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Abstract

Summary: We introduce PATH2PPI, a new R package to identify protein–protein interaction (PPI) net-

works for fully sequenced organisms for which nearly none PPI are known. PATH2PPI predicts PPI

networks based on sets of proteins from well-established model organisms, providing an intuitive

visualization and usability. It can be used to combine and transfer information of a certain pathway

or biological process from several reference organisms to one target organism.

Availability and implementation: PATH2PPI is an open-source tool implemented in R. It can be ob-

tained from the Bioconductor project: http://bioconductor.org/packages/Path2PPI/

Contact: ina.koch@bioinformatik.uni-frankfurt.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Plenty of databases exist which contain protein–protein interaction

(PPI) data for various organisms (e.g. Chatr-aryamontri et al., 2015;

Franceschini et al., 2013). For some well-established model organisms,

species-specific data repositories are available (e.g. Güldener et al.,

2006; Prasad et al., 2009) providing also PPI data. In contrast, for the

majority of organisms such a comprehensive amount of PPI data is not

available. Therefore, different approaches have been developed to pre-

dict PPIs. Some of these approaches aim to deduce new interactions

from known PPIs by means of homology-based mapping based on se-

quence similarity. Other methods apply supervised learning to filter

and score the predicted interactions, using additional biological data,

e.g. functional annotation, co-expression and / or text-mining data

(Yu et al., 2010; for a recent review see Rao et al., 2014). Approaches

that predict PPIs based on sequence data or network topology infor-

mation often provide only precomputed data (Franceschini et al.,

2013; Pesch and Zimmer, 2013) or predict interactions only for a set

of predefined organisms (Deng et al., 2013; Wiles et al., 2010).

Furthermore, most of the methods do not supply information about

the underlying reference interactions. In the majority, only the scores

are provided to validate a predicted interaction. Often it is necessary

to easily access the entire underlying information about the predicted

interactions since the interpretation and experimental validation is one

of the most important steps after the prediction.

As we were interested in aging processes and interaction net-

works of age-related pathways in the fungal model organism

Podospora anserina (Osiewacz et al., 2013; Philipp et al., 2013), we

found only a few data repositories for interaction data. For example,

the KEGG database (Kanehisa et al., 2014) provides small subnet-

works of some selected, mainly metabolic, pathways. Recently, also

the STRING database (e.g. Franceschini et al., 2013) involves some

predicted interactions for P.anserina. Nevertheless, there was no sat-

isfactory solution and no easy and fast way to directly gain know-

ledge about proteins and their interactions of certain biological

processes, which are well established in some model organisms, but

nearly unknown in the target organism. Homology-based tools

which theoretically enable to predict or transfer interactions between

species are mostly implemented for a set of predefined organisms or
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require pairs of proteins in the target organism to decide whether

they may interact (Chen et al., 2009; Murakami and Mizuguchi,

2014). Here, we report the implementation of PATH2PPI which helps

finding proteins and interactions of certain pathways or biological

processes in each fully sequenced organism without the need for pre-

definition of putative proteins and interactions.

2 Features

Using PATH2PPI, the user can choose up to seven of the most estab-

lished model organisms (human, mouse, rat, yeast, E.coli, C.elegans

and D.melanogaster). Based on sets of proteins from these reference

species PATH2PPI uses the interaction repository iRefIndex (Razick

et al., 2008) to find the corresponding relevant interactions. We im-

plemented a more flexible and comfortable search engine than pro-

vided by the iRefR package (Mora and Donaldson, 2011).

Additionally, PATH2PPI requires results of NCBI BLASTþ
(Camacho et al., 2009) searches of all reference species against the

target species. Based on these data, PATH2PPI computes new inter-

actions in the target species and scores them. The score is based on

the degree of homology and the number of reference species which

show the corresponding interaction. A major advantage of PATH2PPI

is the easy access to the underlying reference interactions, i.e. all in-

formation provided by iRefIndex, e.g. source database, interaction

type and reference publication. Based on the igraph package (Csardi

and Nepusz, 2006) the computed PPI can directly be visualized in R

(see Fig. 1).

3 Implementation

PATH2PPI can be obtained from the Bioconductor project (Huber

et al., 2015). It contains a comprehensive tutorial and for the case

study, data files necessary to predict interactions of the induction

step of autophagy in P.anserina by means of the corresponding PPIs

in human and yeast. There are three types of visualization methods

available, the normal, detailed and hybrid (Fig 1a–c). Additionally,

detailed information about each interaction can be obtained. Results

are provided as data frame or as igraph objects, enabling for subse-

quent analyses in R or in advanced analysis tools like Cytoscape

(Cline et al., 2007). Through the S4 class architecture PATH2PPI can

be easily extended by further prediction and validation algorithms.

The example depicted in Figure 1, the prediction algorithm and all

features of PATH2PPI are described in detail in the tutorial, see the

supplement and the corresponding Bioconductor web site.

4 Conclusion

We introduced a new R package to predict PPI networks based on

sets of proteins which may belong to a specific biological pathway,

providing an intuitive visualization and usability. We implemented

PATH2PPI to reveal putative proteins and interactions for a pathway

or a biological process in organisms for which nearly none PPI infor-

mation is available. The results can serve as starting points for fur-

ther network modeling studies and experimental validations.
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