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Abstract

Central to modern neuroscientific theories of human intelligence is the notion that

general intelligence depends on a primary brain region or network, engaging spatially

localized (rather than global) neural representations. Recent findings in network neuro-

science, however, challenge this assumption, providing evidence that general intelli-

gence may depend on system-wide network mechanisms, suggesting that local

representations are necessary but not sufficient to account for the neural architecture

of human intelligence. Despite the importance of this key theoretical distinction, prior

research has not systematically investigated the role of local versus global neural repre-

sentations in predicting general intelligence. We conducted a large-scale connectome-

based predictive modeling study (N = 297), administering resting-state fMRI and a

comprehensive cognitive battery to evaluate the efficacy of modern neuroscientific

theories of human intelligence, including spatially localized theories (Lateral Prefrontal

Cortex Theory, Parieto-Frontal Integration Theory, and Multiple Demand Theory) and

recent global accounts (Process Overlap Theory and Network Neuroscience Theory).

The results of our study demonstrate that general intelligence can be predicted by local

functional connectivity profiles but is most robustly explained by global profiles of

whole-brain connectivity. Our findings further suggest that the improved efficacy of

global theories is not reducible to a greater strength or number of connections, but

instead results from considering both strong and weak connections that provide the

basis for intelligence (as predicted by the Network Neuroscience Theory). Our results

highlight the importance of considering local neural representations in the context of a

global information-processing architecture, suggesting future directions for theory-

driven research on system-wide network mechanisms underlying general intelligence.
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1 | INTRODUCTION

A central and enduring aim of research in the psychological and brain

sciences is to elucidate the information-processing architecture of

human intelligence (for a review, see Barbey et al., 2021). Does intelli-

gence originate from a specific brain structure (e.g., the lateral pre-

frontal cortex [PFC]; Duncan et al., 2000), a primary brain network

(e.g., the frontoparietal network; Jung & Haier, 2007), or instead

reflect system-wide network mechanisms for flexible and efficient

information processing (Barbey, 2018)? Accumulating evidence in net-

work neuroscience (Bassett & Sporns, 2017) suggests that spatially

localized accounts of human intelligence may miss the forest for the

trees, failing to capture the importance of global network topology

and dynamics in human cognition (Dubois et al., 2018; Gallos

et al., 2012; Shine et al., 2016). Thus, new approaches in network neu-

roscience propose that intelligence emerges from connectivity across

a global information-processing architecture (Barbey, 2018), contrast-

ing with spatially localized theories that account for individual differ-

ences in intelligence by appealing to a single brain region (Duncan &

Owen, 2000; Duncan et al., 2000), primary brain network (Duncan

et al., 2000; Jung & Haier, 2007), or the overlap among specific net-

works (Kovacs & Conway, 2016). Despite this major source of conten-

tion among modern theories, prior research has not systematically

investigated the predictions of local versus global theories of intelli-

gence within a comprehensive, connectome-wide association study.

Localist theories posit that intelligence originates from spatially

localized neural mechanisms. For example, Lateral PFC Theory

(Duncan & Owen, 2000; Duncan et al., 2000) proposes that general

intelligence (g) primarily depends on functional activity within the

PFC, drawing upon a wealth of evidence supporting the role of the

dorsolateral PFC in goal-directed behavior (e.g., Barbey et al., 2014).

Parieto-Frontal Integration Theory (P-FIT; Jung & Haier, 2007) pre-

dicts that intelligence emerges from integrated neural activity within a

broader frontoparietal network, with meta-analyses also highlighting

the functional involvement of medial PFC regions, occipital lobe, and

subcortical structures (Basten et al., 2015). More recently, Multiple

Demand (MD) Theory (Camilleri et al., 2018; Duncan, 2010) has pro-

posed that intelligence depends on activity within the MD network,

which entails a core set of regions in midcingulate cortex, bilateral

anterior insula, inferior frontal gyrus, right middle frontal gyrus, right

inferior parietal cortex, and intraparietal sulcus. Finally, Process Over-

lap Theory (POT; Kovacs & Conway, 2016) predicts that intelligence

depends on the functional overlap among multiple brain regions and

networks that are selectively engaged on the basis of task demands.

Recent discoveries in network neuroscience motivate a growing

headwind for standard localist theories, suggesting that intelligence

emerges from global brain network topology (Deco et al., 2015;

Sporns et al., 2000b) and dynamics (Cabral et al., 2017; Shine

et al., 2016; Sporns et al., 2000a), rather than relying solely on a spe-

cific brain region or primary network. Drawing from this literature, the

Network Neuroscience Theory (NNT) of Intelligence (Barbey, 2018)

proposes that g reflects individual differences in system-wide network

mechanisms for efficient and flexible information processing, and

therefore depends on global profiles of functional connectivity.

The community structure of the human brain is also known to rely

on weak functional connections that enable an efficient, small-world

topology (Bertolero et al., 2018; Gallos et al., 2012) and support brain

network flexibility and dynamics. Thus, the NNT predicts that global

profiles of weakly connected functional edges will also be important

predictors of g (Dubois et al., 2018; Santarnecchi et al., 2014). The

emphasis on whole-brain, multi-network connectivity and the inclu-

sion of weak connections motivates the prediction that intelligence

will depend on functional connections that are distributed globally

across the entire connectome.

1.1 | Aims

The aim of this study is to investigate the information-processing

architecture of general intelligence, conducting a systematic evalua-

tion of modern cognitive neuroscience theories that center on the

recruitment of local or global brain mechanisms. Of primary interest is

whether global profiles of functional connectivity will outperform

local connectivity profiles when predicting individual differences in g.

To investigate this hypothesis, this study deployed a predictive model-

ing framework in resting-state functional connectivity data (N = 297)

to directly compare the generalizability, reliability, and predictive

accuracy of local versus global functional connectivity profiles that

have been theorized to underpin intelligence.

We directly compared functional connectivity profiles by investi-

gating their predictive accuracy using a connectome-based predictive

modeling (CPM) framework (Finn et al., 2015; Shen et al., 2017), as

each theory makes testable predictions about the spatial profile of

functional connections underlying intelligence. The use of resting-

state functional connectivity in this study is motivated by a wealth of

prior evidence suggesting that resting-state data enable the prediction

of individual differences in general intelligence and further inform the

topology and dynamics of information processing (Bolt et al., 2017;

Schultz & Cole, 2016; Thiele et al., 2022, see also Cole et al., 2013).

Thus, resting-state connectivity is well-established in this

context (Dubois et al., 2018; Feilong et al., 2021; Jiang et al., 2020;

Saxe et al., 2018; Xu et al., 2022), and provides a powerful framework

for understanding individual differences in high-level cognition

(Dubois & Adolphs, 2016).

Localist theories of intelligence derive their predictions primarily

from task-based fMRI paradigms, identifying regional correlates of

intelligence without addressing broader profiles of network connec-

tivity or dynamic interactions between predicted regions. As localist

theories do not make strong claims about network topology or

dynamics, an analysis based on functional topology or dynamic con-

nectivity would not provide the desired direct comparison across all

theories, motivating our decision to instead use CPM in the present

study. Furthermore, CPM is capable of jointly interrogating all func-

tional edges possible under each theory while accounting for Type I

errors during feature selection, allowing this approach to make model

comparisons that consider all possible theoretical specifications of

edges within a functional connectivity profile that may support gen-

eral intelligence. These attributes allow CPM to directly compare
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evidence for the spatial and functional localization of each theory,

objectively comparing the accuracy, generalizability, and reliability of

predictions in intelligence across all modern theories.

This study investigated three primary hypotheses. First, we

hypothesized that localist theories of intelligence would produce

accurate and reliable predictions. Second, based on current evidence

in the field of network neuroscience and recent predictive modeling

studies using functional connectivity (Dubois et al., 2018; Feilong

et al., 2021; Jiang et al., 2020), we predicted that global theories

would outperform local theories, providing novel evidence that global

profiles of functional connectivity produce more accurate and more

reliable predictions of general intelligence. Third, we hypothesized

that global connectivity patterns would show that weakly connected

functional edges important for maintaining network topology

(Bertolero et al., 2018; Gallos et al., 2012) are a reliable predictor of

general intelligence. We sought to assess these hypotheses by exam-

ining prediction models based on each theory with respect to four

quantitative metrics: (a) correlation between predicted and observed

intelligence scores; (b) permutation test of prediction significance;

(c) prediction F-statistics; and (d) the difference in prediction's mean

absolute error (MAE) and confidence intervals.

2 | MATERIALS AND METHODS

2.1 | Participants

Data were collected from a sample of healthy young adults in Illinois

as part of a larger study investigating the efficacy of multimodal inter-

ventions to enhance fluid intelligence (previously described in

Daugherty et al., 2020; Zwilling et al., 2019). This study reports prein-

tervention resting-state fMRI data that were acquired prior to the

intervention (and therefore not affected by the larger project). All sub-

jects gave written informed consent in accordance with the Declara-

tion of Helsinki. Study inclusion criteria recruited adults (1) aged 18–

44 years; (2) fluent in English; (3) possessing at least a high-school

diploma; (4) with normal or corrected to normal vision and hearing;

(5) free of any psychoactive medication; (6) without history of neuro-

logical, psychological, or endocrine disease; (7) without history of con-

cussion for the past 2 years; (8) not having learning disorders; (9) not

smoking >10 cigarettes a day; (10) with a body mass index < 35; and

(11) with at least one positive response on the revised Physical Activ-

ity Readiness Questionnaire (Thomas et al., 1992). All subjects

reported in the present analysis were randomly assigned to brain

imaging data collection and were right-handed.

2.2 | Estimating general intelligence

Subjects were administered a comprehensive psychometric battery of

fluid and crystallized intelligence tasks, including a figure series com-

pletion test of fluid intelligence (Kyllonen et al., 2019), the Law School

Admissions Test Logical Reasoning Battery (Mackey et al., 2015),

Shipley-2 Vocabulary (Winfield, 1953), and the Adult Decision-Making

Competence battery (Bruine de Bruin et al., 2007, 2020), collectively

composing up to 3 hours of psychometric measurement administered

over two days. Previous work demonstrates a high degree of overlap

and redundancy between the Adult Decision-Making Competence

battery and other canonical measures of intelligence (Blacksmith

et al., 2019; Bruine de Bruin et al., 2020; Missier et al., 2010; Román

et al., 2019), providing further evidence that the battery provides a

valid and reliable measure of general intelligence. Descriptive statistics

of the psychometric battery have been detailed in prior work (see

Román et al., 2019). Here, we employed structural equation modeling

(SEM; Muthén, 2002) to identify shared variance across the entire

battery and to derive a latent measurement of psychometric

g (Jensen, 1993) for each subject. Our analysis approach also

accounted for the potential sex effects that have been demonstrated

in functional connectivity data (Jiang et al., 2020; Satterthwaite

et al., 2014; Zhang et al., 2018) by fitting a linear model to g scores

and controlling for both sex and age and using the residuals as inputs

to the neuroimaging analysis.

2.3 | Neuroimaging analysis and modeling

We acquired 10-min resting-state echoplanar imaging (EPI) scans

using a Siemens Magnetom 3 Tesla Trio scanner with a 32-channel

head coil (for a prior example of this sequence, see Talukdar

et al., 2018). Structural brain images were acquired as a multiecho

T1-weighted magnetization prepared gradient echo (0.9 mm isotropic

resolution, TR = 1900 ms, TI = 900 ms, TE = 2.32 ms), with GRAPPA

and an acceleration factor of 2 (Auerbach et al., 2013). Resting-state

images were acquired using accelerated gradient EPI sequence:

TR = 2000 ms, TE = 30 ms, FOV = 240 mm, 90� flip angle, 10 min

acquisition, or 300 volumes, 1.9 � 1.9 � 2.0 mm voxel size and

56 slices with 10% slice gap. Participants fixated on a white crosshair

presented on a black background for the duration of the scan.

All MRI data processing was performed using containerized pro-

cessing pipelines for reproducible analysis of neuroimaging data. Pre-

processing steps were performed using fMRIPrep 20.2.0 (Esteban

et al., 2018, 2019) and XCP Engine 1.0 (Ciric et al., 2017; Lydon-

Staley et al., 2019). As intelligence has been significantly correlated

with head motion (Siegel et al., 2017), we deployed ICA-AROMA

denoizing (Pruim et al., 2015), a best-performing algorithm for con-

found regression and robust control of motion artifacts (Parkes

et al., 2018). Head motion in the study was generally low, with sub-

jects displaying an absolute head displacement of 0.29 mm per scan

on average. Preprocessing entailed: slice timing correction, motion

correction, spatial smoothing (3 mm FWHM kernel), nuisance signal

regression, temporal bandpass filtering, linear registration of func-

tional images to structural images, and nonlinear registration of struc-

tural images to a standard-space MNI152 brain template (2 mm

isotropic voxel resolution). Head-motion parameters were accounted

for using ICA-AROMA analysis (Pruim et al., 2015). All nuisance vari-

ables were modeled via a single GLM (Satterthwaite et al., 2013), to
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remove spurious correlations and noise introduced by head motion as

well as variables of no interest such as CSF and white matter signal. In

addition to ICA-AROMA components classified as noise, these vari-

ables of no interest also included head motion correction parameters,

individual volume motion outliers estimated using DVARS (Power

et al., 2014) with outliers flagged above 1.5 standardized DVAR or

Framewise Displacement exceeding 0.5 mm, and mean white matter

and cerebrospinal fluid signals averaged across all voxels identified

during image segmentation. The fully preprocessed resting-state

BOLD timeseries data were taken as the deconfounded residuals from

the final GLM model. The residual image was transformed into nor-

malized MNI152 space and resampled to 4 mm isotropic voxels. To

investigate the effect of using multiple imaging atlases on the results,

resting-state images were parcellated using both a 200 and 400 ROI

network-based atlas of cortical gray matter (Schaefer et al., 2018).

Subcortical nuclei were also labeled and extracted based on the

Harvard-Oxford subcortical atlas (Makris et al., 1999). Undirected

functional connectivity edges reflected full Pearson correlations

between pairwise BOLD timeseries and were fisher-transformed for

normality prior to the predictive modeling analysis.

To compare the predictions of modern neuroscientific theories of

intelligence, we identified and labeled the set of anatomical brain

regions specified for each theory, treating all functional edges

between these nodes as possible connectivity candidates for feature

selection in our predictive model. To provide a more comprehensive

test of each theory and to account for possible effects of parcellation

resolution on model fidelity, we generated connectivity profiles for

each theory at both 200 and 400 ROI levels of resolution (Dadi

et al., 2019; Pervaiz et al., 2020). We briefly review the neural mecha-

nisms predicted by each theory below.

2.4 | Lateral PFC Theory

Early studies investigating the neurobiology of g provided evidence

for the importance of the lateral PFC in cognitive control functions for

goal-directed behavior (Barbey et al., 2013; Barbey et al., 2014;

Duncan & Owen, 2000; Duncan et al., 2000). Using cortical region

labels as reported in Schaefer et al. (2018), we constructed a profile of

PFC connectivity that included all functional edges within and

between bilateral rostral, caudal, medial, and dorsolateral PFC regions

(Figure 1), therefore examining the contributions of PFC connectivity

to general intelligence.

2.5 | Parieto-Frontal Integration Theory

In addition to emphasizing the importance of the lateral PFC, subse-

quent research revealed a more broadly distributed network of

regions underlying general intelligence. P-FIT proposes that connec-

tivity of a distributed frontoparietal network accounts for intelligence

by enabling the integration of knowledge between frontal and parietal

areas to support hypothesis generation and problem solving (Jung &

Haier, 2007). A meta-analysis of 16 functional and 12 structural stud-

ies further identified several correlates of P-FIT connectivity (Basten

et al., 2015), providing the basis for the selection of cortical regions

included in our predictive model (Figure 2). Regions identified by P-

FIT connectivity were further inspected to ensure conformation to

existing anatomical maps (Martínez & Colom, 2021).

2.6 | Multiple Demand Theory

The MD Theory incorporates more recent advances in understanding

the network architecture of general intelligence by appealing to an

even broader network of frontoparietal and cinguloopercular regions

(Camilleri et al., 2018; Duncan, 2010). To generate an anatomical

mask of MD regions, we overlayed the Schaefer atlas with a published

cortical atlas of the extended MD network (Diachek et al., 2020) gen-

erated from experimental data via a watershed method (Fedorenko

et al., 2011). This atlas displays robust agreement with existing reports

of MD regions (Camilleri et al., 2018; Fedorenko et al., 2013). Here,

we include signal from all possible MD functional edges overlapping

with MD network regions reported in Diachek et al. (2020; Figure 3).

2.7 | Process Overlap Theory

POT provides a novel framework centered on the idea that general

intelligence reflects the engagement of multiple cognitive processes

F IGURE 1 Functional regions
included in the Lateral PFC connectivity
map, colored by intrinsic connectivity
network. Purple, ventral attention;
orange, frontoparietal; red, default mode
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represented by the overlap (or shared connections) among brain net-

works (Kovacs & Conway, 2016). POT builds upon evidence for the

central role of frontoparietal network in general and fluid intelligence

(Barbey et al., 2014; Jung & Haier, 2007), expanding this account by

suggesting that a hierarchy of cognitive abilities is instantiated in an

overlapping hierarchy of brain networks (cf. Román et al., 2014).

According to Kovacs and Conway (2016), “the positive manifold is

caused by the overlap of executive processes that are involved in both

working memory and intelligence,” with the neural correlates of those

processes “activated in an overlapping fashion that is in agreement

with the tenets of [Process Overlap] theory”, such that “the overlap

the theory proposes appears to actually take place in the human

brain.” We therefore trained CPM models of POT using only right-

tailed functional edges, where higher general intelligence is associated

with positive functional connectivity (reflecting integration and over-

lap). As a comparison, we similarly investigated predictions of intelli-

gence generated from a complementary left-tailed feature selection

procedure in CPM (that instead identifies the contribution of weak

functional connections).

2.8 | Network Neuroscience Theory

NNT proposes that g emerges from individual differences in the net-

work topology and dynamics of the human connectome. The theory

emphasizes the importance of global system-wide network

mechanisms in intelligence (Bassett & Bullmore, 2006, 2017). A key

respect in which this view differs from POT (and other network sam-

pling approaches) is by emphasizing the constraints that brain network

architecture places on flexibly reconfiguring brain networks during

goal-directed behavior (e.g., Bolt et al., 2017; Dehaene et al., 1998;

Gu et al., 2015; Kitzbichler et al., 2011) and across development

(Byrge et al., 2014; Zuo et al., 2017). Rather than depend exclusively

on overlapping brain networks (as proposed by POT), NNT posits that

weak connections enable flexible information processing

(Barbey, 2018) and will therefore also play an important role in pre-

dicting general intelligence. Unlike for POT, CPM models of global

functional connectivity were trained to include both left- and right-

tailed functional edges, where greater intelligence may be associated

with significantly higher and/or lower connectivity (as was also the

case in our analysis of localist theories of intelligence).

2.9 | Predictive modeling

We quantified the relationship between functional connectivity pro-

files and intelligence using CPM. CPM feature selects brain regions

using mass-univariate statistical thresholding with respect to a depen-

dent outcome (i.e., through the use supervised learning methods). This

approach maximizes the proportion of true positive connections

included after feature selection in the model. The feature-selected

functional connections are summarized (added) to create a single

F IGURE 2 Functional regions
included in the Parieto-Frontal
Integration Theory (P-FIT) connectivity
map, colored by intrinsic connectivity
network. Green, dorsal attention; purple,
ventral attention; orange, frontoparietal;
red, default mode

F IGURE 3 Functional regions
included in the Multiple Demand
(MD) Theory connectivity map, colored
by intrinsic connectivity network. Green,
dorsal attention; purple, ventral attention;
orange, frontoparietal; red, default mode
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value per subject, allowing CPM to collapse across differences in the

cardinality of functional edges and compare theories of intelligence

without being confounded by the spatial extent of a connectivity pro-

file. CPM then fits an unregularized linear model between summed

connectivity data and the behavioral outcome.

This study deployed CPM due to its ease of use, reliance on inter-

pretable linear relationships, and ability to account for Type I errors

made during feature selection. The use of cross-validation in CPM to

generate predictions affords a within-sample test of each theory's abil-

ity to generalize to external subjects (Finn & Rosenberg, 2021; Gabrieli

et al., 2015; Hofman et al., 2021), as does the use of permutation test-

ing and nonparametric bootstrapping. We deployed CPM on each of

the predicted local or global functional connectivity profiles to directly

compare the reliability, generalizability, and accuracy of their underlying

functional connectivity profile for predicting general intelligence.

Predictions of general intelligence are made by applying feature

selection to possible functional edges within a given connectivity

profile (as Type I errors in feature selection will have a negative

impact on cross-validated predictive performance). During feature

selection, correlation thresholds of p < .01 and p < .05 were used to

select functional edges for inclusion in the training model at both

200 and 400 ROI parcellations, thus accounting for the possible

effects of parcellation resolution and feature selection threshold on

model fidelity. For each model, we additionally performed permuta-

tion testing, randomly shuffling intelligence scores and repeating

CPM 1000 times to determine if the observed predictive perfor-

mance was higher than would be expected by chance from the sub-

set of functional connections included in a connectivity profile.

Testing model performance against a null distribution of connectivity

values in this way affords an assessment of the reliability of the

underlying connectivity profiles, reflecting the extent to which con-

nections within a connectivity profile are reliably modeling sources

of individual difference in general intelligence within this sample.

We further investigated the performance of each prediction by

assessing the fit of a linear model between predicted and ground-

truth data, as better-fitting models reflect lower prediction error

across the entire sample. Finally, we performed a nonparametric

bootstrap of difference in the MAE between the best-performing

model overall and other best-performing models within each theory,

and computed confidence intervals to determine the extent to which

full-sample differences in absolute model performance generalize to

subpopulations within the dataset.

To summarize, we examine a comprehensive set of metrics for

comparing the predictions made by CPM, including (1) the predictive

accuracy of leave-one-out validated CPM models at two feature selec-

tion thresholds (p < .01 and p < .05) and two parcellation resolutions

(200 ROI and 400 ROI); (2) the permutation test significance (p1000) that

the observed predictive performance is higher than would be expected

by chance from the functional edges included in a functional connectiv-

ity profile; (3) F-statistics of a significant model fit between CPM pre-

dictions and ground truth intelligence scores as compared against an

intercept-only restricted model; and (4) a nonparametric bootstrap of

the difference in MAE and confidence interval observed between the

best-performing models for each theory.

Predictions made by CPM will be more accurate to the extent

that models are trained on a higher proportion of true-positive edges

connections (Shen et al., 2017). Naturally, localist theories of intelli-

gence will also consider fewer input features than global theories. To

investigate whether differences in model performance reflect differ-

ences in the proportion of true-positive connections—not differences

in the total number of connections used as input features, we further

conducted validation testing that varies the number of features

included in the model. We perform (1) a grid search that increases the

number of randomly permuted edges included in a connectivity pro-

file, and (2) a grid search that examines predictive performance while

decreasing the number of true-positive connections included in a

global connectivity profile (by relaxing the p-value threshold during

feature selection). This analysis provides a critical assessment of how

prediction accuracy is affected by (1) altering the proportion of true-

positive connections (i.e., selecting fewer sensitive edges via lower

feature selection thresholds), and (2) altering the absolute number of

null input features included in a model.

3 | RESULTS

3.1 | Psychometric battery

Descriptive statistics and pairwise correlations for the psychometric bat-

tery are reported in Table 1 and Table 2, respectively. During SEM

modeling, we observed that a single latent factor, g, demonstrated the

highest and most parsimonious model fit for variance in the psychomet-

ric battery, accounting for 62% of the variance across the entire cogni-

tive battery, with RMSEA = 0.014 and CFI = 0.995, suggesting excellent

fit (Hu & Bentler, 1999). Following prior research and conventions in the

field, two Adult Decision-Making Competence battery subtests were

excluded from this analysis: (1) Path Independence was not collected in

this sample, due to the subtest's low reliability and validity (Bruine de

Bruin et al., 2007), and (2) Under/Over Confidence was removed during

analysis, due to nonsignificant, negative variance with the general factor

(Blacksmith et al., 2019; Brown, 2015). While we explored hierarchical

representations of general intelligence within the battery (Haier

et al., 2009), including bifactor approaches (Mansolf & Reise, 2016),

TABLE 1 Descriptive statistics for scales in the psychometric
battery.

Battery subtest μ σ Range

Figure Series Completion 2.02 1.49 [�2.95 to 5.85]

Law School Admission Test 12.6 4.03 [1–25]

Shipley-2 Vocabulary 111 9.30 [73–131]

Applying Decision Rules 0.82 0.16 [0.33–1]

Resistance to Sunk Costs 4.32 0.70 [2–6]

Recognizing Social Norms 0.47 0.21 [�0.41 to 0.88]

Consistency in Risk Perception 0.74 0.11 [0.40–1]

Resistance to Framing 4.18 0.42 [2.5–5]

Note: N, sample size; μ, mean; σ, SD.
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model fit indices were highest for a single latent factor of g. Model coef-

ficients for this factor structure are reproduced in Table 3.

Tables 4 and 5 illustrate the accuracy and reliability of N-fold pre-

dictions of intelligence generated from cognitive neuroscience theo-

ries via CPM using 200 or 400 ROI parcellations, respectively. The

observed findings display several convergent patterns. First, most the-

ories generated the best predictions from 200 ROI parcellations fea-

ture selected at p < .01. For the Lateral PFC Theory, this model

displayed roughly equivalent accuracy to 400 ROI models. Second,

predictive accuracy was roughly equivalent for the three highest-

performing 200 ROI models (P-FIT, MD, and NNT), at r = .25. Third,

only the Lateral PFC Theory and NNT displayed significant predictions

at both 200 and 400 ROI levels of resolution. Fourth, for the P-FIT,

MD, and Process Overlap Theory, only the 200 ROI and p < .01

models produced predictions that significantly outperformed a permu-

tation test baseline. For all other model specifications, these theories

produced nonsignificant predictions. Fifth, the prediction performance

for POT, where CPM considered only positive, right-tailed relation-

ships between connectivity strength and general intelligence, was

notably low compared with the positive- and negative-tailed edges

considered by NNT. Finally, NNT produced the most significant pre-

diction of intelligence (400 ROI, p1000 < .001), and produced signifi-

cant predictions for three out of four possible model specifications.

Reviewing the significance and confidence intervals of these pre-

dictions shows that 8/20 models investigated produce significant

(p1000) predictions of intelligence, all sharing overlapping confidence

intervals. All p < .01 at 200 ROI analyses are significant (and share

overlapping confidence intervals), in addition to one Lateral PFC

model (p < .05 at 400 ROI) and two Network Neuroscience models

(p < .05 at both 200 ROI and 400 ROI).

The significance values (p1000) reported in Tables 4 and 5 and dis-

cussed in this manuscript are uncorrected, providing a baseline index

of how reliably each model is able to leverage individual differences in

connectivity profiles to predict general intelligence. Applying a

Benjamini-Hochberg FDR correction to control for familywise error

rate across models would have declared only p1000 ≤ .01 prediction

models to be statistically significant. Applying a Bonferroni correction

across this family of null distributions would have declared only NNT

predictions from the 400 ROI and p < .05 model to be statistically

significant.

These findings suggest that true-positive functional connections

underlying g are indeed captured by local connectivity profiles but are

observed more reliably (across multiple ROI resolutions and p-

thresholds) using profiles of global connectivity. Among neuroscien-

tific theories of intelligence, Lateral PFC and NNT are the only models

to make accurate and reliable predictions using parcellations that

reflect both a coarse (200 ROI) and more fine-grained (400 ROI) corti-

cal topography, suggesting these theories characterize both local and

global profiles of functional connectivity underlying general intelli-

gence (see Barbey, 2018). Comparing predictions from POT and NNT

demonstrates that global connectivity profiles including both strong

and weak connections produce more accurate and reliable predictions,

providing key evidence to support the network neuroscience perspec-

tive. Our findings suggest that intelligence depends on local and global

integration, and also on weakly connected edges important for main-

taining global network topology (Bertolero et al., 2018; Gallos

et al., 2012).

3.2 | Predictive fit and direct model comparisons

Table 6 displays F-statistics for the significance of an unregularized

model of full-sample N-fold predictions and observed intelligence

scores compared against an intercept-only restricted model. In two

TABLE 2 Pearson correlation matrix for scales in the psychometric battery.

FS LSAT S DR SC RSN CRP RF

Figure Series Completion 1.000

Law School Admission Test 0.337 1.000

Shipley-2 Vocabulary 0.156 0.486 1.000

Applying Decision Rules 0.411 0.463 0.355 1.000

Resistance to Sunk Costs 0.225 0.187 0.028 0.213 1.000

Recognizing Social Norms 0.137 0.178 0.221 0.203 0.149 1.000

Consistency in Risk Perception 0.213 0.347 0.223 0.346 0.196 0.176 1.000

Resistance to Framing 0.232 0.387 0.307 0.293 0.106 0.197 0.293 1.000

Abbreviations: CRP, consistency in risk perception; DR, applying decision rules; FS, figure series completion; LSAT, law school admission test; RF,

resistance to framing; RSC, resistance to sunk costs; RSN, recognizing social norms; S, Shipley-2 vocabulary.

TABLE 3 Model coefficients for factor analysis of g in
psychometric battery.

Battery subtest Factor loading with g

Figure Series Completion 0.51

Law School Admission Test 0.73

Shipley-2 Vocabulary 0.55

Applying Decision Rules 0.70

Resistance to Sunk Costs 0.34

Recognizing Social Norms 0.32

Consistency in Risk Perception 0.49

Resistance to Framing 0.43
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out of four combinations of connectome resolution and CPM thresh-

old (200 ROI at p < .01, 200 ROI at p < .05), we observed that the

best-fitting predictions (highest F-statistic) across all subjects are pro-

duced using NNT edges. In the remaining two model combinations,

Lateral PFC connectivity showed the best model fit (400 ROI at

p < .01, 400 ROI at p < .05). These model-fit statistics demonstrate

that global functional connectivity profiles specified by NNT produce

the best-fitting estimates of general intelligence at a more coarse-

grained level of connectome resolution, while Lateral PFC Theory pro-

duces the best-fitting estimates of general intelligence when viewed

at a more fine-grained level of connectome resolution.

Table 7 displays the average number of positive and negative

edges identified by feature selection in CPM across all folds of leave

one out cross-validation. The number of significant edges retained by

CPM increases when lowering the p-threshold or increasing the num-

ber of brain regions considered by model. From the perspective of

parsimony, the Lateral PFC models require drastically fewer edges to

reliably predict individual differences in general intelligence, highlight-

ing the importance of these regions. From the perspective of systems

neuroscience, Network Neuroscience models demonstrate that a

drastically larger number of whole-brain functional edges neglected

by localist theories also correlate with intelligence and contain true

positive signal, supporting the NNT prediction that individual differ-

ences in intelligence emerge from system-wide network topology and

dynamics. CPM eliminates the dimensionality of input edges before

fitting predictive models, prohibiting a test of model parsimony that

considers the true number of edges included in a model.

Table 8 displays bootstrapped confidence intervals around the

estimated difference in MAE observed between the significant predic-

tions of each theory when compared to the NNT (at 200 ROI and

p < .01). Using N-fold predictions generated in the full sample, we

observed the following MAE for the best-performing models of each

theory: Lateral PFC = 0.79; P-FIT = 0.77; MD = 0.73; POT = 0.84;

NNT = 0.72. Global connectivity profiles specified by the NNT dem-

onstrated the lowest MAE (i.e., the highest predictive performance).

To make inferences about the generalizability of observed differences

in prediction error between models, differences in prediction MAE

were computed across 1000 bootstrap replicates, where bootstrap

samples were drawn consistently for every model in each fold to facil-

itate direct comparison across consistent subpopulations. In all cases,

the average bootstrapped difference in MAE is lower for predictions

using global connectivity profiles based on the NNT. We observed no

cases where 95% confidence intervals crossed the origin, suggesting

that the lower MAE of NNT would be observed across almost all sam-

ples drawn independently from this population. Overall, these data

suggest that the greater absolute prediction performance observed

for the NNT model at 200 ROI represents a consistent increase in pre-

diction accuracy over all other neuroscientific theories of intelligence

examined.

TABLE 4 Correlation coefficient
between N-fold predictions and ground
truth values of g, using 200 ROI
parcellations with feature selection at
p <.01 and p < .05.

Theory ROI r (p < .01) r (p < .05)

Lateral Prefrontal Cortex Theory 200 .21* [0.10, 0.32] �.01 [�0.12, 0.1]

Parieto-Frontal Integration Theory 200 .25* [0.14, 0.35] .15 [0.04, 0.26]

Multiple Demand Theory 200 .25** [0.14, 0.35] .12 [0.01, 0.23]

Process Overlap Theory 200 .11* [0.00, 0.22] �.02 [�0.09, 0.13]

Network Neuroscience Theory 200 .25** [0.14, 0.35] .16* [0.047, 0.27]

Note: Permutation test significance (p1000) marked as * < .05, **< .01, and ***< .001. 95% confidence

intervals are displayed after each model.

TABLE 5 Correlation coefficient
between N-fold predictions and ground
truth values of g, using 400 ROI
parcellations with feature selection at
p < .01 and p < .05.

Theory ROI r (p < .01) r (p < .05)

Lateral Prefrontal Cortex Theory 400 .22 [0.11, 0.33] .25** [0.14, 0.36]

Parieto-Frontal Integration Theory 400 .03 [�0.08, 0.14] .08 [�0.03, 0.19]

Multiple Demand Theory 400 .07 [�0.04, 0.18] .18 [0.01, 0.23]

Process Overlap Theory 400 �.02 [�0.13, 0.09] .02 [�0.09, 0.13]

Network Neuroscience Theory 400 .17 [0.06, 0.28] .22*** [0.11, 0.33]

Note: Permutation test significance (p1000) marked as *p < .05, **p < .01, and ***p < .001. 95% confidence

intervals are displayed after each model.

TABLE 6 F-statistic of significant model fit versus an intercept-
only restricted model. Best-fitting predictions for each neuroscience
theory are highlighted in bold.

Theory ROI F (p < .01) F (p < .05)

Lateral Prefrontal Cortex Theory 200 14 0.03

400 15.9 20.9

Parieto-Frontal Integration Theory 200 19.7 7.5

400 0.5 1.8

Multiple Demand Theory 200 19.6 4.9

400 1.5 10.3

Process Overlap Theory 200 4.1 0.3

400 0.2 0.0

Network Neuroscience Theory 200 20.3 7.9

400 6.4 14.9

1654 ANDERSON AND BARBEY



3.3 | Subtest score predictions

Table 9 displays predictions of individual subtest scores from 200 ROI

models feature selected at (p < .01; i.e., for which predictions from all

models consistently outperform a null baseline). One prediction from

the intelligence literature is that larger, multi-network representations

of intelligence will show an increasing relationship with cognitive per-

formance as task complexity increases. Previous work using gray mat-

ter volumetrics supports this prediction (Colom et al., 2006).

Interestingly, we do not observe this phenomenon. Instead, we found

a more evenly distributed relationship between functional connectiv-

ity and cognitive ability, such that performance on tasks with both a

higher and lower g loading covaries with the connectome. This implies

that the connectome organization and topology are important

regardless of the specific (i.e., narrow) facets of intelligence being

addressed. POT predicts that general intelligence emerges from the

spatial overlap between regions that support specific executive func-

tions, motivating the prediction that cognitive processes that are less

dependent upon executive function (e.g., Shipley Vocabulary) will

demonstrate less spatial overlap and association with intelligence

(compared with tasks that are more strongly tied to executive func-

tions, such as Applying Decision Rules and Figure Series Completion).

Our results do not provide evidence to support this prediction, sug-

gesting again that intelligence depends both on global and local orga-

nization in the functional connectome (consistent with predictions

of NNT).

We will now further review the performance of CPM predictions

for each theory.

TABLE 7 Average number of positive
and negative edges surviving feature
selection at each ROI resolution and
p-threshold.

Theory ROI p-value Positive edges Negative edges

Lateral Prefrontal Cortex Theory 200 <.01 2 33

Lateral Prefrontal Cortex Theory 200 <.05 5 94

Lateral Prefrontal Cortex Theory 400 <.01 6 59

Lateral Prefrontal Cortex Theory 400 <.05 29 206

Parieto-Frontal Integration Theory 200 <.01 8 163

Parieto-Frontal Integration Theory 200 <.05 35 620

Parieto-Frontal Integration Theory 200 <.01 17 463

Parieto-Frontal Integration Theory 200 <.05 101 1652

Multiple Demand Theory 200 <.01 14 378

Multiple Demand Theory 200 <.05 45 968

Multiple Demand Theory 400 < .01 29 706

Multiple Demand Theory 400 <.05 175 2060

Process Overlap Theory 200 <.01 85 —

Process Overlap Theory 200 <.05 388 —

Process Overlap Theory 200 <.01 321 —

Process Overlap Theory 200 <.05 1693 —

Network Neuroscience Theory 200 <.01 85 1560

Network Neuroscience Theory 200 <.05 388 5183

Network Neuroscience Theory 200 <.01 321 4861

Network Neuroscience Theory 200 <.05 1693 16,655

TABLE 8 Bootstrapped prediction accuracy comparisons between 200 ROI models at p < .01 across 1000 draws.

Theory

Δ MAE vs. Network Neuroscience Theory

μ σ CI Minimum Maximum

Lateral Prefrontal Cortex Theory �0.071 0.035 [�0.075, �0.066] �0.200 0.038

Parieto-Frontal Integration Theory �0.039 0.031 [�0.043, �0.036] �0.225 0.038

Multiple Demand Theory �0.042 0.033 [�0.046, �0.039] �0.255 0.036

Process Overlap Theory �0.113 0.048 [�0.119, �0.108] �0.294 �0.053

Note: The table illustrates average decrease in predictive performance (mean absolute error [MAE]) observed for significant 200 ROI models compared

with Network Neuroscience Theory (μ, mean; σ, SD; CI, 95% confidence interval). 95% CIs do not cross the origin, suggesting that predictions of Network

Neuroscience Theory are reliably higher than other theories across the majority of subpopulations in our sample.
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3.4 | Lateral PFC Theory

For profiles of lateral PFC connectivity, we observed the most robust

predictive performance at a threshold of p < .05 and 400 ROI

(Figure 4a). Prediction performance was also significantly more reli-

able compared with the null distribution for the 200 ROI model fea-

ture selected at p < .01. These findings suggest that more fine-grained

representations of functional connectivity (Feilong et al., 2021) may

be better suited to capture generalizable signals of intelligence within

the lateral PFC, aligning with previous research showing granular

functional specialization in the lateral PFC during task-based cognition

(Gilbert et al., 2010; Kamigaki, 2019; Yamasaki et al., 2002). Further,

the presence of two statistically significant and reliable models sug-

gests that intelligence depends on the organization and connectivity

of lateral PFC at multiple levels of resolution, further highlighting the

importance of these regions for the prediction of general intelligence.

3.5 | Parieto-Frontal Integration Theory (P-FIT)

For connectivity profiles based on P-FIT, we observed the most

robust predictive performance at a threshold of p < .01 (Figure 5a).

Only a 200 ROI parcellation feature selected at p < .01 produced

reliable predictions of g, suggesting that more coarse-grained repre-

sentations of functional connectivity may be better suited for pre-

dicting general intelligence with respect to P-FIT models. This

coarse-grained connectivity profile would be best suited for charac-

terizing network topology that supports more general task-based

activation and connectivity, aligning with previous research implicat-

ing frontoparietal network activity across a variety of cognitive tasks

(Cole et al., 2013, 2014; Vakhtin et al., 2014). Permutation testing

suggests that model performance is statistically significant at

p1000 = .02 for only a 200 ROI model feature selected at p < .01

(Figure 5b).

TABLE 9 Subtest-level predictions
using CPM at 200 ROI and p < .01.
Subtests are ordered according to their
loading with the general factor of
intelligence observed in our sample.

Battery subtest Loading PFC P-FIT MD POT NNT

Law School Admission Test 0.73 �0.13 0.15 0.22 �0.08 0.16

Applying Decision Rules 0.7 0.01 0.08 0.12 �0.05 0.14

Shipley-2 Vocabulary 0.55 0 0.02 0.12 0.05 0.18

Figure Series Completion 0.51 0.04 0.16 0.08 0.02 0.18

Consistency in Risk Perception 0.49 0.02 0.23 0.19 0.09 0.17

Resistance to Framing 0.43 �0.09 0.23 0.17 0.04 0.18

Resistance to Sunk Costs 0.34 0.03 0.21 0.28 0.1 0.27

Recognizing Social Norms 0.32 �0.05 �0.04 �0.25 �0.01 0.04

Abbreviations: CPM, connectome-based predictive modeling; MD, Multiple Demand; NNT, Network

Neuroscience Theory; PFC, prefrontal cortex; P-FIT, Parieto-Frontal Integration Theory; POT, Process

Overlap Theory.

F IGURE 4 N-fold cross-validated performance for connectome-based predictive modeling (CPM) predictions of g using functional edges from
Lateral Prefrontal Cortex (PFC) Theory. (a) CPM results predict g from PFC edges at r = .25 (400 ROI, p < .05). (b) Permutation test significance
(p1000 = .008) suggests a significant association between edges used for prediction and psychometric g at 400 ROI and p < .05.
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3.6 | Multiple Demand (MD) Theory

For connectivity profiles based on MD Theory, we observed the

most robust predictive performance at a threshold of p < .01, when

CPM was trained with 2926 unique functional edges and 77 vertices

from a 200 ROI parcellation (Figure 6a). Permutation testing demon-

strates significance at p1000 = .008 (Figure 6b), suggesting that the

observed predictive performance is less likely to have occurred

under the null distribution than was observed for previous models.

Using this model specification, prediction accuracy of localist con-

nectivity based on the MD network is equivalent to P-FIT and NNT-

based models using the same ROI set and p-threshold. This model

(200 ROI, p < .01) is the only model of MD network connectivity

that produces statistically significant predictions, suggesting that

only coarse-grained representations of highly significant MD func-

tional edges are able to make generalizable predictions of

g using CPM.

3.7 | Process Overlap Theory (POT)

For positive (right-tailed) global connectivity profiles specified by POT

(i.e., connections that represent functional overlap), we find evidence

that whole-brain functional edges do a relatively poor job at predict-

ing g compared with other connectivity profiles, with the best-

performing model (Figure 7a) generating predictions of r = .11 and

F IGURE 5 N-fold cross-validated performance for connectome-based predictive modeling (CPM) predictions of g using functional edges from
frontoparietal cortex. (a) CPM results predict g from Parieto-Frontal Integration Theory edges at r = .25 (200 ROI, p < .01). (b) Permutation test
significance (p1000 = .02) suggests a significant association between edges used for prediction and psychometric g at 200 ROI and p < .01.

F IGURE 6 N-fold cross-validated performance for connectome-based predictive modeling (CPM) predictions of g using functional edges from
the cortical extended Multiple Demand (MD) network. (a) Connectome-based predictive modeling results predict g from extended MD network at
r = .18 (200 ROI, p < .01). (b) Permutation test significance (p1000 = .008) suggests a reliable association between edges used for prediction and
psychometric g at 200 ROI and p < .01.
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p1000 = .01 based on 200 vertices and 19,900 unique functional

edges (200 ROI, p < .01).

Performing a complimentary analysis of weak connections

(i.e., left-tailed edges; Figure 7b) revealed that these connections out-

perform strong connections, generating more accurate predictions at

r = .15. This finding is consistent with emerging evidence in network

neuroscience to suggest that brain network flexibility depends on

weak connections (Bertolero et al., 2015, 2018; Gallos et al., 2012).

Permutation testing for this model specification also demonstrated

significance at p1000 < .01, suggesting that both strong and weak

edges in global connectivity profiles are sensitive to individual differ-

ences in this sample. Consistent with POT, these findings suggest that

whole-brain functional edges supporting spatial overlap (i.e., strong

connections) are sensitive and generalizable predictors of psychomet-

ric g. However, weak connections that facilitate brain network flexibil-

ity are at least if not more predictive of individual differences in g,

implying that functional edges important to maintaining aspects of

global network topology are also a reliable neurobiological predictor

of intelligence. This overall pattern of findings therefore conflicts with

the predictions of POT.

3.8 | Network Neuroscience Theory (NNT)

For profiles of global functional connectivity predicted by NNT, we

find evidence that jointly modeled left- and right-tailed functional

edges produce the most robust predictions of general intelligence,

with the best-performing model (Figure 8a) generating predictions of

r = .25 based on 200 vertices and 19,900 unique functional edges

(200 ROI, p < .01). Permutation testing suggests that the model is sen-

sitive to individual differences in intelligence, producing predictions

that are significant at p1000 = .005 under permutation testing

(Figure 8b). Unlike local connectivity profiles, global profiles of whole

brain connectivity data produce significant prediction performance for

multiple model specifications, with a 400 ROI CPM analysis feature

selected at p < .05 generating predictions at r = .22 and p1000 < .001,

and a 200 ROI CPM analysis feature selected at p < .05 generating

predictions at r = .16 and p1000 = .026. In addition to accounting for a

greater proportion of variance compared with previous models and

theories, NNT models can also predict intelligence from both more

fine-grained and coarse-grained representations of functional connec-

tivity. Thus, NNT demonstrates the best overall performance among

the theories we have examined.

3.9 | Feature dimensionality and true-positive ratio

It is important to establish that the observed pattern of findings

(greater prediction accuracy and reliability for profiles of global con-

nectivity) is not a result of trivial differences in the input space of

functional edges considered during feature selection. To examine this

issue, we performed validation testing via a grid search across an

increasing proportion of randomly permuted edges in CPM

(Figure 9a), demonstrating that arbitrarily increasing the dimensional-

ity of the input feature space by including edges from p < .001 to

p = 1 does not generate higher predictive accuracy. Additionally, we

tested the effect of varying the ratio of potentially true-positive edges

in CPM by performing a grid search over increasingly liberal p-

thresholds from p < .001 to p < .1 using observed global connectivity

data at 400 ROI (Figure 9b). We found that including larger numbers

of non-random edges (i.e., potentially lowering the ratio of true-posi-

tive edges in our predictions) systematically decreased predictive per-

formance, until predictions become nonsignificant (p1000 > .05) at

p = .034 and prediction accuracy began to increase. Taken together,

F IGURE 7 N-fold cross-validated performance for connectome-based predictive modeling (CPM) predictions of g using functional edges from
the Process Overlap Theory (POT). (a) CPM results predict g from right-tailed process overlap edges at r = .11 and p1000 = .01 (200 ROI, p < .01).
(b) The comparable connectome-based predictive modeling analysis predicts intelligence from left-tailed (i.e., weak) edges at r = .15 and
p1000 = .01 (200 ROI, p < .01), providing evidence that is inconsistent with the predictions of POT.
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these results suggest that the observed differences in CPM perfor-

mance between local and global connectivity profiles are not an arti-

fact of differences in input feature size. Instead, this analysis

demonstrates that our findings reflect differences in the underlying

ratio of true-positive functional edges for predicting g.

Furthermore, our findings suggest that the comparable predic-

tion accuracy of NNT and localist theories is a more difficult test of

NNT, as global whole-brain connectivity necessarily entails all edges

contained in localist theories, in addition to many other edges that

would need to produce generalizable predictions of intelligence. For

example, if true-positive edges existed only within the MD network,

and error across the remaining connections was normally distributed,

we would expect a greater proportion of false-positives from global

edges and would expect lower prediction accuracy from global

connectivity profiles during N-fold validation (which we do not

observe). Thus, our findings suggest that the improved performance

of NNT does not result from trivial differences in the input space of

functional edges, illustrating how the performance of the NNT

reflects a comprehensive examination of all connections and there-

fore may present a more difficult test than the theories to which it is

compared.

4 | DISCUSSION

Emerging evidence in network neuroscience suggests that localist the-

ories of general intelligence may in fact be incomplete without also

addressing the contribution of system-wide brain network topology

F IGURE 8 N-fold cross-validated performance for connectome-based predictive modeling (CPM) predictions of g based on network
neuroscience theory (NNT). (a) CPM results predict g based on NNT at r = .25. (b) Permutation test significance (p1000 = .005) suggests a
significant association between edges used for prediction and psychometric g at 200 ROI and p < .05.

F IGURE 9 Connectome-based predictive modeling (CPM) validation tests demonstrate that larger feature spaces do not produce a more
reliable prediction of g. (a) Larger input features spaces in N-fold CPM do not result in more accurate predictions of g. (b) Relaxing the p-value
threshold to include additional (non-random) significant edges reduces accuracy when predicting g. Resulting CPM predictions of g become
nonsignificant at p = .034.
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and dynamics. To investigate this hypothesis, we deployed a CPM

framework to directly compare evidence for localized and global con-

nectivity profiles predicted to underlie general intelligence by current

cognitive neuroscience theories. We compared predictions of each

theory based on four quantitative metrics: prediction correlation, per-

mutation test significance, F-statistics, and difference in MAE. We

found that global connectivity profiles specified by NNT (1) produced

predictions that largely meet or exceed the accuracy of predictions

derived from localist theories, and (2) exceeded the reliability of pre-

dictions derived from localist connectivity profiles. Comparing (3) F-

statistics and (4) bootstrapped MAE also supported the reliability and

generalizability of global connectivity profiles for predicting intelli-

gence above those derived from localist connectivity profiles. These

findings provide a strong empirical case to suggest that global profiles

of functional connectivity produce robust and generalizable estimates

of general intelligence, outperforming predictions made by localist

neuroscience theories of intelligence in many contexts.

Consistent with existing neuroscience data, localist theories of

intelligence do produce reliable predictions of g. However, these stan-

dard localist theories display lower predictive performance, lower

model fit, lower statistical significance, and individually do so for

fewer of the model specifications we examined—suggesting that local-

ist theories may fail to fully capture underlying sources of variance in

the functional connectome important to individual differences in gen-

eral intelligence.

4.1 | Local connectivity profiles predict general
intelligence

We observed that both localized lateral PFC and frontoparietal net-

work edges produce reliable predictions of g during N-fold validation,

consistent with the wealth of evidence for the importance of the PFC

in general intelligence (Barbey et al., 2012, 2013; 2014; Braun

et al., 2015; Cole et al., 2012; Daugherty et al., 2020; Duncan &

Owen, 2000; Duncan et al., 2000; Gilbert et al., 2010; Jung &

Haier, 2007; Kamigaki, 2019; Vakhtin et al., 2014; Yamasaki

et al., 2002). By a small margin, we observed the highest localist the-

ory prediction accuracy and reliability from connectivity profiles speci-

fied by the MD Theory (Diachek et al., 2020; Duncan, 2010). While

many frontoparietal network connections are also entailed by MD

system, MD additionally includes vertices implicated in attentional

networks (Mineroff et al., 2018) and the cingulo-opercular system

(Camilleri et al., 2018). The higher predictive performance of the MD

network compared with other localist network accounts may there-

fore reflect the inclusion of both the frontoparietal network and the

cingulo-opercular network, which are together known to support key

facets of cognitive control (Crittenden et al., 2016). Lateral PFC con-

nectivity produced arguably the best predictions of localist theories,

in that multiple model specifications (in terms of both ROIs and fea-

ture selection significance) produced significant high predictions of

intelligence (notably, while requiring only a small number of functional

edges).

4.2 | Global connectivity profiles predict general
intelligence

We observed that globally distributed functional connectivity profiles

predicted by POT (Kovacs & Conway, 2016) produced the lowest

observed predictive performance for three out of four model specifi-

cations, critically including predictions generated by the 200 ROI at

p < .01 model. As the edges predicted by POT are positive in nature

(i.e., representing spatial overlap), this connectivity profile entails the

omission of weakly connected edges also important for network archi-

tecture and topology (Bertolero et al., 2018; Gallos et al., 2012). Sepa-

rately examining left-tailed edges demonstrated that functional

connections supporting overlap are in fact the least important globally

for predicting g, contradicting the predictions of POT. Our results

instead indicate that the inclusion of weak functional connections

enables more accurate predictions of g, supporting the role of net-

work flexibility in general intelligence (Bassett & Bullmore, 2017;

Bertolero et al., 2015, 2018; Gallos et al., 2012; Hilger et al., 2017;

Langer et al., 2012). Indeed, weak edges appear to play a critical role

in modifying network topology to support general intelligence and

system-wide flexibility of information processing (e.g., see Gu

et al., 2015; Santarnecchi et al., 2014), as predicted by NNT.

Small world networks enable the optimal balance of local and

global efficiency (Gallos et al., 2012; Watts & Strogatz, 1998), resulting

in a hierarchically organized modular network architecture (Barbey

et al., 2015; Meunier et al., 2010) that supports both efficient integra-

tion (Achard & Bullmore, 2007; Avena-Koenigsberger et al., 2019;

Khambhati et al., 2018) and specialization of cognitive abilities

(Spearman, 1904, 1927; van den Heuvel et al., 2009). According to

NNT, the resulting topological balance of segregation and integration

(Cohen & D'Esposito, 2016; van Vreeswijk & Sompolinsky, 1996; Wang

et al., 2021), and the critical dynamics that accompany balanced states

(Beggs, 2008; Fekete et al., 2021; Vázquez-Rodríguez et al., 2017),

facilitate brain network dynamics that give rise to both efficient and

specialized information processing (Bassett et al., 2011; Braun

et al., 2015; Finc et al., 2020; Shine et al., 2016).

Consistent with NNT, our findings suggest that network proper-

ties supporting intelligence are not isolated within specific brain

regions or networks identified by localist theories of intelligence.

Instead, we observed that global profiles of functional connectivity

are the most robust predictors of general intelligence, providing evi-

dence that both strongly connected functional edges supporting inte-

gration and weakly-connected functional edges supporting

segregation play an important role.

For each cognitive neuroscience theory of intelligence, we

observed differences in prediction performance across feature selec-

tion thresholds and parcellation resolutions, suggesting that properties

of network organization associated with individual differences in intel-

ligence may operate at multiple levels of resolution (see Khambhati

et al., 2018), depending on the neural system being investigated. We

observed that the most accurate predictions for most models were

derived from 200 ROI connectivity profiles feature selected at

p < .01. This level of resolution may be well-suited to identify more
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generalizable properties of network organization and topology,

reflecting large-scale brain network connectivity patterns that are pre-

sent generally across many subjects. Models trained on global connec-

tivity profiles also displayed accurate and reliable predictions for other

model specifications, suggesting that global connectivity can identify

individual differences at multiple levels of resolution and across a

greater range of true-positive rates. We observed that a more fine-

grained 400 ROI representation of whole-brain functional connectiv-

ity produced the most statistically significant prediction of g, empha-

sizing the importance of granular profiles of functional connectivity.

We also observed that generalizable predictions of g can be made

using global functional edges at multiple feature selection thresholds.

4.3 | Integrating local and global representations

Our findings provide evidence for the importance of both localized lat-

eral PFC connectivity and global functional brain network connectivity.

CPM models based on the Lateral PFC Theory and NNT produce the

only predictions that are significant at multiple levels of connectome

resolution. The Lateral PFC models require very few functional edges

to produce accurate predictions of intelligence, highlighting the central

role of these regions and functional connections in general intelligence.

In contrast, NNT Models identify a substantially larger set of significant

edges, providing evidence that regions important for intelligence are

also distributed across the entire connectome. Differences between

the number of significant localist and global edges are too large to

result from only edges incident with nodes specified by localist connec-

tivity masks (Zalesky et al., 2012), pointing to the globally distributed

nature of regions associated with intelligence. Notably, subtest-level

predictions using lateral PFC edges greatly underperform localist net-

work and global connectivity profiles, providing evidence that lateral

PFC regions may not explain individual differences in specific facets of

general intelligence.

The domain-general role of lateral PFC in intelligence resonates with

prior research on prefrontal contributions to high-level cognition. Previous

research indicates that the PFC embodies a hierarchy of functional con-

nectivity gradients—moving from rostral to caudal regions—to facilitate

goal-directed behavior (Badre & D'Esposito, 2009; Badre & Nee, 2018;

Koechlin et al., 2003). Our findings further illustrate the importance of

examining global brain network connectivity and align with recent pro-

posals that elucidate how complex, goal-directed behavior is constructed

from the interaction(s) among multiple brain networks (e.g., organized in a

nested hierarchy from local to global representations; Barbey, 2018;

Colom et al., 2006; Kievit et al., 2016; Protzko & Colom, 2021; Román

et al., 2014; Soreq et al., 2021). Our results contribute to this emergent

view by highlighting the critical importance of individual differences in

globally distributed weak functional edges as predicted by NNT.

4.4 | Limitations

While these findings suggest that global profiles of functional connec-

tivity best predict individual differences in g, several limitations and

challenges remain. First, while CPM has been extensively used and

validated in many neuroscience contexts, it is by no means the only

approach for predictive modeling (e.g., Dubois et al., 2018; Feilong

et al., 2021), nor would we expect it to robustly discover and predict

all forms of possible statistical relationships (e.g., it would not account

for nonlinear relationships). Second, resting-state fMRI data are not

the only imaging modality that could be used in such an analysis, for

example here, we neglect structural network topology and task-based

functional dynamics. Third, while the region and network definitions

provided by Schaefer et al. (2018) are widely used, other schemes for

network parcellation exist (e.g., Kozák et al., 2017; Uddin et al., 2019),

permitting alternative levels of resolution when parcellating the func-

tional connectome and allowing slightly different sets of regions and

edges to be considered. Fourth, there is necessarily an imperfect fit

between Schaefer et al. (2018) cortical parcellations and the ground

truth clusters observed in task-based and activation-based studies of

localist network connectivity, inducing small amounts of measurement

error when calculating regional overlap. Fifth, due to feature-selection

without control for Type II error, CPM may be prone to overfitting

(O'Connor et al., 2021), motivating the replication of these results in

additional datasets.

Our results suggest that localist profiles of functional connectivity

may fail to fully capture important aspects of global network architec-

ture and topology that predict individual differences in intelligence.

This study focused on measures of resting-state functional connectiv-

ity given their established role in shaping brain network dynamics and

accounting for individual differences in cognitive ability (Bolt

et al., 2017; Dehaene et al., 1998; Kitzbichler et al., 2011; Schultz &

Cole, 2016; Thiele et al., 2022). However, our study did not permit a

direct examination of brain network dynamics, which remains an

important area for future investigation.

5 | CONCLUSIONS

Emerging research in network neuroscience suggests that the stan-

dard appeal to spatially localized regions or networks in accounting

for human intelligence may be incomplete, providing evidence that

intelligence may instead reflect global, system-wide network mecha-

nisms. In this article, we deployed CPM to predict individual differ-

ences in intelligence based on local and global profiles of functional

connectivity. Using a large sample of resting-state imaging data

(N = 297) and a diverse battery of well-validated intelligence tasks,

we demonstrate that while general intelligence can be predicted from

spatially localized patterns of functional connectivity, intelligence is

best modeled and most accurately and reliably predicted based on

global profiles of whole-brain functional connectivity, as predicted by

the NNT. Our results suggest that there is an important need for

future neuroscientific theories of intelligence to reconcile neuroanato-

mically localized regions and networks with global topological proper-

ties and dynamics of network organization across the human

connectome. These findings highlight the importance of global profiles

of functional connectivity for producing reliable and generalizable pre-

dictions of g from resting-state fMRI data, furthering our
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understanding of the neurobiological substrates that give rise to intel-

ligence, and emphasizing the importance of considering localized neu-

ral representations in the context of a large-scale, global information-

processing architecture.
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