
Hindawi Publishing Corporation
Journal of Diabetes Research
Volume 2013, Article ID 789607, 12 pages
http://dx.doi.org/10.1155/2013/789607

Review Article
Exercise and the Aging Endothelium

Saeid Golbidi and Ismail Laher

Department of Pharmacology andTherapeutics, Faculty of Medicine, University of British Columbia, Vancouver,
BC, Canada V6T 1Z3

Correspondence should be addressed to Ismail Laher; ilaher@mail.ubc.ca

Received 14 January 2013; Accepted 2 July 2013

Academic Editor: Cristina M. T. Sena

Copyright © 2013 S. Golbidi and I. Laher. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

The endothelium plays a critical role in the maintenance of cardiovascular health by producing nitric oxide and other vasoactive
materials. Aging is associated with a gradual decline in this functional aspect of endothelial regulation of cardiovascular
homeostasis. Indeed, age is an independent risk factor for cardiovascular diseases and is in part an important factor in the increased
exponential mortality rates from vascular disease such as myocardial infarction and stroke that occurs in the ageing population.
There are a number ofmechanisms suggested to explain age-related endothelial dysfunction. However, recent scientific studies have
advanced the notion of oxidative stress and inflammation as the two major risk factors underlying aging and age-related diseases.
Regular physical activity, known to have a favorable effect on cardiovascular health, can also improve the function of the ageing
endothelium by modulating oxidative stress and inflammatory processes, as we discuss in this paper.

1. Introduction

The global population, especially those in developed coun-
tries, is getting older and this trend is predicted to continue
in the coming decades [1, 2]. Some have defined aging as a
decreased ability to resist cellular stresses or insults [3, 4],
and in fact, aging is one of the most important cardiovascular
risk factors for predisposing conditions such as diabetes,
hypertension, and hypercholesterolemia. Accordingly, the
incidence and prevalence of clinical and subclinical cardio-
vascular diseases increase dramatically with age [2], making
cardiovascular disease the most common cause of death
among the elderly.

The endothelium has a primary role in adjusting vascular
function by the production of nitric oxide (NO) and other
biologically active vasodilator materials [5] that decrease
vascular resistance, inhibit platelet adhesion and aggregation,
and decrease vascular smooth muscle cell proliferation.
Alterations in the control of these processes, a feature of
endothelial dysfunction, often leads to atherosclerosis and
other vascular disorders [6] that are accompanied by a
proinflammatory, proliferative, and procoagulatory state [7].
The endothelium is ideally placed to bear the brunt of hemo-
dynamic stresses, oxidized lipids, and oxidative radicals, all of
which increase their vulnerability to aging [8].

Chronic aerobic exercise improves cardiovascular func-
tion in humans. This is true not only in healthy subjects
without underlying risk factors [9], but also in older people
[10] and those with cardiovascular risk factors [11]. Indeed,
those with cardiovascular risk factor/disease will benefit
more. For instance, eight weeks of exercise significantly
improve endothelial function, as measured by flow-mediated
dilation, in diabetic patients [12] but not in healthy subjects
[13].

Although there are clear health benefits of exercise in
the elderly, a detailed understanding of the molecular basis
underlying these improvements remains incomplete. In this
minireview, we discuss some mechanisms thought to be
involved in endothelial aging. We focus on the role of
oxidative stress and subsequent inflammation and the role
of exercise in boosting antioxidative and anti-inflammatory
mechanisms.

2. Endothelial Function

The endothelial cells form a monolayer that lines blood
vessels to form an interface between circulating blood and
the smooth muscle layer. In addition to its barrier function,
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the endotheliummodulates coagulation, growth, and inflam-
mation throughout the circulatory system. It also contributes
to adjusting tissue perfusion by secreting several vasoactive
substances [14], which can be vasoconstrictors (endothelin-
1, angiotensin II, thromboxane A2, etc.) or vasodilators
(NO, prostacyclin, and endothelium-derived hyperpolarizing
factor (EDHF), etc.) [15]. Among the many vasoactive agents
released by the endothelium, NO has been characterized
in greatest detail. It is released in response to a variety
of chemical and physical stimuli to cause vasodilation,
such that one of the most common methods for assessing
endothelial health is by determining vascular capacity to
produce NO [16]. NO is produced by the catalytic activ-
ity of NO synthase (NOS), which transforms L-arginine
to L-citrulline. All isoforms of NOS require five cofac-
tors/prosthetic groups: flavin adenine dinucleotide (FAD),
flavin mononucleotide (FMN), heme, tetrahydrobiopterin
(BH4), and Ca2+/calmodulin. Calcium is required for the
activation of neuronal NOS (nNOS) and endothelial NOS
(eNOS) but not for the activity of inducible NOS (iNOS)
[17]. eNOS binds to caveolin-1 in endothelial cell caveolae, a
subset of specialized lipid domains that form invaginations
and so increase intracellular microdomains where organelles
and anchoring proteins aggregate. Caveolin-1 inhibits eNOS
activity, and this interaction is regulated by Ca2+/calmodulin
[18]. Upon agonist activation, the increases in intracellular
calcium results in Ca2+/calmodulin binding, which then
displaces caveolin and reverses its inhibitory interaction
with eNOS [19]. Mechanical stimuli such as shear stress
and vascular smooth muscle stretch also raise intracellular
calcium concentrations. Several chemical events such as
interactionwith Ca2+/calmodulin, heat shock protein 90, and
subsequent association of Akt results in eNOS phosphoryla-
tion at Ser1177 are involved in NO production [19]. Released
NO causes vasorelaxation, which in turn results in increased
blood flow and reduced blood pressure, inhibition of platelet
adhesion and aggregation, inhibition of leukocyte adhesion,
reduction in smooth muscle proliferation, and retardation of
atherogenesis [4].

3. Endothelial Dysfunction and Aging

Endothelial dysfunction is defined as functional alterations
in endothelial physiology characterized by reduction of
vasodilator substance output (in particular NO) and aug-
mentation in endothelium-derived contracting factors [4].
This imbalance leads to a vasoconstrictive, hypercoagula-
tive, proliferative, and proinflammatory state, so favoring
atherosclerosis [7]. Over time, most humans are exposed to
a variety of modifiable cardiovascular risk factors, such as
hyperglycemia and insulin resistance, obesity, altered lipid
profile, hypertension, and glomerulosclerosis. All these con-
founding factors get exacerbated with age-related decreases
in physical activity. Even short periods of inactivity lead to
insulin resistance and endothelial dysfunction [35–37]. Bed
rest of about 48 hours induces vascular dysfunction, which
is then followed by insulin resistance, dyslipidemia, and
increased blood pressure [38]. Thus, shortening of hospital

stays and bed confinement periods are highly beneficial in
the elderly. Bed rest also increases circulating endothelial
cells [39], possibly due to increased endothelial cell apoptosis
resulting from reduced shear stress during bed rest. These
stresses activate endothelial repair systems. According to
Thorin et al., as long as the damage isminimal ormaintenance
systems work properly as in young subjects, the functional
capacity of the endothelium is preserved. In cases of severe
damage, injured cells are omitted by a poorly describedmech-
anism and replaced by dividing neighboring cells. Circulating
progenitor endothelial cells also play a role in the repair
mechanisms of injured endothelial cells. However, as part of
the aging processes, the cumulative effects of stresses coupled
with the inevitable metabolic changes that occur with time,
there is a decline in the function and repair capacity of
the endothelium. Since endothelial cells can only undergo a
limited number of divisions, they eventually enter a state of
senescence, which is an endogenous and hereditary process
of biological aging, in which cells are still metabolically
active, but express a pro-inflammatory, prooxidative, and
proatherogenic phenotype [40]. The cumulative effects of
these parameters strongly promote a decline in the functional
capacity of endothelium. All forms of cardiovascular disease
have an increased prevalence in the elderly, even in those free
of cardiovascular risk factors [41]. Since there are no changes
in endothelium-independent vasodilation in older humans
and animals, it is reasonable to suggest that vascular age-
dependent endothelial changes largely reflect the release NO
[15], although there are also some changes in the production
and release of other endothelial derived vasodilators such
as prostacyclin and EDHF, along with increases in vasocon-
strictor prostanoids [42]. There are also several age-related
structural changes in endothelium such as increases in the
expression of adhesion molecules, permeability, sensitivity to
apoptotic stimuli, with decreases in angiogenic and regener-
ative capacities [43, 44].

4. Mechanisms of Endothelial Aging

There are a number of mechanisms proposed to explain age-
related endothelial function. However, oxidative stress and
inflammation appear critical to this process.

4.1. Oxidative Stress and Endothelial Dysfunction. Oxidative
stress is an imbalance between production of oxidizing
agents, such as free radicals, and opposing antioxidant sys-
tems which scavenge or metabolize those reactive agents.
Free radicals are reactive chemical molecules having a single
unpaired electron in an outer orbit. This unstable configura-
tion provides energywhich is released through reactions with
adjacent molecules such as proteins, lipids, carbohydrates,
and nucleic acids. The majority of free radicals that damage
biological systems are oxygen-free radicals [45]. Oxygen-free
radicals or, more generally, reactive oxygen species (ROS),
as well as reactive nitrogen species (RNS), are products
of normal cellular metabolism. Oxidative stress interferes
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with endothelial function in different ways, but the most
prominent mechanism is via reduction of NO bioavailability,
which is the net product of the rate of NO production and its
degradation by superoxide [46].

In the case of NO generation, reduced vasoconstric-
tive responses to the NOS inhibitor N(G)-monomethyl-L-
arginine (L-NMMA) in older patients [47] and reduced shear
stress-induced NO release and vasodilation in older animals
[48] suggest decreased production of NO in aged endothe-
lium. In spite of these, direct measurements of eNOS in aged
animals were inconclusive, as raised, fallen, or unchanged
levels have been reported [49–52].

The increased production of superoxide anions in the
aging vascular wall rapidly inactivatesNO [53, 54]. Cyclooxy-
genase (COX) and NADPH-oxidase have central roles in
ROS production [47, 55–58]. Removal of the endothelium or
inhibition of NADPH-oxidase reduces vascular superoxide
generation in the aorta of aged Wistar-Kyoto rats [55].
Superoxide rapidly reacts with NO to generate cytotoxic per-
oxynitrite (ONOO−), a reaction with several consequences.
First, ONOO− alters the function of biomolecules by protein
nitration as well as by causing lipid peroxidation [59]. For
example, potassium channels, which hyperpolarize vascular
cells and mediate regulate vasorelaxation, are inhibited by
nitration [60, 61]. Second,ONOO− causes single-strandDNA
breakage, which in turn activates nuclear enzyme poly(ADP-
ribose) polymerase (PARP) (a nuclear DNA-repair enzyme)
[62]. Third, it decreases NO bioavailability causing impaired
relaxation and inhibition of the antiproliferative effects ofNO.
Furthermore, ONOO− oxidizes BH4, an important cofactor
for NOS, leading to the uncoupling of eNOS and causing it to
produce superoxide instead of NO. ROS-induced peroxida-
tion of membrane lipids alters the structure and the fluidity
of biological membranes, so having global detrimental effects
on vascular function [53]. The role of oxidative stress in aged
endothelial dysfunction is shown by the ability of vitamin C
to restore the impaired vasodilatory response to acetylcholine
only in subjects aged 60 years or older [47].This indicates that
oxidative stress is a critical mechanism for endothelial dys-
function only in older subjects. Administration of BH4 also
improves flow-mediated dilatation (FMD) in older sedentary
subjects, while having no beneficial effects in young or older
trained people [63].

Antioxidant deficiency is another mechanism for oxida-
tive stress in endothelial cells. All cells have evolved
highly complex enzymatic and nonenzymatic antioxidant
systems that act synergistically to defend the body from
free radical-induced damage. The most efficient enzymatic
antioxidants are glutathione peroxidase, catalase, superoxide
dismutase, heme oxygenase-1 (HO-1), NAD(P)H quinone
oxidoreductase-1 (NQO-1), and thioredoxin. Nonenzymatic
antioxidants include vitamins E and C, thiol antioxidants
(glutathione, thioredoxin) [64]. Attenuation of antioxidant
defense mechanisms during the aging process has been
proposed in some studies. For instance, reduced concentra-
tion of plasma SOD, but not cellular SOD, occurs in rats
[65]. Higher production of peroxynitrite causes antioxidant
enzyme deactivation, as is the case for manganese SOD
(MnSOD) in mitochondria [51]. Levels of protein expression

and enzymatic activity of glutathione peroxidase 1 (GPX-
1) are lower in proangiogenic endothelial progenitor cells
(derived from cultured blood mononuclear cells) from older
subjects [66].

4.2. Inflammation and Endothelial Dysfunction. Inflamma-
tion has a prominent role in the pathogenesis of several
cardiovascular diseases. Atherosclerosis is an inflammatory
disease that is mediated by monocyte-derived macrophages
which accumulate in arterial plaques and become activated to
release cytokines that cause tissue damage [67]. As evidence
accumulates favoring the role of inflammation during the
different phases of atherosclerosis, it is likely that markers
of inflammation such as high sensitivity C-reactive protein
(hs-CRP) could be increasingly used to provide additional
insights on the biological status of atherosclerotic lesions.
Elevations of CRP are considered independent predictors of
cardiovascular events and of the outcome of acute coronary
syndromes [68]. Besides their roles markers of systemic
inflammation and as predictors of cardiovascular risk, CRP
and other inflammatory cytokines also directly trigger vas-
cular dysfunction [69], possibly by altering calcium channel
expression and activity [70], upregulating of Rho-kinase
expression and function [71], increasing ROS production
[72], and/or enhancing COX expression [73]. In turn, COX-
derived constrictor prostanoid(s) products cause vascular
hypercontractility [74, 75] and increased formation of ROS
[76]. Increases in COX-induced ROS production and the
expression of proinflammatory mediators, such as IL-1B, IL-
6, TNF-𝛼, COX-2, and iNOS, occur during aging [77].

The NF-𝜅B pathway is a critical component of inflamma-
tory processes activated by oxidative stress [33, 78]. NF-𝜅B
is an ubiquitous transcription factor with multiple roles such
as mediating inflammatory responses to a variety of signals,
immune function, endothelial cell activation, and control
of cell growth [79–81]. NF-𝜅B is normally located in the
cytoplasm in an inactive form by virtue of binding to a family
of inhibitory NF-𝜅B (I𝜅B) proteins. Upon cell stimulation
by a wide variety of stimuli, signals responsive IKK-𝛼 and
IKK-𝛽 (also known as IKK-1 and IKK-2) are activated, which
results in the phosphorylation of I𝜅B and its proteasomal
degradation. I𝜅B degradation liberates NF-𝜅B, allowing it to
translocate to the nucleus and induce gene expression of a
number of proinflammatory cytokines, such as IL-1𝛽, IL-6,
TNF-𝛼, COX-2, lipoxygenase, iNOS, and adhesionmolecules
(VCAM-1, ICAM-1, PCAM, E-selectin). Aging increases NF-
𝜅B levels due to activation of IKK𝛼/𝛽 and degradation of I𝜅B
[82]. Under usual conditions, the activation of NF-𝜅B during
inflammation is temporary and limited. In aging, however, a
chronic and self-perpetuating condition exists. Proteins such
as TNF-𝛼, IL-1, IL-6, and COX-2 that are NF-𝜅B induced
also activate NF-𝜅B production, thus creating a vicious cycle
[83]. Aging increases plasma levels of TNF-𝛼, IL-6, IL-1𝛽,
CRP, and inflammatory blood cells [84–86]. The plasma
concentration of IL-6 correlates with senile neural atrophy
[87] and inflammatory diseases, such as type 2 diabetes and
atherosclerosis [88]. Plasma levels of TNF-𝛼 and IL-6 are also
predictors of disability and mortality among elderly [89].
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5. Role of Exercise in Improving Endothelial
Function in Elderly

The significance of exercise as a modifiable risk factor for
cardiovascular disease is widely acknowledged [90]. Physical
inactivity and poor diet, preceded only by tobacco, are the
leading causes of death [91]. The American College of Sports
Medicine, defines exercise as “Any and all activity involving
generation of force by the activated muscle(s) that results
in disruption of a homeostatic state” [92]. Exercise can be
classified by the type, intensity, and duration of activity.
Endurance exercise is characterized by prolonged and contin-
uous periods of contractile activity (high repetition) against
low resistance. Resistance exercise (also termed strength
training) involves short periods of contractile activity (low
repetition) against a high opposing resistance. Sprint exercise
consists of short periods of maximal (intense) repetitive
contractile activity with a low interval and against a low
resistance, for example, running 100m sprint race. However,
sprint training can also be performed against high resistance
resulting in a combination of resistance and endurance
modalities, for example, running with added weights [93].

Increased physical activity and fitness, of both men and
women, reduce the relative risk of death by 20–35% [94,
95]. Some studies even suggest greater benefits (up to 50%
risk reduction) for exercise in terms of all-cause mortality
and death from cardiovascular disease [96]. Brown et al. in
almost one decade follow-up study evaluated the relationship
between physical activity and risk of all-cause mortality in a
large number of elderly (7080 women aged 70–75 and 11668
men aged 65–83) [97]. They found an inverse dose-response
relationship between exercise and all-cause mortality. Risk
reductions were 30–50% higher in females than in males
in every category of exercise intensity. This study clearly
shows that there are clear health benefits from all levels of
physical activity. Regular aerobic exercise can slow down the
age-related losses in endothelial function [98] supposedly
by restoration of NO availability consequent to prevention
of ROS production [99]. Aging is associated with a limited
capacity of the vasculature to release NO, as older subjects
show reduced levels of plasma nitrite in response to exercise
[100]. The difference in plasma nitrate/nitrite ratio between
older and young sedentary subjects is reduced by exercise.
Heat-stimulated hand and foot skin increased blood flow
are higher in trained older subjects compared to sedentary
matched controls and are correlated with nitrate/nitrite
ratios, suggesting better endothelial function secondary to
greater NO bioavailability [101]. Trained elderly subjects also
exhibit higher flow-mediated brachial artery dilation com-
pared to sedentary counterparts [100]. Table 1 summarizes
the findings of recent clinical studies on the endothelial
benefits of exercise in the elderly.

5.1. Effect of Exercise in Mitigating Oxidative Stress. Exer-
cise training upregulates antioxidant defense mechanisms
in several tissues, presumably due to increased levels of
oxidative stress that occurs during exercise. Exercise-induced
production of ROS is proposed to evoke specific adaptations

such as increasing repair mechanisms for oxidative damage,
increasing resistance to oxidative stress, and lowering levels of
oxidative damage.On the other hand, excessive production of
ROS can have detrimental effects. Boosting levels of intrinsic
antioxidant potential and reduction in lipid peroxidation
occur in healthy elderly men after habitual physical activity
[102].

A critical role has recently been described for a tran-
scription factor “nuclear factor (erythroid-derived 2)-like 2
(Nrf2)” against oxidative stress. Normally, Nrf2 is located
in the cytoplasm and kept dormant by the cytoplasmic
repressor Kelch-like ECH-associated protein 1 (Keap1). A
variety of activators, including oxidative free radicals, release,
and translocate Nrf2 into the nucleus where it regulates
the expression of antioxidant enzymes such as NQO-1,
glutathione-S-transferase, glutathione peroxidase, and HO-
1 [64]. Diminished Nrf2 activity contributes to increased
oxidative stress and mitochondrial dysfunction leading to
endothelial dysfunction, insulin resistance, and abnormal
angiogenesis as observed in diabetics [103]. HO-1, which is
mainly induced through the Nrf2-Keap1 signaling pathway
(also known as heat shock protein 32), is the inducible iso-
form of heme oxygenase that catalyzes NADPH-dependent
decomposition of heme to carbon monoxide (CO), ferrous
iron, and biliverdin [104]. Three isoforms of HO have been
identified: both HO-2 and HO-3 are 33-kDa constitutively
expressed isoforms [105]. An important role of HO-1 in
the antioxidant defense system arises from an induction
of ferritin synthesis that diminishes the cellular pool of
free iron [106] and also from the enhancement of bilirubin
levels, which are potent antioxidants [107]. Carbonmonoxide
activates soluble guanylate cyclase, a key enzyme in the cell
signaling cascade leading to relaxation of smooth muscle,
and thrombocyte disaggregation. Carbon monoxide also
affects cellular metabolism and counteracts proinflammatory
cytokine cascades [105]. HO-1 is a sensitive and reliable
marker of oxidative stress [108] and cytoplasmic expression
levels of HO-1 increase in leukocytes of endurance-trained
male subjects after a half-marathon run [109]. There is a
paradoxical increased expression of HO-1 in a control group
of untrained men at rest, suggesting that the downregulation
of the baseline expression of HO-1 in athletes reflects an
adaptation mechanism to regular exercise training [109]. The
direct effect of exercise on Nrf2 expression has received
much less attention except for a report that exercise increases
nuclear levels of Nrf2 in the proximal renal tubules of old rats
[110].

The increased expression of eNOS after exercise both in
animals and human beings [111–114] also occurs in patients
with stable coronary artery disease and chronic heart failure
[115, 116]. Exercise-induced upregulation of vascular eNOS
expression is closely related to the frequency and the intensity
of physical forces within the vasculature, especially shear
stress. Shear stress is the product of all the perpendicular and
parallel flow-mediated forces on endothelial cells. The types
of these hemodynamic forces, either laminar or oscillatory,
greatly impact the function and properties of endothelial
cells and also determine the signal transduction pathways
that are activated. Laminar flow, which is augmented during
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Table 1: Selected recent clinical trials (last 5 years) about the effects of exercise in elderly.

References Patient groups and
characteristics

Intervention and
follow-up Measured parameters Outcome

[20]

(i) 57 subjects with a mean age of
65.6 ± 3.8 y divided to:
(ii) Control placebo
(iii) Resistance training (RT)
(iv) Vit C/E supplementation
(VS)
(v) RT + VS

(i) RT performed 3 times
a week for 6 months.
(ii) Vit supplement was
1000mg Vit C + Vit E
400 IU daily for 6 month

(i) Oxidative stress status
and metabolic and lipid
profile were determined at
baseline and after 6 months.
(ii) Fat mass and fat-free
mass measured by DXA
(iii) Muscle strength

After 6 months:
(i) No difference in muscle
strength
(ii) RT + VS had a positive effect
on the plasma antioxidant profile
but not on the prooxidant status

[21]

(i) 34 healthy, obese, older
women (55–79 y old) with mild
to moderate physical
impairments divided to into the
following groups for 24 weeks:
(ii) Weight loss plus exercise (WL
+ E)
(iii) Educational control

(i) WL + E was weight
management sessions +
3 supervised exercise
sessions/w
(ii) Educational group
had monthly health
lectures

(i) Body weight
(ii) Walk speed
(iii) Short physical
performance battery
(SPPB)
(iv) Knee extension
isokinetic strength

(i) WL + E lost more weight and
walking speed increased
significantly.
(ii) SPPB improved in both
groups with significant
differences between groups.

[22]

(i) Peripheral blood
mononuclear cells (PBMC) from
25 young adult (18–33 y old) and
40 older subjects (50–76 y old)

(i) 2 months of aerobic
exercise (brisk walking 6
days/w, 50min/day, 70%
of maximal HR)

(i) mRNA expression of
NF-𝜅B, receptor for AGEs
(ii) Proinflammatory
cytokines including TNF-𝛼,
MCP-1, NADPH-oxidase,
iNOS

(i) In older subjects VO2 max
and exercise time were increased
(ii) Expression of
proinflammatory genes was
decreased

[23]

(i) 173 overweight or obese,
postmenopausal, sedentary
women randomized to:
(ii) Aerobic exercise intervention
(iii) Stretching control group for
12 months.

(i)Exercise intervention
was 60–75% of maximal
HR for ≥ 45min per day,
5 days/w

(i) F2-isoprostane, VO2
max, body weight, body fat
percentage, waist
circumference,
intra-abdominal fat surface
area

(i) VO2 max increased and body
weight decreased in exercise
group.
(ii) F2-isoprostane decreased in
exercise group and increased in
control group.

[24] (i) Six older (71 ± 2 y) healthy
men with mild hypertension

All subjects received the
antioxidant cocktail and
placebo in a double
blind, balanced,
crossover design and
participated in the
exercise protocol.

(i) Plasma free radical
concentrations were
verified via EPR
spectroscopy
(ii) Endothelial function
was evaluated via FMD

(i) Prior to training, acute
antioxidant exposure did not
change resting BP or FMD. Six
weeks exercise reduced BP.
(ii) Antioxidant administration
after exercise negated
improvements.

[25]

Patients with IGT and CAD were
randomly assigned to:
(i) Exercise training (𝑛 = 13)
(ii) Rosiglitazone (8mg, 𝑛 = 11)
(iii) Control group (𝑛 = 10)

Exercise training
consisted of 6 × 15min/d
in the 1st week followed
by 30min/d submaximal
ergometer for 3 weeks

(i) FBS, lipid profile, HbA1c
(ii) CRP, fibrinogen
(iii) BMI
(iv) FMD

(i) Triglycerides and uric acid
decreased in exercise group
(ii) FBS, HbA1c, LDL, HDL, CRP,
fibrinogen, and BMI did not
differ between groups
(iii) In the exercise group,
exercise capacity and FMD
increased significantly

[26]
(i) 14 young subjects (25.7 ±
5.4 y)
(ii) 13 older people (65.6 ± 10.7 y)

(i) 30min of dynamic
handgrip exercise at a
moderate intensity

(i) Brachial artery diameter
and blood flow were
measured by Doppler
ultrasound
(ii) vWF was measured
before, immediately and
30min after exercise

(i) The change in plasma vWF
was linearly correlated with the
increase in shear stress during
exercise in older individuals, but
not in the young subjects.

[27]
(i) EPCs from elderly (𝑛 = 25,
67.8 ± 3.38 years) and young men
(𝑛 = 22, 26.3 ± 3.15 y)

(i) 12 weeks of physical
exercise

(i) In vitro endothelial
function and in vivo
reendothelialization
capacity of EPCs
(ii) Expression of CXCR4
and JAK-2 were measured

(i) In vitro function and in vivo
reendothelialization capacity
were reduced in elderly
(ii) Exercise increased CXCR4
protein expression and JAK-2
phosphorylation
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Table 1: Continued.

References Patient groups and
characteristics

Intervention and
follow-up Measured parameters Outcome

[28] (i) 11 middle-aged/older men
(ii) 15 postmenopausal women

(i) 8 weeks of brisk
walking (6 days/w,
50min/d)

(i) FMD
(i) FMD increased >50% in men
but did not change in
postmenopausal women

[29] (i) 13 young men (27 ± 1 y)
(ii) 15 older men (62 ± 2 y)

(i) 3-month aerobic
exercise intervention in
older subjects

(i) FBF was measured in
response to ET-1 and
selective (BQ-123) and
nonselective (BQ-788) ET-1
inhibitors

(i) Vasoconstrictor response to
ET-1 was blunted in older
subjects
(ii) BQ-123 increase FBF in the
older subjects
(iii) After 3-month exercise,
vasoconstrictor responses to ET-1
increased in older people, while
BQ-123 added modestly to this
response

[30]

31 patients with type 2 diabetes
and metabolic syndrome (mean
age = 58 ± 6 years) were divided
to:
(i) High-intensity exercise
(𝑛 = 10)
(ii) Low-intensity exercise
(𝑛 = 10)
(iii) Controls (𝑛 = 11)

(i) 6 weeks of training

(i) Endothelial function
examined by a high
resolution ultrasound of
the brachial artery, before
and after 6 weeks training

(i) High intensity aerobic
training improved endothelium
dependent vasodilator response.

[31]

38 patients with type 2 diabetes
divided to:
(i) Exercise group (𝑛 = 21)
(ii) Control (𝑛 = 17)

(i) Aerobic and
resistance exercise for 3
months

(i) Endothelial function
(FMD)
(ii) Insulin resistance
(iii) Adipocytokines
(iv) Inflammatory markers
(v) Incidence of CVE after
24 months

(i) HbA1c decreased in both
groups
(ii) FMD increased only in
exercise group
(iii) Incidence of CVE was higher
in control group

[32]

209 patients with recent AMI
divided to
(i) Aerobic group (ET, 𝑛 = 52, 56
± 6 y)
(ii) Resistance training (RT,
𝑛 = 54, 57 ± 8 y)
(iii) RT + ET (𝑁 = 53, 55 ± 9 y)
(iv) No training (𝑛 = 50, 58 ± 7 y)

(i) 4 weeks of exercise
training
(ii) 1 month of detraining

(i) Endothelial function
(FMD)
(ii) vWF

(i) FMD increased in all 3
exercise groups independently of
the type of exercise
(ii) vWF decreased in all
exercised groups
(iii) Detraining returned FMD to
baseline.

CRP: C reactive protein, CVE: cardiovascular events, EPR: electron paramagnetic resonance, FBF: forearm blood flow, FMD: flow-mediated dilation, HDL:
high-density lipoprotein, HR: heart rate, IU: international unit, LDL: low-density lipoproteins, MCP-1: monocyte chemoattractant protein-1, NADPH-oxidase:
nicotinamide adenine dinucleotide phosphate-oxidase, vit: vitamin, VO2 max= maximal oxygen consumption, vWF: vonWillebrand factor, w: week, Y: years.

moderate and intense physical activities, upregulates eNOS
expression—while oscillatory forces, which are associated
with hypertension, leads to increased NADPH-oxidase activ-
ity and augments oxidative stress [40]. The mechanotrans-
duction mechanisms that sense physical forces to cause
altered gene expression are not completely described. Some
reports suggest that activation of inward rectifying K+ can-
nels, followed by stimulation of outwardly rectifying Cl−
channels, plays amajor role in this process.Membrane hyper-
polarization, due to inward K+currents, drives extracellular
Ca2+ into the cells through two shear stress-dependent ion
channels (P2X purinoceptors and transient receptor potential
channels). Raised intracellular calcium levels lead to a disso-
ciation of caveolae-bound eNOS and increased production
of NO [117]. Other intracellular events are also thought
to mediate increased NO production in response to shear
stress; however, the relative importance of these mechanisms

is not clear (Table 2). Increased NO synthesis secondary
to amplified shear stress induces extracellular superoxide
dismutase (SOD) expression in a positive feedback manner
so as to inhibit the degradation of NO by ROS [34]. Another
parallel mechanism that participates in this harmony is
the upregulation of eNOS through exercise-induced ROS
production, since exercise-induced increases in shear stress
stimulates vascular production of ROS by an endothelium
dependent pathway [118]. Endothelial NAD(P)H oxidase has
a critical role in this process [119]. Superoxides are rapidly
converted to H

2
O
2
by SOD; hydrogen peroxide then diffuses

through the vascular wall and increases the expression and
activity of eNOS [120, 121]. Thus, increased expression of
SOD1 and SOD3 (which facilitate the generation of H

2
O
2

from superoxide) augments the effect of H
2
O
2
on exercise-

induced eNOS expression. On the other hand, eNOS expres-
sion is not increased in catalase overexpressing transgenic
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Table 2: Suggested shear stress sensingmechanisms by the endothe-
lial cells and related intracellular signal transductions [33, 34].

Suggested candidates for sensing shear
stress

Intracellular signal
transduction

Cellular adhesion molecules MAPK
Glycocalyx Ras-ERK
Ion channels (K+, Cl−, Ca2+, P2X
purinoceptor) C-JNK

T K receptors PI3- Kinase
GPCR Akt
Caveola FAK
Primary cillia Rho Family GTPase

NF-𝜅B
PKC

C-JNK: c-junN-terminal kinases, ERK: extracellular signal-regulated kinase,
FAK: focal adhesion kinase, GPCR: G-Protein coupled receptors, GTP:
guanosine triphosphate, MAPK: mitogen-activated protein Kinase, NF-𝜅B:
nuclear factor-kappaB, PI3: phosphoinositide 3, PKC: protein kinase C, T K
receptors: tyrosine kinase receptors.

mice [112, 122]. Another putative mechanism is exercise-
induced increases in arterial compliance which is mediated
by reduction of plasma ET-1 concentration as well as the
elimination of ET-1 mediated vascular tone. Twelve weeks
of aerobic exercise training increase arterial compliance,
while decreasing plasma ET-1 levels. Moreover, the increase
in central arterial compliance observed with ET-receptor
blockade before the exercise interventionwas eliminated after
exercise training [123].These results indicate that endogenous
ET-1 participates in the beneficial influence of regular aerobic
exercise on central arterial compliance.

5.2. Anti-Inflammatory Role of Exercise. Exercise produces
a short-term inflammatory response that is accompanied
by leukocytosis, increases in oxidative stress and plasma
levels of CRP. This proinflammatory response is followed
by a long-term anti-inflammatory adaptive response [124].
Regular exercise reduces CRP, IL-6, and TNF-𝛼 levels while
increasing anti-inflammatory substances such as IL-4 and
IL-10 [125, 126]. Controlling the release and activity of at
least two cytokines, TNF-𝛼 and IL-6, could contribute to the
natural protective effects of physical activity. Interleukine-6
(IL-6) is the first cytokine to be released into the circulation
during exercise, and its levels increase in an exponential
fashion in response to exercise [74]. Contracting skeletal
muscles upregulate levels of IL-6 mRNA [127] and the tran-
scriptional rate of the IL-6 gene is also markedly enhanced
by exercise [128]. IL-6 acts as both a proinflammatory and
anti-inflammatory cytokine: when secreted by T cells and
macrophages, IL-6 stimulates the immune response and
boosts inflammatory reactions, while muscle-produced IL-6
exerts anti-inflammatory effects through its inhibitory effects
on TNF-𝛼 and IL-1𝛽, and activation of interleukin-1 receptor
antagonist (IL-1ra) and IL-10 [129]. IL-10 in turn reduces the
production of several proinflammatory cytokines, such as
TNF-𝛼 and IL-1𝛽 [130]. Exercise-induced increases in plasma
IL-6 correlate with the muscle mass involved in exercise

activity and the mode, duration, and intensity of exercise
[131], and this is especially the case in older individuals
[132]. Exercise also confers protection against TNF-induced
insulin resistance [133]. In addition, Starkie et al. report that
infusion of recombinant human IL-6 (rhIL-6) into human
subjects simulated exercise induced an IL-6 response in the
prevention of endotoxin-induced increase in plasma TNF-
𝛼 [134]. Exercise also suppresses TNF-𝛼 production by an
IL-6 independent pathway, as there are modest decreases in
plasma TNF-𝛼 after exercise in IL-6 knockout mice [135].
Exercise-induced increases in epinephrine levels blunt the
TNF-𝛼 response [136]. In addition, IL-6 enhances lipid
turnover and stimulates lipolysis as well as fat oxidation
via activation of AMP-activated protein kinase [137]. Mice
deficient in IL-6 (IL6−/−) develop mature onset obesity and
have disturbed carbohydrate and lipid metabolism that is
partly reversed by IL-6 replacement. Other data indicate that
centrally acting IL-6 exerts an antiobesity effect in rodents
[138]. The lipolytic effect of IL-6 on fat metabolism was
confirmed in two clinical studies of healthy and diabetic
subjects [137, 139]. Visceral fat is potentially a cause of low-
grade systemic inflammation, which in turn leads to insulin
resistance, type 2 diabetes, and atherosclerosis [140]. During
exercise, IL-6 also increases hepatic glucose production.
Glucose ingestion during exercise reduces IL-6 production
by muscles, suggesting that IL-6 is released by a reduction
in glycogen levels during endurance exercise and the conse-
quent adrenergic stimulation of IL-6 gene transcription via
protein kinase A activation [141].

Physical activity also increases the expression of IL-15 in
the skeletal muscles. This cytokine exerts anabolic effects in
muscles by inducing protein synthesis and inhibiting protein
degradation [130, 142]. In some animal studies, this cytokine
prevents muscle wasting by attenuating apoptotic DNA
fragmentation and downregulating TNF-driven apoptotic
pathways [143]. In agreement with this, four weeks of exercise
reduce the extent of TNF-triggered myocyte apoptosis in old
rats [144, 145]

6. Summary

Aging is an important independent risk factor for the
development of cardiovascular disease, which is manifest as
endothelial dysfunction. A large body of evidence under-
lines the importance of oxidative stress and inflamma-
tion as prominent features of the aging process. Reduced
NO bioavailability and decreased responsiveness to other
endothelial-derived vasodilators promote a vasoconstrictive,
hypercoagulative, and proliferative state which favors the
development of atherosclerosis. Vascular oxidative stress is
the product of increased reactive oxygen species, such as
superoxides, and reduced antioxidant defense. Oxidative
stress-induced damage promotes a chronic inflammatory
state which perpetuates a vicious cycle of endothelial dys-
function. Exercise training prevents and restores age-related
impairment of endothelial function, possibly by the restora-
tion of NO availability consequent to prevention of oxidative
stress and alleviating inflammatory processes.
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