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SUMMARY

Impairments in the differentiation process can lead to skin diseases that can afflict
�20% of the population. Thus, it is of utmost importance to understand the fac-
tors that promote the differentiation process. Here we identify the transcription
factor KLF3 as a regulator of epidermal differentiation. Knockdown of KLF3 re-
sults in reduced differentiation gene expression and increased cell cycle gene
expression. Over half of KLF3’s genomic binding sites occur at active enhancers.
KLF3 binds to active enhancers proximal to differentiation genes that are depen-
dent upon KLF3 for expression. KLF3’s genomic binding sites also highly overlaps
with CBP, a histone acetyltransferase necessary for activating enhancers. Deple-
tion of KLF3 causes reduced CBP localization at enhancers proximal to differen-
tiation gene clusters, which leads to loss of enhancer activation but not priming.
Our results suggest that KLF3 is necessary to recruit CBP to activate enhancers
and drive epidermal differentiation gene expression.

INTRODUCTION

The human epidermis is a stratified epithelial tissue that serves as a protective interface between the body

and the surrounding environment (Gonzales and Fuchs, 2017). Not only does it act as a barrier against detri-

mental factors such as pathogen exposure and physical harm but also allows the body to retain water and

prevent dehydration. These protective attributes rely on the proper homeostasis and differentiation of the

tissue. The epidermis is maintained by stem and progenitor cells that reside in the basal layer (Ge and

Fuchs, 2018). These cells are capable of generating new cells destined for differentiation, while also main-

taining the proliferative population. Cells that leave the proliferative state and enter the differentiation pro-

gram undergo various stages of differentiation as they migrate outward and ultimately form the cornified

envelope (stratum corneum). The cornified envelope is composed of enucleated cells containing bundled

keratin filaments, crosslinked proteins, and lipids extruded into the extracellular matrix that together create

the skin barrier. Defects in differentiation and thus formation of this barrier can lead to a variety of skin dis-

eases such as ichthyosis, atopic dermatitis, and psoriasis, which can impact up to 20% of the population

(Lopez-Pajares et al., 2013).

Proper keratinocyte differentiation relies on an effective exit out of the cell cycle and the induction of the

differentiation gene expression program. Work from our lab as well as others have shown that differenti-

ation gene expression is reliant on a variety of regulatory factors, including lineage determining transcrip-

tion factors (LDTFs) such as KLF4, MAF/MAFB, CEBPA/B, ZNF750, and GRHL3 (Boxer et al., 2014; Chen

et al., 2014; Hopkin et al., 2012; Lopez et al., 2009; Lopez-Pajares et al., 2015; Mistry et al., 2012; Segre

et al., 1999; Sen et al., 2012; Ting et al., 2005). Although many of these important factors have been iden-

tified, the search continues for transcription factors that promote differentiation.

Krüppel-like factors are transcription factors characterized by three C2H2 (two cysteine, two histidine) zinc

finger domains that facilitate their binding to DNA (Kaczynski et al., 2003). These domains are highly

conserved among the various KLF proteins. The KLF family of transcription factors can be distinguished

by variations in their N-terminal domains, which allow them to have unique protein-protein interactions

and activities.

Krüppel-like factor 3 (KLF3), also known as basic Krüppel-like factor (BKLF), has been implicated in the regu-

lation of differentiation in multiple cellular contexts (Pearson et al., 2011). For example, murine embryonic

fibroblasts knocked out for KLF3 show a greater ability to differentiate into adipocytes upon stimulation
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with adipogenic factors, suggesting that KLF3 inhibits adipogenesis (Sue et al., 2008). In contrast, KLF3 is

necessary for B cell development and the induction of skeletal muscle differentiation genes (Himeda et al.,

2010; Vu et al., 2011). These findings suggest that KLF3 can regulate various differentiation processes (Pear-

son et al., 2011). However, whether it promotes or inhibits differentiationmay rely on the cellular context, its

genomic binding sites, and/or interacting proteins. It is currently unclear what role KLF3 has in the differ-

entiation and homeostasis of human epithelial tissue.

LDTFs can recruit epigenetic writers and readers to remodel chromatin for gene activation or repression.

For example, ZNF750 was found to promote differentiation and suppress proliferation gene expression

through interactions with epigenetic factors such as CTBP1/2, RCOR1, and KDM1A (Boxer et al., 2014).

Similarly, GRHL3 is able to recruit the Trithorax complex (including MLL2, a histone-lysine methyltransfer-

ase) through WDR5 to a variety of epidermal differentiation genes and activate their expression through

H3K4 methylation (Hopkin et al., 2012). Although these studies have elucidated how some LDTFs recruit

epigenetic factors to regulate epidermal differentiation, it is not known whether epigenomic writers of

active enhancers have any role in this process.

Enhancers are essential for cell-type specific, developmental, and differentiation gene expression (Small-

wood and Ren, 2013). Two types of enhancers have been described, namely primed and active, which can

be identified by associated histone modifications. Primed enhancers are marked by mono-methylation of

H3K4 (H3K4me1), whereas active enhancers contain both H3K4me1 and acetylated H3K27 (H3K27ac)

(Creyghton et al., 2010; Heintzman et al., 2007; Rada-Iglesias et al., 2011). P300 and CBP are highly homol-

ogous histone acetyl transferases enriched at active enhancers and promote their activation through acet-

ylation of H3K27 (Visel et al., 2009; Wang et al., 2009). Inhibition of these epigenomic writers lead to inac-

tivation of enhancers and downregulation of target genes. CBP and P300 have been shown to be

functionally redundant in many studies; however, there are studies where they have been found to have

distinct and opposite roles (Holmqvist and Mannervik, 2013; Ramos et al., 2010; Roth et al., 2001). CBP

has been shown in hematopoietic stem cells to promote stem cell self-renewal, whereas P300 is necessary

for their differentiation (Rebel et al., 2002). Whether P300 or CBP plays any role in the skin and how they

localize to active enhancers is a question of active investigation.

In this study we identify KLF3 as an LDTF that promotes epidermal differentiation. We show that KLF3 is

expressed throughout the human epidermis but is upregulated in the differentiated layers. Functionally,

KLF3 promotes differentiation gene expression and suppresses cell-cycle associated genes. KLF3 does

this independently and is not redundant with closely related transcription factor KLF4. Chromatin immuno-

precipitation followed by high throughput sequencing (ChIP-Seq) of KLF3 revealed that KLF3 binding

occurred at active enhancers. Based on this enhancer association, we sought to compare the transcrip-

tional programs of KLF3 to P300 and CBP by RNA-Seq. We found that KLF3’s transcriptional regulation cor-

relates closely with that of CBP but not P300. ChIP-Seq of CBP-binding sites shows substantial overlap with

KLF3 at active enhancers. Loss of KLF3 prevented CBP binding to KLF3-bound active enhancers. Our results

demonstrate that KLF3 is necessary for CBP’s localization to active enhancers to promote epidermal

differentiation.

RESULTS

KLF3 Expression Is Upregulated during Epidermal Differentiation

To identify potential regulators of epidermal differentiation, we searched for transcription factors whose

mRNA levels were upregulated during this process. Analysis of a previously generated RNA sequencing

(RNA-Seq) dataset showed that KLF3 transcripts were upregulated during differentiation (Figure 1A and

S1A) (Kretz et al., 2012). This increase in expression is similar to other known transcription factors involved

in promoting epidermal differentiation including KLF4 and ZNF750 as well as differentiation structural

genes FLG, KRT10, and LCE2C (Figure 1A). To validate KLF3 expression levels, primary human keratino-

cytes were induced to differentiate by seeding in full confluence and high calcium. Keratinocytes were

differentiated for 1, 3, or 5 days, and KLF3 expression levels were analyzed. Compared with the undifferen-

tiated control (Day 0), KLF3 expression was elevated on both themRNA and protein levels after just one day

of differentiation and progressively increased throughout the time course (Figures 1B and 1C). In human

skin, KLF3 protein localized to the nucleus and was found throughout the epidermis. However, KLF3

expression was highest in the differentiated layers (such as the granular layer) of the epidermis, which

co-expressed the differentiation protein keratin 10 (K10) (Figures 1D and 1E). To confirm the specificity
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of the KLF3 antibody, primary human keratinocytes were transfected with control siRNA (CTLi) or KLF3

siRNA (KLF3i) and induced to differentiate for 3 days. Efficient KLF3 knockdown and the specificity of

the antibody on the protein level was confirmed by western blot (Figure S1B). Control and knockdown cells

were also used to regenerate human skin by seeding the cells on devitalized human dermis. This allows the

cells to establish cell-cell and cell-basement membrane contact all in three dimensions, which allows the

stratification of the tissue and the accurate representation of the gene expression program of human

epidermis (Li et al., 2019; Li and Sen, 2015; Noutsou et al., 2017). KLF3 protein expression was increased

in the upper, more differentiated layers of the epidermis, which was in contrast to P63 staining, which

was primarily found in the basal layer of the epidermis (Figure S1C). KLF3 knockdown samples showed com-

plete loss of KLF3 staining, demonstrating the specificity of the KLF3 antibody (Figure S1C). Together,

Figure 1. KLF3 Expression Is Increased during Epidermal Differentiation

(A) Heatmap of replicate RPKM normalized, Log2 transformed RNA-sequencing data showing the relative expression of

KLF3 and a panel of differentiation genes in keratinocytes cultured in growth media (GM) versus differentiation media

(DM, day 3 and day 6 differentiation). Red color denotes increased expression and blue color denotes decreased

expression.

(B) RT-qPCR analysis of KLF3 mRNA levels in a time course of keratinocyte differentiation done in two-dimensions, with

day 0 representing undifferentiated keratinocytes and days 1–5 representing progressively differentiated keratinocytes.

n = 3. Data are graphed as the mean G SD. Statistics: t test, *p < 0.05, **p < 0.01, ***p < 0.001.

(C) Western blot of KLF3 protein levels in a time course of keratinocyte differentiation with B-Tubulin as a loading control.

Representative image is shown, n = 3.

(D) Immunofluorescent staining of KLF3 (green) and KRT10 (red, a marker of the differentiated layers) in human skin

biopsy. Merged image includes Hoechst staining of nuclei. n = 3. Scale bar: 20 mm.

(E) Quantitation of the signal intensity of KLF3 staining in the basal, spinous, and granular layer from the images acquired

in (D). Data are graphed as the mean G SD. Statistics: t test.
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these data demonstrate that KLF3 is expressed throughout the human epidermis but is elevated in the

differentiated layers.

KLF3 Is Necessary for Epidermal Differentiation

Because KLF3 expression is increased during differentiation, we sought to determine if KLF3 plays a func-

tional role in epidermal differentiation. Knockdown of KLF3 using 2 distinct siRNAs in primary human ker-

atinocytes blocked differentiation gene expression (Figure 2A). These include genes such as filaggrin

(FLG), loricrin (LOR), SPRR3, HOPX, KRT1, KRT10, and KRT23, many of which have been implicated in dis-

eases of the skin (Figure 2A) (Koseki et al., 2019; Mariotto et al., 2016). Knockdown of KLF3 also slightly

increased apoptosis from �2.8% to �4.5% (Figure S1D). To determine if KLF3 is necessary for differentia-

tion in a tissue context, control and KLF3-depleted cells were seeded on devitalized human dermis to

regenerate skin. Immunofluorescent staining and RT-QPCR from these samples show a dramatic reduction

in the protein and mRNA levels for the late differentiation markers FLG and LOR (Figures 2B, 2C, and S1E).

Importantly, KLF3 depletion did not impact the expression of the basal layer transcription factor P63 (Fig-

ures 2B and S1E). This loss of late differentiation proteins resulted in a diminished cornified envelope and

thus likely barrier breach in KLF3 knockdown tissue (Figure 2D).

To understand the genome wide gene expression changes associated with KLF3 depletion during differ-

entiation, we performed RNA-Seq in replicates for control or KLF3 knockdown cells placed in differentia-

tion conditions for 3 days. Five hundred sixty-three genes were found to be decreased (R2 fold change and

FDR% 0.05, ANOVA) in KLF3-depleted samples (Figures 2E and Table S1). Gene ontology (GO) analysis of

these genes shows enrichment for terms related to epidermal differentiation, such as formation of the cor-

nified envelope, metabolism of lipids, and water homeostasis (Figure 2F). This list of genes includes struc-

tural differentiation genes such as KRT, LCE, S100, and SPRR family proteins, as well as proteins associated

with important differentiation processes such as lipid metabolism (ALOX12B, ALOXE3) and desquamation

(KLKs) (Figure 2G). Four hundred twenty-three genes were increased in KLF3 knockdown cells and were en-

riched for GO terms primarily associated with cell division (Figures 2E and 2H, Table S1). Although there

was an increase in cell-cycle associated GO terms, the proliferative capacity of the basal layer did not signif-

icantly change upon KLF3 depletion (Figures S1F–S1G). Validation of the RNA-Seq results by RT-qPCR also

showed decreased expression of differentiation genes and increased expression of proliferation genes

such as CDKL2 and CCNB1 (Figure S2A). To determine which stage of the differentiation process KLF3

was regulating, we compared the KLF3 gene expression signature with a previously published time course

of epidermal differentiation, which defined progenitor, early, and late differentiation gene signatures (Lo-

pez-Pajares et al., 2015). Of the 563 genes decreased upon KLF3 knockdown, 23.6% (133/563: p < 2.156 3

10�122) overlapped with the late differentiation gene signature, whereas only 0.53% (3/563) overlapped

with the early differentiation signature, which was not significant (Figure S2B). Of the 423 genes increased

upon KLF3 knockdown, 17% (72/423: p < 2.699e-40) overlappedwith the progenitor gene expression signa-

ture, whereas only 1.65% (7/423) and 1.89% (8/423) overlapped with the early and late differentiation sig-

natures, respectively (Figure S2B). These results suggest that KLF3 is necessary to induce late differentia-

tion gene expression while suppressing progenitor genes.

Because KLF4 is critical for epidermal differentiation and related to KLF3, we wanted to determine the rela-

tionship between the two transcription factors and determine if they regulate each other’s expression

levels. Knockdown of KLF4 had no impact on the protein expression of KLF3 in regenerated skin (Figures

S1C and S1H). Similarly, knockdown of KLF3 had no impact on KLF4 expression (Figures S1C and S1H). KLF3

also did not co-precipitate with KLF4, suggesting that they do not associate with each other or impact each

other’s expression (Figure S2C). To determine if these factors regulated a common gene expression pro-

gram, we used our previously published RNA-Seq data on KLF4 knockdown cells and compared it with the

KLF3 gene expression profile (Jones et al., 2020). KLF4 knockdown resulted in 772 downregulated genes

and 1,265 upregulated genes (Figure S3A, Table S2). The RNA-Seq results were also validated by RT-

qPCR (Figure S3B). Gene ontology for KLF4i-decreased genes showed enrichment for genes related to

epidermis development, whereas cell-cycle genes are enriched in the upregulated gene set (Figures

S3C and S3D). Greater than half of KLF3 differentially regulated genes were also found in the KLF4 knock-

down data with 298 co-downregulated (p < 1.3753 10�313) and 226 co-upregulated genes (p < 1.243e-180)

(Figures S3E and S3F). The KLF3i and KLF4i RNA-Seq datasets are also highly correlated with a Pearson co-

efficient of �0.86 (Figure S3G). Because of their similar gene expression signatures, we wanted to deter-

mine if there are redundant genes that they co-regulate. RNA-Seq was performed on KLF3/KLF4

ll
OPEN ACCESS

4 iScience 23, 101320, July 24, 2020

iScience
Article



double-knockdown cells with 741 genes downregulated, whereas 958 genes were upregulated with results

validated by RT-qPCR (Figures S3H–S3I, Table S3). Interestingly, only 95 downregulated (enriched for drug

catabolic process) and 151 upregulated (enriched for interferon signaling) genes were uniquely identified

in the double-knockdown samples (Figures S3J–S3M). Notably, there was no enrichment for differentiation

Figure 2. KLF3 Is Necessary for Human Epidermal Differentiation

(A) RT-qPCR quantifying the relative mRNA expression levels of a panel of epidermal differentiation genes in CTLi and

KLF3i keratinocytes after 3 days of differentiation. Two separate siRNAs (siRNA 1 and siRNA 2) targeting different regions

of KLF3 were used (n = 6). Data are graphed as the mean G SD. Statistics: t test, *p < 0.05, **p < 0.01, ***p < 0.001.

(B) Immunofluorescent staining of late differentiation marker FLG (red) and basal layer marker P63 (green) in day 5

regenerated human epidermis treated with control (CTLi) or KLF3 targeting (KLF3i) siRNA. Merged image includes

Hoechst staining of nuclei. n = 3. Scale bar: 20 mm.

(C) RT-qPCR quantifying the relative mRNA expression levels of LOR and FLG in CTLi and KLF3i day 5 regenerated human

epidermis. n = 4. Data are graphed as the mean G SD. Statistics: t test, *p < 0.05, **p < 0.01, ***p < 0.001.

(D) Hematoxylin and eosin staining of CTLi and KLF3i day 5 regenerated human epidermis. n = 3, scale bar: 20 mm.

(E) Heatmap generated for replicate (n = 2) RPKM normalized RNA-Sequencing data from CTLi and KLF3i keratinocytes

differentiated for 3 days. The expression of genes significantly (FDR %0.05 and fold change R2 versus CTLi) increased

(red) or decreased (blue) are displayed (log2 scale).

(F) Gene ontology (GO) term enrichment for the 563 genes significantly decreased upon KLF3 knockdown.

(G) Heatmap showing the relative expression levels of a panel of differentiation-associated genes from the CTLi and KLF3i

RNA sequencing datasets (log2 scale). n = 2.

(H) Gene ontology term enrichment for the 423 genes significantly increased in expression upon KLF3 knockdown.
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Figure 3. KLF3 Binds to Active Enhancers Proximal to Differentiation Genes

(A) Genomic localization of the 25,352 KLF3 bound peaks identified by HOMER. KLF3 ChIP Seq was performed in

replicates (n = 2) from day 3 differentiated keratinocytes.

(B) de novo motif enrichments and their associated family of factors identified within the 25,352 KLF3 peaks.

(C) Mean density profile displaying histone marks (H3K27ac:purple, H3K4me:green, H3K27me3:orange, and

H3K9me3:red) centered around KLF3 peaks (blue). The 25,352 KLF3 peaks were used as the reference, and the profiles are

displayed +/� 5kb from the KLF3 peak centers.

(D) Percent distribution of the 13,556 KLF3-bound peaks that overlapped with H3K27ac/H3K4me positive regions. These

13,556 regions with KLF3/H3K27ac/H3K4me binding were annotated using HOMER and all regions not mapped to

promoters were considered enhancers.

(E) Venn diagram showing the number of genes decreased in KLF3i that have a proximal KLF3-bound H3K27ac/H3K4me

positive enhancer(s). Overlap significance in the Venn diagramwas calculated using hypergeometric distribution p values.

(F) Venn diagram showing the number of genes decreased in KLF3i that have a KLF3-bound H3K27ac/H3K4me positive

promoter.
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or cell-cycle GO terms in those genes (Figure S3L–S3M). Thus, although KLF3 and KLF4 regulate many of

the same differentiation and cell cycle genes, they cannot compensate for the loss of one another. Further-

more, KLF3 and KLF4 redundantly regulate a small subset of genes (246 unique genes that are differentially

regulated only upon KLF3/KLF4 double-knockdown) together, which are not differentiation or cell-cycle

related. Together, these data suggest that KLF3 is essential for promoting epidermal differentiation and

is non-redundant with KLF4 in regulating this process.

KLF3 Binds to Active Enhancers to Drive Epidermal Differentiation Gene Expression

To investigate how KLF3 may be regulating gene expression during differentiation, we determined the

genomic binding sites for KLF3 by performing chromatin immunoprecipitation followed by high-

throughput sequencing (ChIP-Seq). ChIP-Seq was performed on replicate KLF3 pulldowns from primary

human keratinocytes differentiated for 3 days. We identified 25,352 KLF3 peaks found in both replicate da-

tasets (p value < 0.0001, FDR <0.001, 4x enrichment versus input), which were primarily located at promoter

(35%), intergenic (23%), and intronic (31%) regions (Figure 3A, Table S4). A search for consensus binding

motifs within KLF3 peak locations showed a significant enrichment for KLF family motifs, further confirming

the specificity of the pull-down (Figure 3B). Interestingly, KLF3 peak locations were also enriched for AP1,

CEBP, and ETS factor family motifs, which have all been implicated in epidermal differentiation (Figure 3B)

(Ezhkova et al., 2009; Lopez et al., 2009; Rubin et al., 2017). This suggests that lineage determining tran-

scription factors bind to similar sites in the genome.

Based on KLF3’s enrichment for motifs related to other LDTFs, we compared the KLF3 ChIP-Seq data with

previously published datasets for these factors in differentiation conditions. This included ChIP-Seq data

for KLF4, ZNF750, GRHL3, MAF, and MAFB (Boxer et al., 2014; Hopkin et al., 2012; Lopez-Pajares et al.,

2015). Pearson correlation coefficients were generated comparing each of these datasets, revealing that

the KLF3 sequencing data correlates well with these other transcription factors, with the most significant

correlation being with KLF4 (Pearson correlation score of 0.77 and 0.80) (Figure S4A). Based on the positive

correlation with these LDTFs, we sought to quantify the shared binding between KLF3 and the various fac-

tors. KLF3-bound peaks were overlapped with each individual LDTF-bound peaks (Figure S4B). The highest

overlap was with MAFB where 45.4% of its peaks overlapped those of KLF3. It should be noted that there

were very few MAFB peaks to begin with (6,489), which could account partially for the high overlap. Thirty-

five percent of KLF4 peaks directly overlapped with KLF3 and they co-occupy 15,203 common binding sites.

Both factors have similar binding profiles near genes found on the epidermal differentiation complex

(EDC), such as the S100 family (Figure S4C). These results suggest that KLF3 binds to shared regions

with KLF4 and other LDTFs, further demonstrating the importance of KLF3 to the differentiation process.

To further investigate how KLF3 regulates gene expression, we wanted to characterize the type of regions

that KLF3 binds in the genome. Histone marks for open chromatin regions (H3K27ac and H3K4me) and

closed chromatin regions (H3K27me3 and H3K9me3) obtained from the ENCODE data for primary human

keratinocytes were plotted around KLF3 peak regions, which revealed an association of KLF3 with open but

not closed chromatin (Figure 3C) (Gerstein et al., 2012). Because H3K27ac and H3K4me co-localization

identifies active enhancers or promoters, we sought to investigate how many of these regions KLF3 binds

(Calo and Wysocka, 2013). We compared H3K4me data (representing primed regions) and H3K27ac data

(representing active regions) from differentiated keratinocytes (Klein et al., 2017; Rubin et al., 2017). Over-

lap of these datasets with KLF3 showed that over 53% (13,556/25,352) of KLF3-bound regions contained

both H3K4me and H3K27ac peaks (Figure 3D). To determine the distribution of KLF3 at active enhancer

versus promoter regions, KLF3-bound H3K4me/H3K27ac positive regions weremapped back to annotated

promoters (HG19:REFSEQ transcription start sites). Promoter mapped regions were separated from the

13,556 active regions, with the remaining regions being KLF3-bound active enhancers. KLF3-bound

H3K4me/H3K27ac regions were found to be highly enriched for enhancers at 81%, whereas only 19% of

these active regions mapped to promoters (Figure 3D). These KLF3-bound active enhancer and promoter

regions were then mapped back to their nearest genes, which identified 2,569 genes with KLF3-bound pro-

moters and 8,329 genes with proximal KLF3-bound enhancers (with some genes having both). These gene

Figure 3. Continued

(G) Gene ontology (GO) term enrichment for the 236 genes decreased in KLF3i that have a KLF3-bound H3K27ac/H3K4me

positive, proximal enhancer(s).

(H) Gene ontology term enrichment for the 49 genes decreased in KLF3i that have a KLF3-bound H3K27ac/H3K4me

positive promoter.
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Figure 4. CBP and KLF3 Regulate a Similar Gene Expression Program

(A) Histogram summarizing the gene expression changes in CBP knockdown (CBPi) keratinocytes when compared with

controls (CTLi) after three days of differentiation. RNA Seq was performed in replicates. Number of increased genes is

displayed in red, whereas decreased genes are shown in blue. Differentially expressed genes were selected with FDR %

0.05 and fold change R2 versus CTLi.

(B) Histogram summarizing the gene expression changes identified by RNA sequencing in P300 knockdown (P300i)

keratinocytes when compared with controls (CTLi) after 3 days of differentiation. RNA Seq was performed in replicates.

(C) Gene ontology (GO) term enrichment for the 1,138 genes significantly decreased in expression upon CBP knockdown.

(D) Gene ontology term enrichment for the 963 genes significantly decreased in expression upon P300 knockdown.

(E) Gene ontology term enrichment for the 1,585 genes significantly increased in expression upon CBP depletion.

(F) Gene ontology term enrichment for the 2,075 genes significantly increased in expression upon P300 depletion.
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lists were overlapped with the 563 genes significantly decreased in expression by KLF3 knockdown (Figures

3E and 3F). Forty-two percent (236/563, p < 1.006 3 10�5) of the genes decreased upon KLF3 knockdown

had proximal KLF3 bound enhancers. Importantly, the most significant GO term for the 236 genes

decreased by KLF3 knockdown that have a proximal KLF3 enhancer binding is skin development (Fig-

ure 3G). In contrast only 8.7% (49/563, not significant) of the genes decreased upon KLF3 depletion had

KLF3 bound at its promoter (Figure 3H). Those 49 genes do not have enrichment for epidermal-differenti-

ation-associated GO terms but instead were enriched for rhythmic process (Figure 3H). This suggests that

KLF3 regulation of differentiation genes is primarily enhancer dependent. To validate the binding of KLF3

to enhancer regions, KLF3 ChIP-qPCR was performed on control and KLF3 knockdown cells (Figure S4D).

Control samples show KLF3 enrichment at differentiation relevant sites, such as enhancers proximal to IVL,

HOPX, ALOX12B, CALML5, LOR, KRT78, OVOL1, ELF3, S100A7, KLK9, and KRT80 (Figure S4D). KLF3

knockdown ablated KLF3 binding to those genomic regions, which demonstrates the robustness and spec-

ificity of the KLF3 bound regions (Figure S4D).

CBP and KLF3 Control a Gene Expression Program that Is Necessary for Epidermal

Differentiation

Because a majority of KLF3-bound H3K27ac/H3K4me regions are active enhancers, we wanted to deter-

mine if epigenetic factors associated with enhancers are critical for epidermal differentiation. Enhancer re-

gions are often bound by CBP/P300, which promotes the acetylation of H3K27, which activates enhancers

primed with H3K4me (Visel et al., 2009; Wang et al., 2009). To determine whether these epigenetic factors

have a role in epidermal differentiation and identify possible functional correlations with KLF3, RNA-Seq

was performed on CBP and P300 knockdown cells.

CBP and P300 each regulated several thousand genes. One thousand five hundred eighty-five genes were

upregulated and 1,138 genes were diminished in expression upon CBP knockdown (Figure 4A, Table S5).

Surprisingly, P300 knockdown resulted in twice as many upregulated (2,075) genes as downregulated (963)

ones, suggesting it may also function as a repressor in keratinocytes (Figure 4B, Table S6). Both the CBP

and P300 knockdown RNA-Seq datasets were validated by RT-qPCR (Figures S5A and S5B). GO term en-

richments generated for downregulated genes revealed both factors regulate the epidermal differentia-

tion gene expression program, with significant terms including formation of the cornified envelope and

epidermis development for CBP and P300, respectively (Figures 4C and 4D). However, the significance

of the CBP-related term is much higher than that of P300 (Figures 4C and 4D). Although genes upregulated

by CBP knockdown did not enrich for terms related to differentiation (Figure 4E), genes increased by P300

knockdown enriched for the terms metabolism of lipids and cholesterol biosynthesis, which are both

involved in the formation of the cornified envelope and critical for the differentiation process (Figures 4E

and 4F). This suggests that P300 is involved in both the suppression and promotion of different parts of

the differentiation program. This also suggests that P300 and CBP control non-redundant transcriptional

programs in the skin, and CBP is more essential for promoting the differentiation program.

To determine whether KLF3 and the epigenetic factors regulated differentiation through the same genes,

the downregulated genes were overlapped with each other. Over 50% (282/563) of the KLF3-knockdown-

reduced genes were also downregulated upon CBP knockdown (p < 2.722 3 10�231), whereas only 133

were downregulated in the P300 knockdown (p < 5.8753 10�67), showing a more significant transcriptional

overlap with CBP (Figures S5C and S5D). Pearson correlations of the RPKM-normalized RNA-Seq datasets

also demonstrated that CBP (avg. = 0.70) correlated more with KLF3 than P300 (avg. = 0.48) (Figure 4G).

Interestingly, CBP and P300 correlated with each other (avg. = 0.52) less significantly than KLF3 with CBP

(avg. = 0.70), suggesting that CBP and P300 play non-redundant roles in the skin (Figure 4G). As an orthog-

onal confirmation of these relationships, a gene expression heatmap based on unsupervised hierarchical

clustering was generated using KLF3 knockdown responsive genes as the reference (Figure 4H). KLF3 clus-

tered with CBP, whereas P300 clustered with the control samples. RT-qPCR also demonstrated that CBP

knockdown using two unique siRNAs blocked the expression of the same critical differentiation genes

Figure 4. Continued

(G) Heatmap plot of Pearson correlation coefficients comparing replicate KLF3i, CBPi, and P300i RNA sequencing

datasets (RPKM normalized).

(H) Unsupervised hierarchical clustering was performed on the RPKM normalized RNA-Sequencing datasets for CTLi,

KLF3i, CBPi, and P300i keratinocytes differentiated for 3 days (log2 scale). Heatmap is focused on the KLF3-regulated

genes. Increased genes are displayed in red, whereas decreased genes are shown in blue.
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as KLF3, whereas P300 depletion had much less impact (Figures S5E, S5F, and 2A). In regenerated human

skin, CBP knockdown phenocopied KLF3i with loss of expression of FLG and LOR on both the protein and

mRNA levels (Figures S5G and S5H). Together, these data show that KLF3 shares a similar knockdown

phenotype and transcriptional network with CBP.

CBP Genome Occupancy Correlates with KLF3

Because of the similarities between KLF3 and CBP transcriptional regulation during differentiation, we

wanted to investigate how extensively these factors share genomic binding sites. ChIP-Seq was performed

on replicate CBP pull-downs from day 3 differentiated keratinocytes. Twenty-three thousand three hun-

dred fifty-seven replicate CBP peaks were identified, which primarily localized to intergenic (43%) and in-

tronic (43%) genomic sites (Figure 5A, Table S7). This is consistent with reports that CBP is primarily local-

ized to enhancers (Wang et al., 2009). To determine if CBP and KLF3 peaks can co-localize, signal from the

CBP ChIP Seq dataset was plotted using KLF3 peak locations as a reference (Figure 5B). The summit of the

CBP signal is found at the peak of KLF3 bound regions, suggesting that they bind to the same locations in

the genome. To confirm this co-localization, CBP- and KLF3-bound peak regions were overlapped with

each other (Figure S6A). This revealed 8,461 shared peak locations between KLF3 and CBP. Thus �35%

(8,461/24,357) of the CBP bound peaks and �33% (8,461/25,352) of the KLF3 bound peaks are shared

with each other (Figure S6A). de novo motif analysis of CBP-bound regions also showed significant enrich-

ment for KLF family binding motifs (Figure 5C). Motifs for AP1, CEBP, and ETS factors were also enriched in

these datasets, as they were for KLF3 binding, suggesting that these important factors may co-localize and

regulate similar regions (Figures 5C and 3B). Pearson correlations comparing these ChIP-Seq datasets also

demonstrated strong positive correlation between KLF3 and CBP (avg. = 0.75) (Figure 5D). Importantly,

there was also strong positive correlation between KLF3 and CBP with the chromatin marks of active en-

hancers, H3K4me and H3K27ac (Figure 5D). In contrast, there was no correlation with the marks

H3K27me3 or H3K9me3, which represent inactive regions (Figure 5D). Visualization of the ChIP-seq profiles

for KLF3 and CBP show co-localization at active enhancer regions (marked by H3K27ac and H3K4me) prox-

imal to critical epidermal differentiation genes such as the keratin (KRT) family, SPRR4, and IVL (Figures 5E

and S6B). This suggests that KLF3 and CBP co-localize at genomic regions that may regulate epidermal

differentiation.

KLF3 Promotes CBP Localization at Active Enhancers Proximal to Differentiation Genes

Because LDTFs can recruit epigenetic factors to promote gene expression changes, we sought to investi-

gate whether KLF3 can promote the localization of CBP at active enhancer regions in differentiated kera-

tinocytes. To do this, we knocked down KLF3 in differentiated keratinocytes and performed ChIP-Seq on

CBP to determine if its localization to KLF3-bound active enhancers is affected.DiffRepswas used to detect

the loss or gain of CBP binding upon KLF3 depletion (Shen et al., 2013). KLF3 knockdown resulted in 1,602

regions of significantly reduced CBP binding, whereas 2,186 regions gained CBP binding (Figure 6A and

S6C, Table S8). Next, we compared whether the losses in CBP binding occurred within KLF3-bound re-

gions. About 52.6% (843/1,602) of the CBP-reduced binding occurred within KLF3 peaks regions (Fig-

ure 6A). In addition, the vast majority of the reductions in CBP (72.6%, 612/843) signal at KLF3 peaks occur

in active regions of chromatin (H3K4me/H3K27ac positive, promoters included) (Figure 6A). Plotting of the

CBP signal density at the 612 sites of KLF3-bound active regions (H3K4me/H3K27ac positive) showed a dra-

matic reduction in CBP binding upon KLF3 knockdown (Figure 6B). The loss of CBP binding was also not

due to global loss of CBP protein levels, as KFL3 depletion did not significantly impact its expression (Fig-

ure S6D). We also tested whether KLF3 knockdown led to gains in CBP binding at KLF3-bound regions.

Only 15% (328/2,186) of the KLF3-bound regions gained CBP binding upon KLF3 knockdown (Figure S6C).

These results suggest that KLF3 is necessary for the localization of CBP to its binding sites.

Based on this loss of CBP at KLF3-bound active chromatin regions, we wanted to explore whether these

reductions are primarily occurring at enhancer or promoter regions. The 612 KLF3/H3K27ac/H3K4me-

bound regions that lost CBP binding upon KLF3 knockdown was mapped back to annotated promoters.

This revealed that a small portion (8%) of these events occurred at promoters, whereas 92% occurred at

enhancers (Figure 6C). This suggests that the KLF3-dependent localization of CBP occurs primarily at active

enhancer regions. Mapping these regions to proximal genes revealed only 49 genes associated with pro-

moter reductions, whereas 527 genes have proximal enhancer reductions. Gene ontology analysis was per-

formed for both sets of genes (Figures 6D and 6E). Although CBP reductions at the 49 active promoters did

not enrich for differentiation genes, the 527 enhancer-associated genes had epidermis development as the
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most significant term (Figures 6D and 6E). Validation of these results by ChIP-qPCR demonstrate that KLF3

is necessary for CBP to localize to enhancers proximal to differentiation genes such as IVL, HOPX,

ALOX12B, CALML5, LOR, KRT78, OVOL1, ELF3, S100A7, KLK9, and KRT80 (Figure S6E). Visualization of

these enhancer sites that are proximal to important epidermal differentiation genes confirms the reduction

of CBP signal (Figures 6F, 6G, S7A, and S7B). Importantly, depletion of KLF3 or CBP resulted in loss of

Figure 5. CBP and KLF3 Binds to Similar Sites in the Genome

(A) Genomic localization of the 24,357 CBP-bound peaks identified by HOMER. CBP ChIP Seq was performed in replicates

from day 3 differentiated keratinocytes.

(B) Mean density profile displaying CBP genomic binding centered around KFL3 peaks. The 25,352 KLF3 peaks were used

as the reference, and the profile of CBP binding is displayed +/� 5kb from the KLF3 peak centers.

(C) de novo motif enrichments and their associated family of transcription factors identified within the 24,357 CBP peaks.

(D) Heatmap plot of Pearson correlation coefficients between replicate KLF3 and CBP ChIP sequencing datasets and

histone marks data (H3K27ac, H3K4me, H3K27me3, and H3K9me3) (RPKM normalized).

(E) UCSC genome browser tracks displaying KLF3 (red) and CBP (blue) ChIP sequencing profiles near a cluster of keratin

genes. H3K27ac (maroon) and H3K4me (green) are included to represent open and active chromatin.
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Figure 6. KLF3 Is Necessary for CBP Localization at Enhancers Proximal to Differentiation Genes

(A) Summary of significant CBP ChIP signal reduction events in day 3 differentiated keratinocytes knocked down for KLF3. The orange circle represents the

total number of regions in the genome that lose CBP binding upon KLF3 knockdown. The green circle represents the number of regions that lose CBP

binding that occur at a KLF3 peak upon KLF3 depletion. The blue circle represents the regions that lose CBP binding, which also contain KLF3, H3K4me, and

H3K27ac binding upon KLF3 knockdown. CBP ChIP Seq was performed in replicates in CTLi and KLF3i cells. Significant signal changes were identified by

Diffreps.

(B) Mean density profile displaying CBP binding centered around KLF3/H3K4me/H3K27ac peaks. The CBP mean density is plotted around the 612 regions

identified in (6A:blue circle). The profile of CBP binding is shown +/� 10kb from the centers of the 612 regions in CTLi (blue) and KLF3i (red) cells.
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mRNA levels of differentiation genes near enhancers that lose CBP binding upon KLF3 knockdown (Figures

6F–6H, S6E, S7A, and S7B). This suggests that KLF3 dependent localization of CBP to enhancers proximal

to differentiation genes is essential for their expression. Because depletion of KLF3 reduced CBP binding at

enhancer regions proximal to epidermal differentiation genes, we wanted to determine whether this would

impact either priming (H3K4me) or activation (H3K27ac) of enhancers. Loss of KLF3 caused a significant

reduction in H3K27ac but not H3K4me at the same enhancers as CBP reduction (IVL, HOPX, ALOX12B,

CALML5, LOR, KRT78, OVOL1, ELF3, S100A7, KLK9, and KRT80) (Figures S7C and S7D). This suggests

that KLF3 is necessary for enhancer activation but not priming. To determine if KLF3 directly recruited

CBP to enhancers for activation, co-immunoprecipitation (co-IP) experiments were performed. KLF3 did

not co-IP out CBP, suggesting that KLF3 may not directly recruit CBP to enhancer regions and may instead

be necessary to set up the local region to allow for CBP to localize to KLF3 bound enhancers (Figure S7E).

DISCUSSION

Here, we sought to identify factors that are involved in regulating epidermal differentiation. Through the

analysis of a previously generated RNA-seq dataset comparing undifferentiated with differentiated kerati-

nocytes, we identified the transcription factor KLF3 as being upregulated during epidermal differentiation.

KLF3 expression was expressed throughout the epidermis but increased in the upper differentiated layers,

suggesting a possible role in regulating differentiation.

Next, we characterized the KLF3 knockdown phenotype and found that depletion of KLF3 blocked differ-

entiation gene expression in both two-dimensional cultures and three-dimensional regenerated human

skin. Global gene expression profiling of KLF3 knockdown cells showed 563 genes downregulated that

were important for terminal differentiation including formation of the cornified envelope. In addition,

423 genes were upregulated upon KLF3 depletion, which were genes involved in proliferation. This sug-

gests that KLF3’s normal function is to activate differentiation gene expression while suppressing prolifer-

ation. Because KLF3 is a related transcription factor to KLF4, which is a well-characterized transcription fac-

tor necessary for epidermal differentiation, we decided to test functional redundancies between them

(Mistry et al., 2014; Segre et al., 1999). Comparison of KLF3 knockdown with that of KLF4 knockdown re-

vealed that over half of the KLF3 gene signature overlapped with that of KLF4 with significant shared regu-

lation of differentiation genes. However, the double-knockdown of these factors revealed non-redundant

functions in this regulation, as knockdown of either factor alone can impact the expression of differentiation

genes, but genes only impacted by the double-knockdown do not enrich for functions related to differen-

tiation. Instead there were only 95 and 151 genes uniquely downregulated and upregulated respectively in

the KLF3/KLF4 double-knockdown cells. These differentially regulated genes were not enriched for differ-

entiation genes but rather genes involved in drug catabolic process or interferon response. This suggests

that these factors cannot compensate for one another to promote differentiation gene expression as loss of

either factor results in a blockade of differentiation. It has been previously shown that KLF factors can utilize

unique binding sites to regulate the same genes, as well as compete for common binding sites to balance

transcriptional activity (Ilsley et al., 2017). However, this competitive activity was shown in murine erythroid

cells, where KLF3 acts primarily as a repressor competing for binding sites with the activator KLF1 to limit

KLF1-induced gene expression. It is unclear if KLF3 and KLF4 are competing for common sites in human

keratinocytes, as they do not have opposing roles but instead similar roles in promoting differentiation

and suppressing cell-cycle genes. It is possible that they simultaneously occupy binding sites to promote

similar gene expression programs but provide unique functional activities at these genomic loci. Thus,

Figure 6. Continued

(C) Percent distribution of the 612 H3K27ac/H3K4me positive regions containing KLF3 peaks with significant CBP depletion upon KLF3 knockdown. These

612 regions were annotated using HOMER and all regions not mapped to promoters were considered enhancers.

(D) Gene ontology (GO) term enrichment for the 49 genes that lose CBP binding at their active promoter (H3K4me/H3K27ac positive) containing a KLF3

peak.

(E) Gene ontology term enrichment for the 527 genes that lose CBP binding at a proximal enhancer (H3K27ac/H3K4me positive) containing a KLF3 peak. (F)

UCSC genome browser tracks displaying CBP binding (CBP ChIP Seq profiles) from CTLi (blue) and KLF3i (orange) cells, near differentiation gene KRT80.

KLF3 (red), H3K27ac (maroon), and H3K4me (green) binding are also shown.

(G) UCSC genome browser tracks displaying CBP binding (CBP ChIP Seq profiles) from CTLi (blue) and KLF3i (orange) cells, near differentiation gene

CALML5. KLF3 (red), H3K27ac (maroon), and H3K4me (green) binding are also shown.

(H) RT-qPCR quantifying the relative mRNA expression levels of epidermal differentiation genes near enhancers that lose CBP genomic binding upon KLF3

knockdown in CTLi, KLF3i, and CBPi keratinocytes after 3 days of differentiation. N = 4 except for LOR and HOPX in KLF3i samples where N = 6. Statistics: t

test, ***p < 0.001. Mean values are shown with error bars = SD.
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although KLF3 and KLF4 share many genomic binding sites and regulation of transcription, their functions

at these sites may not be redundant.

Although KLF3 genome occupancy has been studied, the previous methods used for ChIP-Seq analysis pri-

marily involved pulling down overexpressed exogenous KLF3, and these experiments were predominantly

performed using murine cell lines (Burdach et al., 2014; Ilsley et al., 2017). Endogenous KLF3 has been

pulled down in human primary erythroblasts; however, sequencing was not performed on those samples

(Funnell et al., 2014). This study presents the ChIP-seq of endogenous KLF3 in primary human cells.

Genome-wide profiling of KLF3-binding sites through ChIP-seq revealed that KLF3 shares many binding

sites with other epidermal LDTFs including KLF4, ZNF750, MAF, and MAFB. For example, 35% of KLF4

and 45.4% of MAFB peaks directly overlapped with KLF3 peaks, suggesting that epidermal LDTFs regulate

similar regions of the genome to control differentiation. Surprisingly, the majority of KLF3 bound peaks are

enriched for H3K4me and H3K27ac signal (histone marks of open and active chromatin regions). This sug-

gests that in differentiating keratinocytes, KLF3 may be performing activities that contribute to the promo-

tion of differentiation gene activation and transcription. This is in contrast to previous studies classifying

KLF3 as a transcriptional repressor (predominantly in murine cells), which showed KLF3’s binding and

repressive activity primarily through EMSA and luciferase reporter assays focused on single-gene targets

in addition to the regulation of gene expression identified through RT-qPCR or microarrays (Burdach

et al., 2014; Crossley et al., 1996; Eaton et al., 2008; Funnell et al., 2012, 2014; Mak et al., 2014). KLF3 has

also been proposed to be a repressor based on interactions with CTBP proteins, which can promote down-

stream chromatin-modifying activity to repress gene expression (Dewi et al., 2015; Turner et al., 2003). How-

ever, it has recently been demonstrated that CTBP proteins can act as activators when forming complexes

with epidermal transcription factors such as KLF4 and ZNF750 to promote differentiation gene expression

(Boxer et al., 2014). Thus, although it is possible that KLF3 has this repressive activity at certain genes (i.e.

cell cycle genes) in keratinocytes, we sought to further investigate its association with open and active chro-

matin regions throughout the genome because over 53% (13,556/25,352) of KLF3 binding occurs there. We

found that 81% of KLF3-bound H3K4me/H3K27ac positive regions were enhancers, whereas only 19% were

promoters. When these regions were mapped to proximal genes and compared with the KLF3 knockdown,

we found that there were only 49 genes with KLF3-bound, active promoters that have decreased expression

upon KLF3 knockdown. These 49 genes were also not enriched for GO terms such as epidermal differen-

tiation but instead were enriched for rhythmic process and multicellular organismal water homeostasis.

Strikingly, 42% (236/563) of the genes that decreased in expression upon KLF3 knockdown had proximal

KLF3-bound enhancers. Furthermore, these genes were highly enriched for GO terms related to skin devel-

opment. This suggests that KLF3-dependent differentiation gene expressionmay be due to KLF3 activity at

nearby enhancers and not by KLF3 activity at their promoters.

Because of this enhancer association, we sought to investigate the functional relationship between KLF3 and the

enhancer-associated epigenomic writers CBP and P300. CBP and P300 are well-known chromatin-modifying

proteins that have been shown to be necessary for enhancer activity as well as acting as transcriptional co-acti-

vators to promote gene expression (Raisner et al., 2018). However, their roles in epidermal differentiation remain

unclear. These factors are often considered redundant in their functions due to their largely overlapping

genomic binding sites as well as redundant functions in promoting stem cell self-renewal such as in embryonic

stemcells (Fang et al., 2014; Ramos et al., 2010). However, there is also evidence that these epigenetic factors are

non-redundant. Knockout of either gene leads to embryonic lethality inmice, which precluded further analysis in

adults (Tanaka et al., 2000; Yao et al., 1998). Conditional knockout inmurine hematopoietic stem cells (HSC) have

shown that CBP is necessary for HSC self-renewal, whereas p300 is important forHSCdifferentiation (Rebel et al.,

2002). Very little is known about P300 and CBP function in the skin. However, P300 and CBP are frequently

mutated (loss of function) in human cutaneous squamous cell carcinomas (Attar and Kurdistani, 2017; Li et al.,

2015). Heterozygous reduction of Cbp can cooperate with oncogenic Ras to drive epidermal thickening, sug-

gesting a tumor suppressor role for Cbp in the murine skin (Ichise et al., 2019). We show here that CBP and

P300 do not play redundant roles in epidermal differentiation. Although knockdown of P300 blocked the expres-

sion of a subset of differentiation genes, it also induced the expression of terminal differentiation genes involved

in lipidmetabolism and cholesterol biosynthesis, which are critical to the formation of the epidermal barrier. This

suggests that P300 can repress and activate different aspects of the epidermal differentiation program. In

contrast, knockdown of CBP blocked epidermal differentiation in 2D and regenerated human skin and shared

a similar transcriptional program as KLF3. Based on this, we sought to explore the relationship between CBP

and KLF3.
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We found that CBP bound to 24,357 sites in the genomewith 86% of those localized to intergenic or intronic

regions that are indicative of enhancers. In contrast, only a small minority (10%) mapped back to promoter

regions. CBP bound sites were enriched for transcription factor motifs such as the CEBP, KLF, GRHL, and

ETS family. Importantly, �35% (8,461/24,357) of CBP-bound sites directly overlapped with KLF3-bound re-

gions. Because of this, we investigated whether KLF3 is necessary for CBP localization at KLF3-bound

enhancer regions. Remarkably, 53% (843/1,602) of the regions where CBP lost binding upon KLF3 knock-

down occurred at KLF3-bound sites. Of these 843 regions, 73% (612/843) of the regions were also bound

with H3K4me/H3K27ac (with 92% being in active enhancers). Notably, knockdown of KLF3 led to a loss of

H3K27ac at enhancers proximal to epidermal differentiation genes without any impacts on H3K4me. This

suggests that KLF3 is not necessary for enhancer priming but important for enhancer activation likely

through the acetyltransferase activity of CBP. Because KLF3 is necessary for CBP localization to KLF3-

bound enhancers, we asked whether KLF3 directly recruited CBP to enhancers. Interestingly, KLF3 and

CBP do not directly associate with each other through endogenous co-IP experiments. It is possible that

the KLF3 and CBP interaction is extremely transient or weak. Another possibility is that KLF3 is needed

to set up the chromatin structure with associated proteins at the KLF3-bound enhancers, which then allows

CBP to localize. Together these data suggest that KLF3 is necessary for epidermal differentiation by pro-

moting the proper localization of CBP to enhancers.

Primer and siRNA sequences for this work can be found in Table S9.

Limitations of the Study

One of the limitations of the study is that the RNA-Seq data for KLF3i, KLF4i, KLF3i/KLF4i, CBPi, and P300i

were done as replicates. However, the RNA-Seq datasets were extensively validated by RT-qPCR in this

study.

Resource Availability

Lead Contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the Lead Contact, George Sen (gsen@health.ucsd.edu).

Materials Availability

This study did not generate new unique reagents.

Data and Code Availability

The datasets generated from this study such as RNA-Seq and ChIP-Seq have been deposited with GEO

accession number: GSE142225.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.
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Figure S1. Increase in KLF3 expression is necessary for differentiation. Related to Figure 1 
(A) UCSC Genome Browser tracks displaying representative RNA-sequencing data of KLF3 expression in growth 
media (GM, orange track) and differentiation media (DM, day 3:green track, day 6:blue track). (B) Western blot of 
KLF3 protein levels in day 3 differentiated keratinocytes treated with control (CTLi) or KLF3 targeting (KLF3i) siRNA. 
Representative image is shown, n=3. (C) Immunofluorescent staining of KLF3 (green) and P63 (red, a marker of the 
basal layer) in day 5 regenerated human epidermis treated with control (CTLi), KLF3 targeting (KLF3i), or KLF4 
targeting (KLF4i) siRNAs. Merged image includes Hoechst staining of nuclei. n=3. Scale bar =20µm. (D) Annexin V 
staining was used to determine the percentage of apoptotic cells in CTLi and KLF3i cells cultured for 4 days. n=3, t-
test. Data are graphed as the mean ± SD. (E) Immunofluorescent staining of late differentiation marker LOR (green) 
and basal layer marker P63 (red) in day 5 regenerated human epidermis treated with control (CTLi) or KLF3 
targeting (KLF3i) siRNA. Merged image includes Hoechst staining of nuclei. n=3. Scale bar = 20µm. (F) 
Immunofluorescent staining of late differentiation marker FLG (red) and proliferation marker ki67 (green) in day 5 
regenerated human epidermis treated with control (CTLi) or KLF3 targeting (KLF3i) siRNA. Merged image includes 
Hoechst staining of nuclei. n=3. Scale bar = 20µm. (G) Quantitation of the %KI67 positive cells in the basal layer. 
n=3, t-test. Mean values are shown with error bars=SD. (H) Immunofluorescent staining of KLF4 (green) and P63 
(red, a marker of the basal layer) in day 5 regenerated human epidermis treated with control (CTLi), KLF4 targeting 
(KLF4i), or KLF3 targeting (KLF3i) siRNAs. Merged image includes Hoechst staining of nuclei. n=3. Scale bar 
=20µm. 



	

	

 
 
 
Figure S2. KLF3 is necessary to induce late differentiation gene expression and suppress progenitor genes. 
Related to Figure 2. 
(A) RT-qPCR validating the RNA-Seq data from CTLi and KLF3i keratinocytes after three days of differentiation. 
Both increased and decreased genes upon KLF3 depletion identified from the RNA-Seq data were validated. N=4, 
statistics: t-test, *p < 0.05, ** p < 0.01, ***p < 0.001.		Mean values are shown with error bars=SD. (B) Overlap of the 
563 genes decreased upon KLF3 depletion with a previously published timecourse of epidermal differentiation which 
defined progenitor, early, and late differentiation genes (top panel). Overlap of the 423 genes increased upon KLF3 
depletion with a previously published timecourse of epidermal differentiation which defined progenitor, early, and late 
differentiation genes (bottom panel). (C) A KLF3 antibody was used to immunoprecipitate (IP) KLF3 from day 3 
differentiated primary human keratinocyte lysates. IgG pulldowns were used as a negative control. KLF3 or IgG 
immunoprecipitates were Western blotted for KLF4 or KLF3, n=3. 
 
 
  



	

	

 

 
 
 
Figure S3. KLF3 and KLF4 are not redundant in the regulation of the epidermal differentiation gene 
expression program. Related to Figure 2. 
(A) Histogram summarizing the gene expression changes identified by RNA Seq in KLF4 knockdown (KLF4i) 
keratinocytes when compared to controls (CTLi) after three days of differentiation. Number of increased genes is 
displayed in red, while decreased genes are shown in blue. Differentially expressed genes were selected by a FDR ≤ 
0.05 and fold change ≥ 2 vs. CTLi, n=2. (B) RT-qPCR validating the RNA-Seq data from CTLi and KLF4i 
keratinocytes after three days of differentiation. Both increased and decreased genes upon KLF4 depletion identified 
from the RNA-Seq data were validated. N=4, statistics: t-test, *p < 0.05, ** p < 0.01, ***p < 0.001.		Mean values are 
shown with error bars=SD. (C) Gene ontology (GO) term enrichment for the 772 genes significantly decreased in 
expression upon KLF4 knockdown.  (D) Gene ontology term enrichment for the 1265 genes significantly increased in 
expression upon KLF4 knockdown. (E) Venn diagram showing the number of shared and uniquely decreased genes 



	

	

in the KLF3i and KLF4i gene signatures. Overlap significance in the Venn diagram was calculated using 
hypergeometric distribution p-values. (F) Venn diagram showing the number of shared and uniquely increased genes 
in the KLF3i and KLF4i gene signatures. (G) Heatmap plot of Pearson correlation coefficients between replicate 
KLF3i and KLF4i RNA sequencing data sets (RPKM normalized). (H) Histogram summarizing the gene expression 
changes identified by RNA Seq in KLF3/KLF4 double knockdown (DKD) keratinocytes when compared to controls 
(CTLi) after three days of differentiation. Increased gene counts are displayed in red, while decreased genes are 
shown in blue. n=2. (I) RT-qPCR validating the RNA-Seq data from CTLi and KLF3/KLF4 double knockdown 
keratinocytes after three days of differentiation. Both increased and decreased genes upon KLF3/KLF4 depletion 
identified from the RNA-Seq data were validated. N=4, statistics: t-test, *p < 0.05, ** p < 0.01, ***p < 0.001.		Mean 
values are shown with error bars=SD. (J) Venn diagram showing the number of unique and shared decreased genes 
in the KLF3i/KLF4i double knockdown versus the KLF3i and KLF4i gene signatures. (K) Venn diagram showing the 
number of unique and shared increased genes in the KLF3i/KLF4i double knockdown versus the KLF3i and KLF4i 
gene signatures. (L) Gene ontology term enrichment for the 95 genes uniquely decreased in the KLF3i/KLF4i double 
knockdown condition. (M) Gene ontology term enrichment for the 151 genes uniquely increased in the KLF3i/KLF4i 
double knockdown condition.  
 
  



	

	

 
 
Figure S4. KLF3 and epidermal lineage determining transcription factors bind to similar regions in the 
genome. Related to Figure 3. 
(A) Heatmap plot of Pearson correlation coefficients between KLF3 ChIP Seq data and ChIP Seq data for the 
epidermal LDTFs KLF4, ZNF750, MAF, MAFB, and GRHL3 (RPKM normalized). (B) Table displaying the peak 
overlap between KLF3 and each epidermal LDTFs. Each LDTFs total bound peak numbers identified by HOMER are 
shown with the number and percentage of overlap with KLF3 peaks. (C) UCSC genome browser track displaying 
KLF3 (red) and KLF4 (blue) ChIP Seq profiles near a cluster of differentiation associated S100 genes. H3K27ac 
(maroon) is included to represent open chromatin. (D) ChIP-qPCR of KLF3 pulldown in CTLi and KLF3i 
keratinocytes (day 3 differentiation). Each pulldown was normalized by calculating pulldown efficiency as a percent 
enrichment over its gene desert value. n=3, t-test, *p < 0.05, ***p < 0.001. Mean values are shown with error 
bars=SD.  



	

	

 
 
 
Figure S5. CBP is necessary for human epidermal differentiation. Related to Figure 4.                  
(A) RT-qPCR validating the RNA-Seq data from CTLi and CBPi keratinocytes after three days of differentiation. Both 
increased and decreased genes upon CBP depletion identified from the RNA-Seq data were validated. N=4, 
statistics: t-test, *p < 0.05, ** p < 0.01, ***p < 0.001.		Mean values are shown with error bars=SD. (B) RT-qPCR 
validating the RNA-Seq data from CTLi and P300i keratinocytes after three days of differentiation. Both increased 
and decreased genes upon P300 depletion identified from the RNA-Seq data were validated. N=4, statistics: t-test, 
*p < 0.05, ** p < 0.01, ***p < 0.001.		Mean values are shown with error bars=SD. (C) Venn diagram showing the 
number of shared and uniquely decreased genes in the KLF3i and CBPi gene signatures. Overlap significance in the 
Venn diagram was calculated using hypergeometric distribution p-values. (D) Venn diagram showing the number of 
common and uniquely decreased genes in the KLF3i and P300i gene signatures. (E) RT-qPCR quantifying the 
relative mRNA levels of a panel of epidermal differentiation genes in CTLi and CBPi keratinocytes after three days of 
differentiation. Two separate siRNAs (siRNA 1 and siRNA 2) targeting different regions of CBP were used, n=4. Data 
are graphed as the mean ± SD. Statistics: t-test, *p < 0.05, ** p < 0.01, ***p < 0.001. (F) RT-qPCR quantifying the 
relative mRNA levels of a panel of epidermal differentiation genes in CTLi and P300i keratinocytes after three days 
of differentiation, n=4. Data are graphed as the mean ± SD. Statistics: t-test, *p < 0.05, ** p < 0.01, ***p < 0.001. (G) 
Immunofluorescent staining of late differentiation markers LOR (green) and FLG (red) in day 5 regenerated human 
epidermis treated with control (CTLi) or CBP targeting (CBPi) siRNAs. Merged image includes Hoechst staining of 
nuclei, n=3. Scale bar = 20µm. (H) RT-qPCR quantifying the relative mRNA expression levels of LOR and FLG in 
CTLi and CBPi day 5 regenerated human epidermis, n=3. Data are graphed as the mean ± SD. Statistics: t-test, *p < 
0.05, ** p < 0.01, ***p < 0.001. 
  



	

	

 
 
Figure S6. CBP and KLF3 directly overlap at ~35% of their binding sites in the genome. Related to Figure 5. 
(A) Table displaying the peak overlap between KLF3 and CBP. The total CBP bound peak numbers identified by 
HOMER are shown with the number and percentage of overlap with KLF3 peaks. (B) UCSC genome browser tracks 
displaying KLF3 (red) and CBP (blue) ChIP Seq profiles near the differentiation genes IVL and SPRR4. H3K27ac 
(maroon) and H3K4me (green) are included to represent open and active chromatin. (C) Summary of significant CBP 
ChIP signal enrichment events in day 3 differentiated keratinocytes knocked down for KLF3. The orange circle 
represents the total number of regions in the genome that gain CBP binding upon KLF3 knockdown. The green circle 
represents the number of regions that gain CBP binding that occur at a KLF3 peak upon KLF3 depletion. The blue 
circle represents the regions that gain CBP binding which also contain KLF3, H3K4me, and H3K27ac binding upon 
KLF3 knockdown. CBP ChIP Seq was performed in replicates in CTLi and KLF3i cells. Significant signal changes 
were identified by Diffreps. (D) Western blot of CBP protein levels in CTLi and KLF3i keratinocytes (day 3 
differentiation) with B-Actin as a loading control. n=3 	(E) ChIP-qPCR of CBP pulldown in CTLi and KLF3i 
keratinocytes (day 3 differentiation). Each pulldown was normalized by calculating pulldown efficiency as a percent 
enrichment over its gene desert value.  n=3. Data are graphed as the mean ± SD. Statistics: t-test, *p < 0.05, ** p < 
0.01, ***p < 0.001. 



	

	

 
 
 
Figure S7. KLF3 is necessary for CBP localization to genomic sites. Related to Figure 6. 
(A) UCSC genome browser tracks displaying CBP binding (CBP ChIP Seq profiles) from CTLi (blue) and KLF3i 
(orange) cells, near differentiation gene IVL. KLF3 (red), H3K27ac (maroon), and H3K4me (green) binding are also 
shown. (B) UCSC genome browser tracks displaying CBP binding (CBP ChIP Seq profiles) from CTLi (blue) and 
KLF3i (orange) cells, near differentiation genes PGLYRP3 and LOR. KLF3 (red), H3K27ac (maroon), and H3K4me 
(green) binding are also shown. (C) ChIP-qPCR of H3K27ac pulldown in CTLi and KLF3i keratinocytes (day 3 
differentiation). Each pulldown was normalized by calculating pulldown efficiency as a percent enrichment over its 
gene desert value. n=3. Data are graphed as the mean ± SD. Statistics: t-test, *p < 0.05, ** p < 0.01, ***p < 0.001. (D) 
ChIP-qPCR of H3K4me pulldown in CTLi and KLF3i keratinocytes (day 3 differentiation). Each pulldown was 
normalized by calculating pulldown efficiency as a percent enrichment over its gene desert value. n=3. Data are 



	

	

graphed as the mean ± SD. Statistics: t-test, *p < 0.05, ** p < 0.01, ***p < 0.001. (E) A KLF3 antibody was used to 
immunoprecipitate (IP) KLF3 from day 3 differentiated primary human keratinocyte lysates. IgG pulldowns were used 
as a negative control. KLF3 or IgG immunoprecipitates were Western blotted for CBP or KLF3, n=3. 
  



	

	

TRANSPARENT METHODS 
 
Cell Culture 
Primary human epidermal keratinocytes derived from human neonatal foreskin were used for all cell culture studies. 
These cells were primarily cultured in EpiLife medium (ThermoFisher MEPI500CA), which was treated with penicillin 
and streptomycin (HyClone SV30010), as well as human keratinocyte growth supplement (HKGS, ThermoFisher 
S0015). The differentiation of primary keratinocytes was carried out by plating the cells to full confluence and adding 
1.2 mM calcium (Sen et al., 2012).  
 
siRNA mediated knockdown 
Lipofectamine RNAiMAX (ThermoFisher 13778) was used to transfect siRNAs into keratinocytes. 25ul of RNAiMAX 
was used for each 10cm plate transfection, and 50ul was used for each 15cm plate transfection. The siRNAs were 
mixed with RNAiMAX in Epilife media for 5 minutes and then added to plates of subconfluent keratinocytes at a final 
concentration of 10nM. Transfection was carried out for 18 hours at 37 degrees Celsius. The siRNAs used are as 
follows: Control siRNA (Ambion Silencer Select negative control 4390844), KLF3 siRNA1 (Ambion Silencer Select 
s229899), KLF3 siRNA 2 (Ambion Silencer Select s229898), KLF4 siRNA (Dharmacon:custom sequence), CBP 
siRNA 1 (Dharmacon D-003477-21), CBP siRNA 2 (Dharmacon D-003477-18), P300 siRNA (Dharmacon D-003486-
02). The sequences of these siRNAs can be found in the supplementary materials.  
 
Regenerated human epidermis  
Human dermis for regeneration experiments was acquired from the New York Firefighters skin bank. Upon arrival, 
the dermis was separated from the epidermis. In order to create the three-dimensional constructs, the dermis was 
sized, and placed in a cassette. The bottom of the dermis was then coated in Matrigel. One million keratinocytes 
were seeded onto the dermis for each construct, and this construct was placed in KGM media with the keratinocytes 
above the liquid interface. They were then cultured for five days to allow full stratification. The constructs were then 
subjected to RNA extraction or placed in OCT for sectioning and staining (Li and Sen, 2015; Mistry et al., 2012; 
Noutsou et al., 2017). 
 
Immunofluorescent staining  
Tissue sections were fixed with 10% formalin solution (Sigma HT5012) for 12 minutes and then blocked for 30 
minutes with PBS containing  2.5% normal goat serum, 2% bovine serum albumin, and 0.3% triton X-100. Sections 
were then stained with primary antibodies in the same blocking buffer for 1 hour. The following antibodies were for IF 
staining: KLF3 at 1:300 (Sigma HPA049512), KRT10 at 1:400 (ThermoFisher MS-611-P0), FLG at 1:200 (Abcam 
ab3137), LOR at 1:400 (Abcam ab198994), KLF4 at 1:1000 (Cell Signaling 4038P), Ki67 at 1:300 (Abcam ab15580), 
P63 at 1:500 (mouse, Biolegend 687203), P63 at 1:600 (rabbit, Abcam ab124762). The secondary antibodies Alexa 
Fluor 555 goat anti-mouse IgG (ThermoFisher: A21424) and Alexa Fluor 488 donkey anti-rabbit IgG (ThermoFisher: 
A21206) were then added to blocking buffer at 1:500 and applied for 30 minutes . Hoechst 33342 (ThermoFisher 
H3570) was used at 1:1000 to label cell nuclei.   
 
KLF3 quantification in human skin sections 
KLF3 immunofluorescent intensity in human skin sections was quantified using ImageJ. 15 cells/layer per sample 
were analyzed, resulting in the analysis of 45 total cells per layer across n=3 samples. KLF3 intensity was plotted 
relative to the basal layer signal.  
 
 
Ki67 quantification in regenerated human epidermis 
Ki67 signal in the basal layer of regenerated human epidermis samples was quantified by counting the number of 
Ki67 positive cells relative to the total amount of cells in the basal layer. The basal layer was considered to be the 
bottom two rows of cells from each section. This quantification was performed for n=3 control (CTLi) and KLF3 
knockdown (KLF3i) regenerated human epidermis samples. 3 different sections from each sample were used for 
quantification. Cell counting was performed with ImageJ.  
 
 
 



	

	

H&E staining  
Regenerated human epidermis was sectioned and fixed with 10% formalin solution (Sigma HT5012) for 12 minutes. 
These sections were then treated with 0.25% Triton-X-100 in PBS for 5 minutes. Sections were then stained with 
Hematoxylin (Vector H-3401) for 8 minutes, followed by a water dip, and then an acid alcohol dip (1% HCL in 70% 
ethanol). The sections were then rinsed, put into 0.2% ammonia water for 1 minute. and then rinsed with water once 
more. This was followed by dipping in 95% ethanol. Eosin (Richard-Allan Scientific 71304) staining was then done 
for 30 seconds, with a subsequent 95% ethanol dip for 1 minute. Sections were then dipped in 100% ethanol for 4 
minutes and Xylene for 2 minutes.  
 
RNA extraction and RT-qPCR 
RNA was extracted from keratinocytes with the GeneJET RNA purification kit (Thermo Scientific K0732). Nanodrop 
was used to measure RNA concentration. The Maxima cDNA synthesis kit (Thermo Fisher: K1642) was used to 
generate cDNA for each RNA sample. The Roche 480 Light Cycler was used to run qPCR on the generated cDNA 
samples. L32 or GAPDH (housekeeping genes) were used for normalization of qPCR data. Primer sequences for all 
reported genes can be found in the supplementary materials. 
 
Western blotting 
IP samples or 20-80ug of cell lysates were loaded onto 4-12% Bis-Tris (ThermoFisher NW04122BOX) or 3-8% Tris-
acetate (ThermoFisher EA03752BOX) gels and transferred to PVDF membranes. Membranes were blocked in 5% 
BSA in TBS. Membranes were exposed to primary antibodies in blocking buffer overnight at 4 degrees. The following 
primary antibodies were used: KLF3 at 1:1000 (Sigma HPA049512), CBP at 1:1000 (Cell Signaling D6C5 #7389), 
KLF4 at 1:1000 (Cell Signaling 4038P). The loading controls Beta-Actin (Santa Cruz sc-47778) and Beta-Tubulin 
(Santa Cruz sc-9104) were used at 1:5000. The secondary antibodies used were donkey anti-rabbit IRDye 680RD 
(Li-Cor 926-68073) and donkey anti-mouse IRDye 800CW (Li-Cor 926-32212) at 1:5000. 
 
RNA sequencing and analysis 
Keratinocytes knocked down by siRNA were differentiated for 3 days and used for RNA extraction and sequencing. 
Sequencing was performed on the Illumina Hi Seq 4000, carried out by the Institute of Genomic Medicine core 
facility at UC San Diego. Sequenced reads were aligned with STAR (default settings, hg19). Partek Genomic Suite 
(Partek Incorporated, http://www. partek.com/partek-genomics-suite) was used for downstream differential gene 
expression analysis, and genes with differential expression were identified by ANOVA. In order to remove genes with 
minimal expression across all samples from the analysis, those genes with fewer than ten reads in all samples were 
filtered out. The statistical threshold for identifying differentially expressed genes was a ≥ 2-fold change (+/-) 
compared to control samples, and a significant p-value with FDR (< 0.05). Partek Genomic Suite was also used to 
generate heatmaps representing the relative expression of genes between samples. Metascape was used to 
generate gene ontology (GO) terms for lists of differentially expressed genes (Zhou et al., 2019). RPKM 
normalization and Pearson Correlation coefficients (and the associated heatmaps for these values) were generated 
using DeepTools (Ramirez et al., 2014; Ramirez et al., 2016). Nemates.org was used to calculate the p-value of 
gene list overlaps: (http://nemates.org/MA/progs/overlap_stats.html). The number of reference genes used was 
25000.   
 
ChIP sequencing and analysis  
20 million differentiated (day 3) keratinocytes were used for each individual immunoprecipitation. The cells were 
crosslinked with 1% formaldehyde (ThermoFisher 28908) and 2mM DSG (disuccinimidyl glutarate, Thermo Fisher 
20593). The cells were treated with Farnham lysis buffer (5 mM PIPES pH 8.0, 85 mM KCl, 0.5% IGEPAL CA-630) 
and sheared with a syringe to assist lysis. After shearing, the cells were spun down and then resuspended in SDS-
Lysis Buffer (1% SDS, 10 mM EDTA, 50 mM Tris, pH 8.0). Once resuspended, the cells were sonicated with a water 
bath sonicator. Once the appropriate fragment size was achieved, the lysate was centrifuged, and the supernatant 
was then diluted 1:10 in low ionic strength ChIP dilution buffer (50mM NaCl, 10mM HEPES, pH 7.4, 1% IGEPAL CA-
630, 10% Glycerol) to reduce SDS concentration. Antibody was then added to this diluted lysate and incubated 
overnight at 4 degrees Celsius. 5ug of KLF3 antibody (Sigma HPA049512), 20ul of CBP antibody (Cell Signaling 
D6C5 #7389), 3ug of H3K27ac antibody (Active Motif 39133), and 2ug of H3K4me antibody (Abcam ab8895) were 
used for each respective pulldown. 50ul of Protein-G dynabeads were added to each sample and rotated for an 
additional 4 hours at 4 degrees Celsius. Washes were then carried out to reduced non-specific binding, including two 



	

	

washes with low ionic strength buffer, one wash with high salt buffer (500 mM NaCl, 0.1% SDS, 1% IGEPAL CA-630, 
2 mM EDTA, 20 mM Tris, pH 8.0), one LiCl wash (0.25 M LiCl, 1% IGEPAL CA-630, 1% Sodium Deoxycholate, 1 
mM EDTA 10 mM Tris-Hcl, pH 8.0), and two washes with TE (10 mM Tris-Cl, pH 7.5, 1 mM EDTA). The beads were 
then placed in elution buffer (0.09 M NaHCO3, 1% SDS, 0.1 M NaHCO3) for 1 hour at 65 degrees, and the 
supernatant was isolated. This was treated with RNAse A for 30 minutes at 37 degrees to prevent RNA 
contamination during sequencing (Mistry et al., 2014; Noutsou et al., 2017). Finally, de-crosslinking mixture (0.2 M 
NaCl, 0.1M EDTA,0.4 M Tris-HCl, pH6.8, 0.4 mg/ml proteinase K) was added and samples were incubated at 65 
degrees overnight, followed by DNA purification. These samples were sequenced using the Illumina Hi Seq 4000 by 
the Institute of Genomic Medicine core facility at UC San Diego. Reads were trimmed and aligned to hg19 using 
BowTie 2 (Langmead and Salzberg, 2012). Duplicate and low-quality reads were filtered out. HOMER’s findPeaks 
was used with default settings (p-value < 0.0001, FDR < 0.001, 4x enrichment vs. input) and the following options to 
identify significant peaks: for KLF3, CBP, KLF4, ZNF750, MAF, MAFB, and GRHL3: style=factor, minDist 200; for 
H3K27ac and H3K4me: style=region, size=1000, minDist=2500)(Heinz et al., 2010). Sequenced Input sample was 
used as background to identify significant enrichment. Peaks were mapped to nearby genes using HOMER’s 
annotatePeaks (Refseq hg19 transcription start sites)(Heinz et al., 2010). Motif enrichment for each ChIP was 
analyzed using HOMER’s findMotifsGenome command. UCSC genome browser tracks for each sample were 
generated using HOMER’s makeUCSCfile command. Other analyses by HOMER included normalized mean density 
plots (annotatePeaks), and the identification of directly overlapping (d=given) peaks between samples using 
mergePeaks. RPKM normalization and Pearson Correlation coefficients (as well as the associated heatmaps for 
these values) were generated using DeepTools (Ramirez et al., 2014; Ramirez et al., 2016). Diffreps 1.55.4 was 
used to identify differential enrichment between control and knockdown sequencing samples (negative binomial test, 
scanning window size of 1000 bp, step size of 100 bp, and a cutoff p-value of 0.0001)(Shen et al., 2013). Metascape 
was used to generate gene ontology (GO) terms for sets of genes (Zhou et al., 2019). Nemates.org was used to 
calculate the p-value of gene list overlaps: (http://nemates.org/MA/progs/overlap_stats.html). The number of 
reference genes used was 25000.   
 
Co-immunoprecipitation 
Differentiated keratinocytes were harvested in IP lysis buffer (25 mM Tris-HCl pH 7.4, 150 mM NaCl, 1 mM EDTA, 1% 
NP-40 and 5% glycerol) and sheared with a syringe. 5ug of KLF3 antibody (Sigma HPA049512) or control rabbit IgG 
(Millipore 12-370) was conjugated to 50ul of Protein G dynabeads (Life Technologies 10004D) for 30 minutes at 
room temperature. Lysis buffer was diluted to 1ml per sample and was added to the antibody conjugated beads and 
incubated overnight at 4 degrees. The following day the beads were washed with IP lysis buffer and boiled in RIPA 
buffer (25 mM Tris-HCl (pH 7.6), 150 mM NaCl, 1% NP-40, 1% sodium deoxycholate, 0.1% SDS) supplemented with 
NuPAGE LDS Sample Buffer (Life Technologies: NP0008) to elute. Samples were then loaded for western blotting.   
 
Apoptosis Assay 
Control and KLF3 knockdown cells were stained with Annexin V conjugated to Alexa Fluor 488 (Life Technologies: 
A13201) and analyzed using the Guava flow cytometer (Millipore) according to manufacturers instructions (Li et al., 
2020). 
 
Statistics 
Statistics were generated using GraphPad Prism. Histogram data are graphed as the mean ± SD and the 
significance of data was determined by student’s t tests.  
 
Accession numbers: RNA-Seq and ChIP-Seq has been deposited with GEO accession number: GSE142225 
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