-Like Assay

according to the manufacturer’s instructions (Promega). Cells were incubated with the inhibitors

(ranging from 2 to 5000 nM) for 1 hr before running the assay. IC50s were calculated using PRISM 8

software.

Results

iPSC-CM production, selection, and recovery after thaw
To efficiently and reproducibly assess cardiotoxicity in a highly enriched population of cardiomyo-

cytes, we generated a blasticidin-selectable iPSC line by targeting the MYH6 locus (Figure 1—figure

supplement 1A, B). Following standard differentiation of iPSC-CMs (Figure 1A), blasticidin selection

reproducibly enriched a heterogenous population of iPSC-CMs to greater than 95% pure iPSC-CMs

as measured by ACTN2, TNNT2, and MYBPC3 immunostaining (Figure 1B, C). Compared to previ-

ously published protocols, recovery in culture media leads to improved maturity metrics based on

quantitative polymerase chain reaction (qPCR) markers, contractility (beat rate and velocity), and

immunostaining (Figure 1—figure supplement 1C–F). To optimize recovery time of iPSC-CMs

before screening, daily contractility metrics were performed using Pulse (Maddah et al., 2015).

Then, 6–8 days after thaw, iPSC-CMs fully recovered and had stabilized contractility readings

(Figure 1D).

Known cardiotoxic compounds used to establish the extent of
functional damage to iPSC-CMs
To establish training sets for deep learning models, we treated iPSC-CMs with bortezomib (protea-

some inhibitor), doxorubicin (topoisomerase inhibitor), cisapride (serotonin 5-HT4 receptor agonist),

sorafenib (tyrosine kinase inhibitor), givinostat (histone deacetylase inhibitor), bafilomycin (vacuolar-

type H+-ATPase), paclitaxel (microtubule stabilizer), and JQ1 (bromodomain and extraterminal
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domain inhibitor) (Lamoureux et al., 2014). These compounds disrupt a diverse set of cellular path-

ways, so we included them to ensure that our deep learning models can identify a broad range of

cardiotoxic compounds in an HCS.

To determine the level of drug-induced toxicity, we measured beat rate, velocity of contraction,

and displacement as a function of dose and duration of exposure (Figure 2—figure supplement 1).

Results from three representative cardiotoxins (bortezomib, doxorubicin, and bafilomycin) are
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Figure 1. Overview of induced pluripotent stem cell-derived cardiomyocytes (iPSC-CM) differentiation, selection, cryopreservation, and recovery for

high-content screening. (A) Schematic representation of protocol for iPSC-CM differentiation, selection, and cryopreservation for high-content

screening. (B) iPSC-CMs taken from a representative differentiation stained with ACTN2, TNNT2, and MYBPC3 before and after blasticidin (Bsd)

selection. (C) Representative immunostaining of an unpurified population of iPSC-CMs before and after selection with blasticidin. iPSC-CMs were

seeded as a monolayer for screening. Hoechst stain represented as pseudocolored-to-white for better visualization. Scale bars = 100 mm. (D)

Blasticidin-purified iPSC-CMs from a representative batch were thawed and recovered for 7 days. Daily contractility metrics were performed to identify

the optimal time for recovery of iPSC-CMs after thaw. n = 15–32 technical replicates per day. Error bars = SD.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Overview of iPSC-CM differentiation, selection, cryopreservation, and recovery for high-content screening.

Figure supplement 1. Characterization and culturing conditions of WTC-Bsd induced pluripotent stem cell (iPSC) line and differentiated cells.

Figure supplement 1—source data 1. Characterization and culturing conditions of WTC-Bsd iPSC line and differentiated cells.

Grafton et al. eLife 2021;10:e68714. DOI: https://doi.org/10.7554/eLife.68714 8 of 28

Research article Stem Cells and Regenerative Medicine

https://doi.org/10.7554/eLife.68714


!

"

#$% #$% #$%
&'(')*+,*

-+./0/12

3

"+41'5+6/7

3+.+487/0/9

":,/)+620/9

3;<=>

?

@

A

1 2 3 4

10µM

3µM

1µM

0.3µM

0.1µM

0.03µM

0.01µM

DMSO
0

0.2

0.4

Days on Drug

Bortezomib
D

is
p

la
c
e
m

e
n

t 
(P

ix
e
ls

)

0.6

1 2 3 4

10µM

3µM

1µM

0.3µM

0.1µM

0.03µM

0.01µM

DMSO
0

0.2

0.4

0.6

Doxorubicin

Days on Drug
1 2 3 4

10µM

3µM

1µM

0.3µM

0.1µM

0.03µM

0.01µM

DMSO
0

0.2

0.4

0.6

Bafilomycin

Days on Drug

0.01 0.1 1 10
0

25

50

75

100

125

150

Bortezomib Dose (µM)

B
e
a
ts

 P
e
r 

M
in

u
te

DMSO

0.01 0.1 1 10

0

2

4

6

8

10

12

Bortezomib Dose (µM)

V
e
lo

c
it

y
 (

P
ix

e
ls

/s
)

DMSO

0.01 0.1 1 10
0

25

50

75

100

125

150

Bortezomib Dose (µM)

S
ig

n
a
l 
In

te
n

s
it

y
 

(D
M

S
O

 N
o

rm
a
li
z
e
d

)

DMSO

ACTN2

MYBPC3

Nuclear Count

0.01 0.1 1 10

0.0

0.2

0.4

0.6

0.8

1.0

Bortezomib Dose (µM)

O
rg

a
n

iz
a
ti

o
n

a
l 
In

d
e
x

(D
M

S
O

 N
o

rm
a
li
z
e
d

)

DMSO

0.01 0.1 1 10
0

25

50

75

100

125

150

Doxorubicin Dose (µM)

DMSO

0.01 0.1 1 10

0

2

4

6

8

10

12

Doxorubicin Dose (µM)

DMSO

0.01 0.1 1 10
0

25

50

75

100

125

150

Doxorubicin Dose (µM)

DMSO

ACTN2

MYBPC3

Nuclear Count

0.01 0.1 1 10

0.0

0.2

0.4

0.6

0.8

1.0

Doxorubicin Dose (µM)

DMSO

0.01 0.1 1 10
0

25

50

75

100

125

150

Bafilomycin Dose (µM)

DMSO

0.01 0.1 1 10

0

2

4

6

8

10

12

Bafilomycin Dose (µM)

DMSO

0.01 0.1 1 10
0

25

50

75

100

125

150

Bafilomycin Dose (µM)

DMSO

ACTN2

MYBPC3

Nuclear Count

0.01 0.1 1 10

0.0

0.2

0.4

0.6

0.8

1.0

Bafilomycin Dose (µM)

DMSO

Figure 2. Effect of representative cardiotoxins on inducing structural toxicity in induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). (A)

Displacement of iPSC-CMs was measured as a function of dose and duration of exposure to drug. Results from three representative cardiotoxins

(bortezomib, doxorubicin, and bafilomycin) are displayed as a heatmap. (B, C) Contractility measures of beats per minute and velocity on the fourth day

of drug exposure as a function of drug dose. Data indicate a time- and dose-dependent decline in contractility. Error bars = SD; n = 8 technical

replicates per drug dose, n = 26 for dimethyl sulfoxide (DMSO) group. (D) Signal intensities of sarcomeres stained with antibodies against MYBPC3 and

ACTN2 were measured using total fluorescent staining and normalized to DMSO control. Nuclear count was quantified and normalized to DMSO

Figure 2 continued on next page
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displayed as a heatmap (Figure 2A). For each compound, beats per minute and velocity measured

on the fourth day of drug exposure are displayed as a function of drug dose (Figure 2B, C). We

observed that the cardiotoxins had both a dose- and time-dependent effect on contractility meas-

urements. In most cases, the contraction velocity and displacement declined, and the beat rate

reduced as a function of dose and time (Figure 2—figure supplement 1). In some instances (e.g.,

doxorubicin), immediately before spontaneous contractility completely stopped, we observed an

increased beat rate and reduced contraction velocity and displacement. This change may reflect a

compensatory mechanism by which the cells increase beat rate to induce more ‘output’ while the

velocity and displacement are reduced (Burridge et al., 2016; Maddah et al., 2015).

Next, we assessed sarcomere organization and cell survival. Sarcomere staining intensity was

measured using antibodies against MYBPC3 and ACTN2, and cell survival was measured using

Hoechst nuclear stain (Figure 2D). To assess the structural integrity of the sarcomere and myofibril,

which are negatively impacted by cardiotoxin-induced damage (Burridge et al., 2016; Judge et al.,

2017; Maillet et al., 2016), sarcomere organization and alignment were also analyzed with the

SGFT. This method can quantify subcellular myofibril alignment through one-dimensional fast Fourier

transforms following sarcomere mapping (Salick et al., 2020; Figure 2E). Based on contractility met-

rics, sarcomeric staining, and nuclear count, we define three levels of structural toxicity binned into

the three categories: highly toxic (class 3), toxic (class 2), and mildly toxic (class 1). DMSO-treated

cells were designated as non-toxic (class 0) (Figure 2F and Supplementary file 1). Representative

immunostaining of iPSC-CMs stained with MYBPC3 and ACTN2 show various levels of structural tox-

icity (Figure 2G).

Optimizing the deep learning model
Frozen iPSC-CMs were thawed and allowed to recover in 384-well plates to enable high-content

screening. These plates were divided into three categories: a training plate, a validation plate, and

library plates. The cells were then immunostained using MYBPC3 before capturing images. Images

from the training plate (dosed with known cardiotoxins ranging from 10 nM to 10 mM for 4 days)

were used to establish the deep learning models. Images from the validation plate were used to test

the accuracy of the deep learning models. And images from the library plates were used to test the

toxicity level of compounds. iPSC-CMs in the library plates were exposed to 1280 bioactive com-

pounds at three doses (0.3 mM, 1.0 mM, and 3.0 mM for 4 days) (Figure 3A).

Based on defined criteria for reduced contractility, loss of immunostaining, and nuclear count

when cells were treated with various doses of cardiotoxins (Figure 2F and Supplementary file 1),

we developed three deep learning models: 4-class, 3-class, and 2-class. The 4-class model distin-

guished highly toxic, toxic, and mildly toxic compound doses from the non-toxic DMSO-treated con-

dition. The 3-class model combined highly toxic and toxic compound doses and kept mildly toxic

compound doses separate. The 2-class model binned highly toxic and toxic compound doses from

the non-toxic DMSO-treated condition. The total number of images used per class is outlined in

Supplementary file 2.

We compared the deep learning accuracies across the three models. All models showed more

than 95% accuracy in identifying the non-toxic DMSO-treated condition (class 0). For the 2-class

model, the validation showed 100% accuracy in distinguishing the toxic from non-toxic conditions.

For the 3- and 4-class models, the accuracies were lower when attempting to distinguish mildly toxic,

Figure 2 continued

control. Dashed gray line, DMSO control condition. Error bars = SD; n = 8 technical replicates per drug dose, n = 26 for DMSO group. (E) Relative

sarcomere organization quantified using scanning gradient Fourier transform and normalized to DMSO control. The organizational index refers to the

average Fourier strength measured across the image. Error bars = SD; n = 8 technical replicates per drug dose, n = 26 for DMSO group. (F) Levels of

structural toxicity for each drug were binned into the three categories of highly toxic (class 3), toxic (class 2), and mildly toxic (class 1). (G)

Representative immunostaining of levels of structural toxicity in iPSC-CMs treated with bortezomib (30 nM), doxorubicin (100 nM), and bafilomycin (100

nM). Magenta, MYBPC3; green, ACTN2. Scale bars = 100 mm.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Effect of representative cardiotoxins on inducing structural toxicity in iPSC-CMs.

Figure supplement 1. Known cardiotoxins were used to establish levels of functional toxicity in induced pluripotent stem cell-derived cardiomyocytes
(iPSC-CMs).
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Figure 3. Schematic of drug screening and deep learning approach. (A) Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) were

thawed and allowed to recover for 6 days. Two plates were designated for training and validating the deep learning models. iPSC-CMs were then

treated with known cardiotoxins (doses ranging from 10 nM to 10 mM) in the training and validation plates for 4 days. In parallel, a library of 1280

bioactive compounds was added to iPSC-CMs at three doses (0.3 mM, 1.0 mM, and 3.0 mM) for 4 days. (B) Deep learning accuracies compared across

Figure 3 continued on next page
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toxic, and highly toxic classes (Figure 3B). This reduced accuracy may be a result of cellular toxicity

signatures that follow a continuous spectrum, rather than clearly defined categories.

After training, the three deep learning models were independently used to score the validation

plate (which the neural network had not seen before). The results from the three models on the vali-

dation plate are compared in a 2D plot in Figure 3C. The data suggested that all three models

showed a strong correlation upon validation (R2 > 0.93, p<0.0001), regardless of how each deep

learning model was trained (Figure 3C). As expected, the DMSO-treated cells scored the lowest on

the cardiotoxicity scale. Cells treated with 1 mM doxorubicin showed the highest toxicity score, and

cells treated with 0.3 mM doxorubicin (the mildly toxic class) showed an intermediate toxicity score

separated from the non-toxic and highly toxic class.

Higher cell seeding densities lead to a higher model accuracy and
screening window
We hypothesized that there may be an optimal cell density for screening that leads to best model

performance and Z-factor. The Z-factor is a statistical measure of assay variability and reproducibility

(Zhang et al., 1999). We posited that using a cell density that was too high would tightly pack cells

and mask features, whereas using a cell density that was too low would not generate sufficient fea-

tures for training. Interestingly, as we increased the cell density, we did not observe a bell-shaped

effect in the performance of the deep learning models. We found that the higher the cell density,

the higher the model accuracy and, most importantly, the higher the Z-factor. At approximately

3000 cells per well of a 384-well plate, the model accuracy and Z-factor plateaued and did not

decline with increasing cell density (Figure 3—figure supplement 1A, B).

We also found that a minimum cell density is needed to ensure an appropriate screening window.

For example, a minimum number of 1500 iPSC-CMs per well of a 384-well plate was required to

reach a Z-factor of approximately 0.5, which is an acceptable level for an HCS in cell-based assays

(Figure 3—figure supplement 1B). Training and validation accuracies were tracked as a function of

epochs, or the number of times the entire training dataset passed through the neural network. Two

representative cell seeding densities were analyzed, which showed that a higher cell density sup-

ports improved model performance (Figure 3—figure supplement 1C). Higher cell densities yielded

higher cellular content for feature training, and they reduced cell edges and background. In addi-

tion, more cell-cell contact between iPSC-CMs led to sarcomere alignment that may reduce hetero-

geneity in training images. Given these factors, higher cell densities achieved a Z-factor greater than

0.5, which is ideal for HCS (Figure 3—figure supplement 1D).

Deep learning enables detection of toxic compounds in an HCS format
We calculated the dynamic range and Z-factors on the screening plates treated with DMSO (non-

toxic control) as well as bortezomib and doxorubicin (cardiotoxic controls) (Figure 4A). With enough

technical replicates, we saw significant differences in the nuclear count and sarcomere staining inten-

sities (Figure 4A). However, when performing an HCS, only one or two technical replicates per test

article are used. Thus, using parameters such as nuclear count and staining intensity will not be reli-

able for identifying hits in high-throughput screening (HTS) (Figure 4—figure supplement 1A, B). In

this case, the associated Z-factors are far lower than a minimum de facto cutoff of 0.5 for HTS

Figure 3 continued

the three models. All models show more than 95% accuracy in identifying the non-toxic dimethyl sulfoxide (DMSO)-treated condition (class 0). Model

accuracies were lower when attempting to distinguish mildly toxic, toxic, and highly toxic classes. (C) The three deep learning models compared in a

two-dimensional plot on the validation plate. Regardless of how each model was trained (based on the defined images fed into the neural network), all

models were strongly correlated when analyzing the validation dataset (R2 > 0.93). The DMSO-treated cells scored the lowest in toxicity, and

doxorubicin-treated (1 mM) cells scored the highest. The mildly toxic class (doxorubicin at 0.3 mM) showed an intermediate toxicity separated from the

non-toxic and highly toxic classes.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Schematic of drug screening and deep learning approach.

Figure supplement 1. Optimization of cell seeding density and model performance.

Figure supplement 1—source data 1. Optimization of cell seeding density and model performance.

Grafton et al. eLife 2021;10:e68714. DOI: https://doi.org/10.7554/eLife.68714 12 of 28

Research article Stem Cells and Regenerative Medicine

https://doi.org/10.7554/eLife.68714


!""#$%&'()$)$*+

,-(.%#'

/ 0--1+2-(3$)$*+

,-(.%#'

4 5%.-6+

7%"1(3)&%$

7

0.0 0.5 1.0 1.5 2.0
0.0

1.0

2.0

3.0

Cardiotoxicity Score
(3-Class Model)

Doxorubicin (1.0µM)

DMSO (0.1%)

Bortezomib (0.1µM)

Screening Plates

3-Class vs. 4-Class Model

C
a
rd

io
to

x
ic

it
y
 S

c
o

re
(4

-C
la

s
s
 M

o
d

e
l)

R2 = 0.964

0.00 0.25 0.50 0.75 1.00
0.0

0.5

1.0

1.5

2.0

Cardiotoxicity Score
(2-Class Model)

Doxorubicin (1.0µM)

DMSO (0.1%)

Bortezomib (0.1µM)

Screening Plates

2-Class vs. 3-Class Model

C
a
rd

io
to

x
ic

it
y
 S

c
o

re
(3

-C
la

s
s
 M

o
d

e
l)

R2 = 0.965

0.00 0.25 0.50 0.75 1.00
0.0

1.0

2.0

3.0

Cardiotoxicity Score
(2-Class Model)

Doxorubicin (1.0µM)

DMSO (0.1%)

Bortezomib (0.1µM)

Screening Plates

2-Class vs. 4-Class Model

C
a
rd

io
to

x
ic

it
y
 S

c
o

re
(4

-C
la

s
s
 M

o
d

e
l)

R2 = 0.956

D
M

S
O

B
ort

 (0
.1

µM
)

D
oxo

 (1
.0

µM
)

0

1000

2000

3000

4000

5000

N
u

c
le

a
r 

C
o

u
n

t/
W

e
ll

Z-Factor

– 8.31 –0.99

D
M

S
O

B
ort

 (0
.1

µM
)

D
oxo

 (1
.0

µM
)

0.0

1.0

2.0

3.0

C
a
rd

io
to

x
ic

it
y
 S

c
o

re
(4

-C
la

s
s
 M

o
d

e
l)

Z-Factor

0.51 0.60

D
M

S
O

B
ort

 (0
.1

µM
)

D
oxo

 (1
.0

µM
)

0

50

100

150

M
Y

B
P

C
3
 I
n

te
n

s
it

y
 

(D
M

S
O

 N
o

rm
a
li
z
e
d

)

Z-Factor

– 6.02 –0.02

D
M

S
O

B
ort

 (0
.1

µM
)

D
oxo

 (1
.0

µM
)

0.0

1.0

2.0

C
a
rd

io
to

x
ic

it
y
 S

c
o

re
(3

-C
la

s
s
 M

o
d

e
l)

Z-Factor

0.52 0.59

D
M

S
O

B
ort

 (0
.1

µM
)

D
oxo

 (1
.0

µM
)

0

50

100

150

A
C

T
N

2
 I
n

te
n

s
it

y
 

(D
M

S
O

 N
o

rm
a
li
z
e
d

)

Z-Factor

– 2.68 –0.19

D
M

S
O

B
ort

 (0
.1

µM
)

D
oxo

 (1
.0

µM
)

0.0

0.5

1.0

C
a
rd

io
to

x
ic

it
y
 S

c
o

re
(2

-C
la

s
s
 M

o
d

e
l)

Z-Factor

0.78 0.81

Figure 4. Dynamic range and Z-factors of positive and negative controls in screening plates. (A) Comparison of Z-factor of nuclear count and MYBPC3

and ACTN2 staining intensities for dimethyl sulfoxide (DMSO) vs. bortezomib (Bort; 0.1 mM) and doxorubicin (Doxo; 1 mM). The Z-factors (< 0) and the

limited dynamic range of the nuclear count and sarcomere intensities prevent reliable separation of positive and negative controls. Error bars = SD. (B)

While using deep learning (regardless of how the models are trained), the dynamic range and Z-factors (> 0.5) enable identification of the toxic controls

Figure 4 continued on next page
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(Bray and Carpenter, 2017; Zhang et al., 1999). By using deep learning and the appropriate cell

seeding density, we can increase the dynamic range and reduce the variability between treatment

groups. These changes would increase the screening window coefficient (Z-factor > 0.5) for an HCS

(Figure 4B).

We compared the cardiotoxicity scores from all screening wells at three doses, including the

DMSO, bortezomib, and doxorubicin controls. Regardless of how each deep learning model was

trained, all three models showed strong correlation (R2 > 0.95, p<0.0001) when applied to the

screening plates (Figure 4C). All three models also accurately identified the non-toxic DMSO condi-

tion and enabled detection of the toxic controls (0.1 mM bortezomib and 1 mM doxorubicin). This

result points to the robustness of hit detection and power of deep learning for analyzing large data-

sets. Given that the 4-class model was trained to separate the toxic and highly toxic classes, this

model enables separation between the conditions treated with 0.1 mM bortezomib and 1 mM doxo-

rubicin. To maximize assay sensitivity, it is more valuable to identify mildly toxic compounds than to

distinguish highly toxic compounds from toxic compounds (given that highly toxic and toxic com-

pounds show similarly strong phenotypes). To avoid overlooking a mildly toxic compound during the

HCS, we proceeded to use the 3-class model to identify and further validate hits.

Screening using deep learning identifies compounds with cardiotoxic
liabilities
We analyzed cardiotoxicity scores by screening 1280 bioactive compounds at three doses using our

three deep learning models (Figure 5—figure supplement 1A, B). As mentioned, we focused on

the 3-class model for further studies and validation rounds (Figure 5A). The cardiotoxicity scores

from the top 25 hits are displayed as a heatmap from a scale of 0 to 2, such that the most cardio-

toxic drugs have scores nearing 2 (red) and the non-toxic class have scores of nearly 0 (blue). For

comparison, MYBPC3 and ACTN2 staining intensity and nuclear count are also displayed on a scale

of 0 to 1. Most toxic compounds received a score of 1 (red), and least toxic compounds received a

score of 0 (blue) (Figure 5B). Details about the identified cardiotoxic compounds are listed in

Supplementary file 3.

A number of identified hits clustered based on mechanism of action and molecular pathways. The

top hits showing a cardiotoxicity signal in iPSC-CMs included epidermal growth factor receptor

(EGFR) inhibitors (WZ8040, AG-1478), cyclin-dependent kinase 1 (CDK1) inhibitors (BI-2536, PHA-

767491), DNA intercalators and synthesis inhibitors (Adrucil, daunorubicin, streptozotocin), ion chan-

nel blockers (chlorpromazine, nitrendipine), and other multi-kinase inhibitors (regorafenib). The char-

acterization of hits into target classes is summarized in Figure 5C. We classified the protein targets

of our top 25 cardiotoxic hits with a PRISM repurposing dataset. Next, we built a protein-protein

interaction network using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING).

In the resulting network, we identified seven clusters of protein families, including DNA interactors,

ion channel blockers, multi-kinase inhibitors, and cyclin-dependent kinase (CDK) inhibitors

(Figure 5D).

The top compounds demonstrating a cardiotoxicity signal in iPSC-CMs included several FDA-

approved drugs that clinical and pre-clinical studies have linked to adverse cardiovascular events

(Supplementary file 3). For example, Adrucil (DNA synthesis inhibitor) had a side effect of cardiac

toxicity (RxList, 2020). Betamethasome (oral glucocorticoid) was identified as a risk factor for heart

failure (Souverein, 2004). Regorafenib (sorafenib analog, a multi-kinase inhibitor) was linked to

increased risk of cardiovascular events in patients with solid tumors (Chen and Wang, 2018).

Figure 4 continued

from the DMSO condition. Error bars = SD. (C) Cardiotoxicity scores from all screening wells at three doses of DMSO, bortezomib, and doxorubicin

controls are compared in various deep learning models. Regardless of how each deep learning model was trained, cardiotoxicity scores from all three

models had strong correlation when applied to the screening plates (R2 > 0.95).

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Dynamic range and Z-factors of positive and negative controls in screening plates.

Figure supplement 1. Sarcomere intensity and nuclear count on screening plates at three doses.

Figure supplement 1—source data 1. Sarcomere intensity and nuclear count on screening plates at three doses.
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Figure 5. Screen of bioactive compound library and identified cardiotoxic hits. (A) Cardiotoxicity score from screening 1280 bioactive compounds at

three doses. Data from the 3-class deep learning model are plotted. Higher scores correspond to a higher probability of a cardiotoxicity signature.

Bortezomib and doxorubicin were used as cardiotoxic controls (Cntrls). (B) Cardiotoxicity heatmap scores of top 25 cardiotoxic hits based on deep

learning signal. The immunostaining signal is also displayed as a heatmap. Drugs and doses with cardiotoxicity signals in induced pluripotent stem cell-

Figure 5 continued on next page
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Chlorpromazine (dopamine and potassium channel inhibitor) was linked to fast and irregular heart

rate (WebMD, 2020). Anagrelide (PDE3 inhibitor) may cause cardiovascular effects, including fast,

irregular, pounding, or racing heartbeat or pulse (Clinic M, 2020). Sotalol (beta-blocker and anti-

arrhythmic) has serious cardiac side effects, including QT prolongation, heart failure, or broncho-

spasm (FDA.gov, 2020). Solifenacin (muscarinic receptor antagonist) overdose may cause fast heart-

beat (Plus M, 2020). Daunorubicin (doxorubicin analog, topoisomerase II inhibitor, and DNA

intercalator) causes cardiotoxicity (Menna et al., 2012; Sawyer et al., 2010). Rosiglitazone (PPAR-g

agonist used to treat patients with type 2 diabetes) was associated with a significant increase in the

risk of myocardial infarction (Nissen and Wolski, 2007). These reports support the value of screen-

ing with deep learning and iPSC-CMs to detect early signs of cardiotoxicity.

Validation studies using deep learning and orthogonal assays
We further evaluated a subset of hits that showed cardiotoxic liabilities using deep learning analysis

but did not show a strong toxic liability using immunostaining image analysis (Figure 5—figure sup-

plement 2). This subset included six compounds that showed a cardiotoxic signal in iPSC-CMs: three

pre-clinical compounds (WZ8040 [EGFR inhibitor], BI-2536 [CDK inhibitor], and PHA-767491 [CDK

inhibitor]) and three FDA-approved compounds (danorubicin [DNA intercalator], nitrendipine [Ca2+-

channel blocker], and solifenacin [muscarinic receptor antagonist]). As a positive control, we also

included tegaserod (5-HT4 agonist), which was withdrawn from the market in 2007 due to adverse

cardiovascular effects (MayoClinic, 2020). With these seven compounds, we performed a secondary

round of validation using deep learning and additional orthogonal assays. This validation showed

that all seven compounds had cardiotoxic liability (Figure 6A and Figure 6—figure supplement

1A).

To further assess those seven validated compounds, we treated iPSC-CMs with the compounds

and measured their mitochondrial respiration 4 days later using the Seahorse XFe96 Analyzer. Based

on real-time OCR, all seven compounds dose-dependently reduced basal respiration in iPSC-CMs

(Figure 6B and Figure 6—figure supplement 1B), suggesting decreased respiratory function com-

pared to the DMSO control. To indirectly measure OCR, we treated iPSC-CMs with the compounds

and oligomycin (ATP synthase [complex V] inhibitor) and then measured their capacity to produce

adenosine triphosphate (ATP). Similarly, we found a dose-dependent decrease in the capacity of

iPSC-CMs to produce ATP. Finally, we measured whether these compounds affect the spare respira-

tory capacity (maximum OCR subtracted by basal OCR) in iPSC-CMs. The spare respiratory capacity

represents the cell’s ability to respond to an energetic stress. When compared to DMSO control, all

compounds resulted in a dose-dependent decrease in maximal respiration and spare respiratory

capacity (Figure 6C, D and Figure 6—figure supplement 1C). These data suggest that all seven

compounds dose-dependently impair mitochondrial bioenergetics. Thus, by analyzing mitochondrial

respiration, we validated the cardiotoxic compounds that were identified by deep learning but not

by immunostaining image analysis.

Figure 5 continued

derived cardiomyocytes (iPSC-CMs) are indicated in red and yellow, while non-toxic drugs are indicated in blue. Signal intensity from immunostaining

and nuclear count was normalized to the dimethyl sulfoxide (DMSO) control and converted to a toxicity scale. Based on the generated heatmaps,

phenotypic screening with deep learning is more sensitive in detecting signals than pure immunostaining assays. (C) Target class composition of top

cardiotoxic hits from the screen, including DNA intercalators and ion channel blockers, as well as epidermal growth factor receptor (EGFR), cyclin-

dependent kinase (CDK), and multi-kinase inhibitors. (D) Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) protein-protein interaction

network was used to identify interactions between drug targets (nodes) identified through the PRISM repurposing dataset. Seven clusters in four

protein families of DNA (green), multi-kinase (light blue), ion channels (dark blue), and CDK (red) were found based on the highest number of

interactions. The minimum required interaction score was set to 0.4, and the edge thickness indicated the degree of data support.

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. Screen of bioactive compound library and identified cardiotoxic hits.

Figure supplement 1. Screening results and hit identification.

Figure supplement 1—source data 1. Screening results and hit identification.

Figure supplement 2. Deep learning vs. immunostaining analysis.
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Figure 6. Hit validation using deep learning and orthogonal assay analysis. (A) Cardiotoxicity heatmap scores for validation of seven compounds: six

cardiotoxic hits from the primary screen and tegaserod (known to cause cardiotoxicity and withdrawn from the market). (B) Kinetic plots of oxygen

consumption rates for the seven compounds and bortezomib as another control. Kinetic data from only the 1 mM dose is plotted. Error bars = SD. (C)

Heatmaps for basal respiration, adenosine triphosphate (ATP) production, maximal respiration, and spare respiratory capacity. BI-2535, daunorubicin,

nitrendipine, and bortezomib had the largest effect on basal respiration, ATP production, and maximal respiration. The oxygen consumption rate (OCR)

Figure 6 continued on next page
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ProBNP levels are not a reliable marker for detecting cardiotoxicity in
iPSC-CMs
BNP is natriuretic peptide and hormone secreted from cardiac tissue. During heart failure, BNP

secretions are elevated (Bay et al., 2003; Doust et al., 2006; Januzzi et al., 2005). BNP is also

expressed in iPSC-CMs, which secrete the hormone into their culture media.

We used a ProBNP ELISA kit as an orthogonal, follow-up assay on media collected from iPSC-

CMs treated with the seven validated cardiotoxic compounds and evaluated the levels of BNP. We

found an inconsistent pattern of ProBNP levels and cardiotoxicity signal in the media of treated cells.

Only PHA-767491 (at all three doses) elevated ProBNP. In contrast, WZ8040, daunorubicin, nitrendi-

pine, and solifenacin dose-dependently reduced ProBNP (Figure 6E). This reduction may be due to

poor health of iPSC-CMs after treatment with the cardiotoxic compounds. We found that BI-2536

did not alter the levels of ProBNP and that tegaserod only reduced BNP at the highest dose (3 mM)

(Figure 6E).

RNA-seq analysis confirms drug-specific changes in key pathways that
regulate cardiac muscle contraction, development, and identity
To delineate perturbed transcriptional profiles in iPSC-CMs treated with drugs, we performed RNA

sequencing on samples treated with our previously defined nine cardiotoxic compounds (two repli-

cates/drug) and DMSO-treated iPSC-CMs (six replicates). Using PCA, four drugs (bortezomib, dau-

norubicin, doxorubicin, and BI-2536) fell into three distinct clusters, whereas the other five drugs

(nitrendipine, PHA-767491, solifenacin, tegaserod, and WZ8040) clustered more closely with DMSO-

treated controls (Figure 7A). Based on hierarchical clustering on each sample’s projected location in

the PCA space with 23 components, we classified the transcriptomic profiles into four clusters (n =

24; cluster 1: bortezomib; cluster 2: doxorubicin and daunorubicin; cluster 3: BI-2536; cluster 4:

nitrendipine, PHA-767491, solifenacin, tegaserod, and WZ8040). We generated the heatmap in

Figure 7B by selecting the top overexpressed and underexpressed genes in each cluster that inter-

sected with a curated set of 310 genes with enriched expression in cardiac tissue. We did not see

any major difference in the clustering structure between these two methods. For simplicity, we show

the averaged PCA-based similarity matrix for each drug cluster in Figure 7B.

Bortezomib-treated cardiomyocytes showed significant downregulation of major genes encoding

structural proteins associated with different forms of familial cardiomyopathies (Haas et al., 2015).

For example, TCAP (regulates sarcomere assembly and titin assembly; implicated in familial hyper-

trophic cardiomyopathy), MYL3 (myosin light chain 3; implicated in left ventricular hypertrophic car-

diomyopathy and restrictive cardiomyopathy), LDB3, and DES were highly downregulated

(Figure 7C). Doxorubicin- and daunorubicin-treated clusters were identified by substantial downre-

gulation of ANKRD1 (associated with dilated cardiomyopathy), LMNA (Lamin A/C; known mutations

result in cardiomyopathy), as well as NKX2-5,and GATA4 (two transcription factors essential for car-

diac development and survival).

BI-2536-related cardiotoxicity in cluster 3 was associated with reduced expression of AGT (angio-

tensinogen; a critical component of the renin-angiotensin system), PRKCH (protein kinase C, eta; a

calcium-dependent serine/threonine protein kinase), and NFATC4 (a cardiac transcription factor

required for oxidative phosphorylation activity as well as cardiomyocyte proliferation and differentia-

tion) (Bushdid et al., 2003). The fourth cluster with the remaining five drugs (nitrendipine, PHA-

767491, solifenacin, tegaserod, and WZ8040) presented more subtle transcriptional changes, includ-

ing reduced expression of KCNE2 (potassium voltage-gated channel subfamily E regulatory subunit

Figure 6 continued

was measured as pmol/min/nuclear count. (D) All seven compounds show significantly different basal respiration and ATP production (one-way

ANOVA). All drugs, except tegaserod, show significantly different maximal respiration. SRC: spare respiratory capacity. (E) Heatmaps for ProBNP levels

show that PHA-767491 elevates ProBNP levels at all three doses. All other drugs showed no change or a slight decrease in ProBNP levels, suggesting

that ProBNP is the least-sensitive marker to assess cardiotoxicity and cellular stress.

The online version of this article includes the following source data and figure supplement(s) for figure 6:

Source data 1. Hit validation using deep learning and orthogonal assay analysis.

Figure supplement 1. Validation using deep learning and mitochondrial respiration.
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Figure 7. RNA-seq analysis of induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) treated with candidate cardiotoxic drugs reveals

distinct clusters associated with altered gene expression. (A) Principal component analysis (PCA) scatter plot representing the extent of transcriptional

perturbation compared with dimethyl sulfoxide (DMSO)-treated iPSC-CMs. Overlapping replicates for each drug indicate very high precision of the

experiment. Daunorubicin and doxorubicin on principal component 1 (PC1) and bortezomib on PC2 show the most different transcriptional profile

Figure 7 continued on next page
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2; associated with arrhythmic abnormalities) and HSPB6 (a molecular chaperone with greater expres-

sion in response to stress or tissue damage) (Li et al., 2017; Figure 7C).

To evaluate functional perturbations in each cluster, we performed single-sample gene set enrich-

ment analysis (ssGSEA) (Subramanian et al., 2005) and normalized enrichment score for each sam-

ple. Normalized enrichment scores were scaled and centered on the average scores of the DMSO

group (Figure 7D).

Deep learning detects structural frameworks that cause cardiotoxicity
in iPSC-CMs
To identify chemical structure frameworks that lead to cardiotoxicity in iPSC-CMs, we used our deep

learning approach to assess a library of 1280 diverse compounds with no known targets. We used

the same conditions as the bioactive library screen. However, to optimize the accuracy and applica-

bility of the diverse library screen, we established a new set of training images and developed a new

deep learning model that incorporated all generated datasets. From the 1280 diverse compounds,

our deep learning approach identified 33 hits to cause cardiotoxicity in iPSC-CMs (Figure 8A, B).

Analysis of the structure-activity relationship revealed three structural frameworks with two com-

pounds (also classified as matched pairs) in each framework set (Figure 8C). For example, Frame-

work 2a (cardiotoxicity score: 1.41) and its matched pair Framework 2b (cardiotoxicity score: 0.69)

showed that adding an ethylene spacer increased the cardiomyocyte toxicity score by twofold

(Figure 8C). Based on this result, high-content phenotypic analysis using deep learning is a powerful

approach to identifying chemical frameworks with cardiotoxic liabilities. By using this approach dur-

ing the lead optimization process, we can de-risk a clinical development program and potentially

reduce drug attrition in late-stage clinical trials.

Deep learning identifies proteasome inhibitors with reduced
cardiotoxicity in iPSC-CMs
Bortezomib and carfilzomib are FDA-approved proteasome inhibitors used for oncology indications,

including multiple myeloma and mantle cell lymphoma (Dimopoulos et al., 2016; Richardson et al.,

2003). Patients given these drugs can develop cardiomyopathy, worsening heart rhythm, heart fail-

ure, and death due to cardiac arrest (Moslehi, 2016). To identify proteasome inhibitors that may

reduce cardiotoxic liability, we profiled the potency of 10 proteasome inhibitors using the Protea-

some-Glo biochemical assay (Figure 8D). For each inhibitor, we calculated the biochemical IC50 and

measured the cardiotoxicity score using deep learning. We identified six inhibitors with a similar

range of biochemical potencies (~12 to ~25 nM): carfilzomib, bortezomib, epoxomicin, delanzomib,

ixazomib, and oprozomib. Carfilzomib, bortezomib, and epoxomicin had the highest cardiotoxicity

score; delanzomib showed the lowest cardiotoxicity liability; and ixazomib and oprozomib showed

medium levels of cardiotoxicity (Figure 8E). This analysis is an example of how this type of pheno-

typic screening would help to de-risk a small-molecule program at an early stage. By focusing on a

chemical series (or pathway) that shows high levels of potency for the intended target, we can iden-

tify compounds in that series that limit undesired toxicity in a specific cell type with a major liability

(such as cardiomyocytes and hepatocytes).

Figure 7 continued

compared to the DMSO-treated group. Note that daunorubicin and doxorubicin (both DNA intercalators) cluster together. Clustering of other drugs

with the control group indicates relatively modest changes when compared with bortezomib, daunorubicin, and doxorubicin. (B) PCA-based

hierarchical clustering of similarity matrix shows four distinct clusters of gene expression pattern: bortezomib (cluster 1); daunorubicin and doxorubicin

(cluster 2); BI-2536 (cluster 3); and nitrendipine, PHA-767491, solifenacin, tegaserod, and WZ8040 (cluster 4). Cluster 4 shows a gene expression profile

closer to the DMSO control group. (C) Heatmap of the most differentially abundant cardiac tissue-enriched genes in each drug cluster versus the

DMSO-treated group. Each drug cluster shows up to five most differentially expressed genes (false discovery rate [FDR] < 0.05), showing the presence

of four distinct cluster-associated gene groups. (D) Heatmap of the most differentially enriched pathways in each drug cluster. Unbiased single-sample

gene set enrichment analysis (ssGSEA) was performed on curated gene lists representing the gene sets most enriched or depleted in each drug cluster

as compared with the DMSO-treated group and identified by Welch’s t-test.
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Figure 8. Screen of diverse compound library and identified cardiotoxic chemical frameworks. (A) Cardiotoxicity scores of 1280 diverse compounds

screened at 1 mM. Sorted data from the 3-class deep learning model are plotted. Higher scores correspond to a higher probability of a cardiotoxicity

signature. Bortezomib and doxorubicin were used as cardiotoxic controls (Cntrls). (B) Cardiotoxicity heatmap scores of top 33 cardiotoxic hits based on

deep learning signal. The immunostaining signal is also displayed as a heatmap. Drugs and doses with cardiotoxicity signals in induced pluripotent

Figure 8 continued on next page
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Discussion
In this study, we combined the power of human iPSC technology with high-content image analysis

using deep learning to detect signatures of cardiotoxicity in a high-throughput chemical screen.

First, we treated iPSC-CMs with drugs known to cause cardiotoxicity in the clinic. We combined the

contractility readout, immunostaining, and nuclear count to stratify doses of compounds into defined

categories: mildly toxic, toxic, and highly toxic. Next, we trained a neural network with fluorescently

labeled images to classify the images by degrees of cardiotoxicity with a data-driven method. We

then constructed three deep learning models to understand how the categories would differ based

on how the toxicities were classified with imaging. We found that all models strongly agreed in iden-

tifying hits that cause cardiotoxic liabilities in iPSC-CMs.

Our screening identified classes of compounds that clustered into distinct mechanisms of action

and putative target classes. Some of the compounds with the most likely cardiotoxic liabilities

included DNA intercalators and ion channel blockers, as well as EGFR, CDK, and multi-kinase inhibi-

tors. We validated these hits using a second round of deep learning and orthogonal assays that mea-

sured mitochondrial respiration and evaluated BNP as a marker of stress.

Cardiomyocytes in the adult human heart contain approximately 30% mitochondria by cell vol-

ume. These mitochondria critically regulate many cellular processes, such as metabolism, oxidative

stress, cell survival, and apoptotic death (Ventura-Clapier et al., 2011). The adult human myocar-

dium is highly metabolically active. Approximately 70–80% of its energy derives from oxidative phos-

phorylation in mitochondria fueled by fatty acid–based oxidative phosphorylation. Conversely, in

immature neonatal myocardium or iPSC-CMs, ATP production is predominately through the glyco-

lytic pathway (Sacchetto et al., 2019; Siasos et al., 2018). In previous studies, exposing iPSC-CMs

to various clinically approved compounds with known cardiotoxicities led to a dose-dependent

decrease in mitochondrial function in these cells (Burridge et al., 2016; Rana et al., 2012). Using

mitochondrial bioenergetics in iPSC-CMs, we showed that cardiotoxic hits identified from our HCS

negatively affected mitochondrial bioenergetics in iPSC-CMs, including reduced basal respiration,

ATP production, and maximal respiration rate.

Using RNA-seq analysis, we confirmed that iPSC-CMs treated with drugs identified using our phe-

notypic cardiotoxicity screening approach resulted in downregulation of key structural and develop-

mental genes, including TCAP, MYL3, LDB3, DES, ANKRD1, NKX2-5, and GATA4. In addition,

ssGSEA showed downregulation of pathways involved in cardiac muscle contraction, development,

and differentiation, further validating our phenotypic screening approach to identifying cardiotoxic

drugs.

Use of iPSC-derived models for cardiotoxicity (Sharma et al., 2017; Sirenko et al., 2017) and

hepatotoxicity screening has been proposed (Mann, 2015). Phenotypic assays with generic read-

outs, such as cell viability, are typically less sensitive in identifying subtle toxicity signatures and less

likely to enable hit triaging at an early stage. Other toxicity assays in iPSC-CMs, such as electrophysi-

ology and multi-electrode arrays (Takeda et al., 2018), are not scalable for HTS. Instead, high-con-

tent imaging, such as used in this study, enables researchers to use more complex assays for HTS

lead discovery.

Essential components are needed to build a useful deep learning neural network. For example,

constructing a relatively large and annotated dataset can strengthen the model. In general, the

larger the dataset, the better the performance of the model. In addition, the quality of the dataset

Figure 8 continued

stem cell-derived cardiomyocytes (iPSC-CMs) are indicated in red and yellow, whereas non-toxic drugs are indicated in blue. Signal intensity from

immunostaining and nuclear count was normalized to the dimethyl sulfoxide (DMSO) control and converted to a toxicity scale. (C) Three structural

frameworks with matched pairs were identified to lead to cardiotoxicity in iPSC-CMs: Framework 1 (1a and 1b, tetrahydronaphthalene-2-sulfonamide

core), Framework 2 (2a and 2b, 4-benzylpiperidine core), and Framework 3 (3a and 3b, 3-azabicycloheptane core). (D) Heatmap of chymotrypsin-like

biochemical activity of 10 proteasome inhibitors profiled in iPSC-CMs. (E) Cardiotoxicity scores of 10 proteasome inhibitors plotted as a function of

chymotrypsin-like biochemical IC50. Six of the proteasome inhibitors showed a similar range of biochemical potencies (dashed box). Delanzomib

showed the lowest cardiotoxicity score; carfilzomib, bortezomib, and epoxomicin showed the highest cardiotoxicity scores.

The online version of this article includes the following source data for figure 8:

Source data 1. Screen of diverse compound library and identified cardiotoxic chemical frameworks.
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determines the success of the deep learning model. For instance, a more homogenous set of images

in well-controlled studies enables better model performance. Conversely, heterogeneity in the cells

leads to less accurate and reliable models. Furthermore, the experimenter should ensure that the

classes are balanced in the training dataset. Without this balance, the training dataset will display

bias toward the most represented class, and in extreme cases, may completely ignore the minority

class (Johnson and Khoshgoftaar, 2019). In this study, we trained the model by feeding the neural

network between 250 and 500 images of pure iPSC-CMs at high cell densities from each class. We

also used eight drugs and hundreds of images from each drug to establish our training dataset. This

approach ensured that we achieved a relatively large and balanced annotated dataset, while also

reducing cellular heterogeneity. In future work in which researchers may aim to identify a cardiotox-

icity score with deep learning using in vitro models, we recommend that they establish a deep learn-

ing model based on a large training dataset using known cardiotoxins based on clinical data. Then

images from test articles can be analyzed through the neural net to compare the level of toxicity to

reference cardiotoxic drugs.

Widespread use of deep learning methods in the biological sciences can be challenging. This

challenge may be attributed to technical and cultural norms (Moen et al., 2019). For example, bio-

logical data is inherently complex, heterogeneous, and variable. Thus, a certain threshold of data

and computational resources is needed for data annotation to build accurate and useful deep learn-

ing models. Another concern has been the ‘black box’ nature of the method, or not knowing exactly

what features the deep learning net is identifying (Moen et al., 2019). We propose that the black

box is ‘a feature and not a bug’ of deep learning. We believe the black box allows researchers to

interrogate a large set of perturbations in a cell-agnostic, unbiased, and high-throughput manner.

Another advantage of deep learning is that deep neural networks significantly outperformed random

forest by 22–27% in four measured metrics (Idakwo et al., 2019), suggesting that this approach is

more robust than traditional chemoinformatics analysis. Although we did not compare deep learning

and chemoinformatics in this study, this comparison would be a valuable addition to future research.

In this study, we showcase the power of deep learning in uncovering new biological insights and

how the technology can be more accessible to biologists. Deep learning can be used as an addi-

tional tool to interrogate subtle and difficult-to-define phenotypes. Our findings support that deep

learning is a highly sensitive method to detect cardiotoxicity phenotypes that are undetectable by

traditional single-readout assays. While the scope of our study was limited to identifying cardiotoxic-

ity signatures in iPSC-CMs, the method can be applied to identifying toxicity in other cell types.

Screening using iPSC-derived cells with deep learning can also be applied to de-risk early-stage

drug discovery and ensure that compounds with on- and off-target toxicity are triaged at an early

stage in drug development. In particular, deep learning can be used to identify targets with high-

throughput perturbation screening (using small molecules, siRNA, and CRISPR libraries). Our screen-

ing strategy is cell and modality agnostic, and it can be applied to a range of indications, such as

orphan and neglected diseases. Thus, combining iPSC technology and deep learning can accelerate

discovery efforts by supporting rapid model development and interrogation of targets that could be

used in different areas of research and for multiple indications.
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