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A B S T R A C T

Diabetic kidney disease (DKD) is a common complication of
type 1 diabetes (T1D) and a major risk factor for premature
death from cardiovascular disease (CVD). Current treatments,
such as control of hyperglycaemia and hypertension, are benefi-
cial, but only partially protect against DKD. Finding new, safe
and effective therapies to halt nephropathy progression has
proven to be challenging. Sodium-glucose cotransporter 2
(SGLT2) inhibitors have demonstrated, in addition to glycaemic
lowering, impressive protection against DKD and CVD
progression in people with type 2 diabetes. Although these ben-
eficial cardiorenal effects may also apply to people with T1D,
supporting data are lacking. Furthermore, the increased rates of
euglycaemic diabetic ketoacidosis may limit the use of this class
in people with T1D. In this review we highlight the pathophysi-
ology of DKD in T1D and the unmet need that exists. We fur-
ther detail the beneficial and adverse effects of SGLT2 inhibitors
based on their mechanism of action. Finally, we balance the
effects in people with T1D and indicate future lines of research.
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D I A B E T I C K I D N E Y D I S E A S E I N T Y P E 1
D I A B E T E S

Over 30 million people suffer from type 1 diabetes (T1D), in-
creasing risk for early death mainly from cardiorenal disease
[1, 2]. Despite advances in glycaemic and blood pressure con-
trol, a child diagnosed with T1D is expected to live up to
17 years less than non-diabetic peers [3–6]. The strongest risk
factor for cardiovascular disease (CVD) and mortality in T1D is
diabetic kidney disease (DKD) [7, 8]. DKD remains a common
complication of T1D. Historically up to 40% of people with
T1D had onset of elevated urinary albumin excretion and the

majority of these progressed to end-stage kidney disease
(ESKD) within 10–15 years [9]. Although the cumulative inci-
dence of DKD has been reduced with the achievement of inten-
sive glycaemic control and renin–angiotensin–aldosterone
system (RAAS) blockade, it remains a major morbid complica-
tion. In the Diabetes Control and Complications Trial (DCCT)
and its observational follow-up study, the Epidemiology of
Diabetes Interventions and Complication (EDIC) study, 25% of
participants assigned to intensive therapy still developed ele-
vated urinary albumin excretion during follow-up [10]. Current
treatment of cardiorenal risk factors, such as control of hyper-
glycaemia and hypertension, is beneficial, but only partially
protect against DKD. Additionally, while intensive glycaemic
control is crucial throughout the disease duration, RAAS block-
ade may be more important in individuals with some degree of
elevated urinary albumin excretion. Clinical trials in DKD in
T1D have yielded disappointing results [11–18], potentially due
to the lack of interventions at early stages of disease when the
benefit is most likely. The recently published results from the
Adolescent Type 1 Cardiorenal Intervention Trial demon-
strated that the use of angiotensin-converting enzyme inhibitor
and statin failed to change urinary albumin excretion over time
in youth with T1D [19]. To effectively mitigate DKD risk in
T1D, therapeutic strategies may have to target pathophysiology
specific to T1D, and caution should be exercised when extrapo-
lating trial data from people with type 2 diabetes (T2D). Thus
identifying therapies to impede DKD in T1D remain a public
health priority.

For people with T2D, sodium-glucose cotransporter 2
(SGLT2) inhibitors have been introduced to improve hypergly-
caemia. The glycaemic-lowering effects of SGLT2 inhibition are
based on the fact that the kidneys approximately filter and
completely reabsorb 180 g of glucose daily, an amount that is
augmented in people with hyperglycaemia. The process of reab-
sorption is carried out by two transporters located in the
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proximal tubule: the high-capacity, low-affinity SGLT2 and the
low-capacity, high-affinity SGLT1, the functions of which are
upregulated to facilitate increased glucose fluxes in the state of
chronic hyperglycaemia. As non-specific SGLT inhibition by
phlorizin provoked intolerable gastrointestinal side effects,
more specific inhibitors were developed. These more specific
SGLT2 inhibitors, initially brought to the market for glucose-
lowering in people with T2D, now include canagliflozin, dapa-
gliflozin, empagliflozin (EMPA), luseogliflozin and ertugliflo-
zin. Sotagliflozin is different from other SGLT2 inhibitors, as it
also inhibits intestinal SGLT1 activity and was specifically de-
veloped for people with T1D [20]. The glucose-lowering effects
of SGLT2 inhibitors in people with T2D have been discussed in
detail elsewhere [20], but it is important to realize that it is
largely dependent on the filtered glycaemic load, which is deter-
mined by prevailing glucose concentrations (level of glycaemic
control) and glomerular filtration rate (GFR). In T2D, SGLT2
inhibitors have also been shown to protect pancreatic b cells
against glucose toxicity and preserve insulin secretory capacity,
and murine models suggest that this may also hold true for
T1D [21]. The SGLT2 inhibitors have received attention not
due to their glucose-lowering efficacy, but through their re-
markable cardiorenal effects. Indeed, SGLT2 inhibitors were
shown to reduce cardiovascular risk (in people with previous
CVD) and progression of DKD in several large trials, including
Empagliflozin Cardiovascular Outcome Event Trial in Type 2
Diabetes Mellitus Patients (EMPA-REG OUTCOME),
CANagliflozin cardioVascular Assessment Study (CANVAS),
Multicenter Trial to Evaluate the Effect of Dapagliflozin on the
Incidence of Cardiovascular Events (DECLARE-TIMI58)
(NCT01730534), Evaluation of the Effects of Canagliflozin on
Renal and Cardiovascular Outcomes in Participants With
Diabetic Nephropathy (CREDENCE) (NCT02065791) as de-
tailed below. Several mechanisms of DKD progression overlap
in people with T2D and T1D, and SGLT2 is a promising neph-
roprotective agent in people with T1D, supported by some re-
cent data from the inTandem 1 and 2 trials (NCT02384941 and
NCT02421510, respectively) [22]. However, there are also im-
portant differences that may limit generalization of T2D cardio-
vascular outcome trials (CVOTs) data to people living with
T1D, as discussed below.

P A T H O P H Y S I O L O G Y O F D K D I N T 1 D

The natural history of the pathophysiology of DKD

The natural history of DKD in T1D is characterized by pro-
gressive pathological changes that develop over a long silent pe-
riod without clinical evidence of kidney dysfunction [23]. In
fact, kidney biopsy data have established that structural defects
precede functional impairment [24–26]. The International
Diabetic Nephropathy Study (IDNS) demonstrated that the
principal morphometric abnormalities of early DKD included
increased glomerular basement membrane width and fractional
volume of mesangium and mesangial matrix [23]. Furthermore,
IDNS found these abnormalities as early as 2 years after T1D
onset and structural defects advanced once increased urinary al-
bumin excretion becomes detectable [23]. Strong and robust

relationships between glomerular structure and function have
also been demonstrated in people with T1D [27, 28]. Notably,
the histological features of DKD may differ in T1D and T2D.
Compared with T1D, there appears to be greater structural le-
sion heterogeneity in people with T2D, for which reasons data
should not be directly extrapolated [27–30]. The vast majority
of studies have focused on the morphometry of the glomerulus,
yet the proximal tubule may be equally if not more important in
the initial onset of DKD [31]. In addition, there have been sub-
stantial advances and maturation of transcriptomic technologies
that offer a platform to identify key genes and pathways in-
volved in DKD in T1D. However, crucial components of the fu-
ture success of these endeavours are deep phenotyping and
access to renal tissue.

The sequence of progression of DKD in T1D has been pro-
posed to start with hyperfiltration, resulting in glomerular in-
jury followed by elevated urinary albumin excretion and
progressive estimated GFR (eGFR) decline, eventually resulting
in chronic kidney disease (CKD) and ESKD [32] (Figure 1).
The data on hyperfiltration, however, are conflicting. For exam-
ple, recent analysis of DCCT/EDIC data did not support hyper-
filtration as an independent risk factor for the development of
CKD and ESKD [33] and contradicts prior data from other
groups [34, 35]. Although animal research and experimental
models strongly support single-nephron hyperfiltration as an
important early phenotype of kidney disease, whole-kidney
GFR is measured in clinical research rather than single-
nephron GFR. This is potentially problematic, as whole-kidney
GFR is a product of the number of nephrons and the individual
single-nephron GFR. Accordingly, to accurately diagnose
single-nephron hyperfiltration from whole-kidney GFR, one
relies on preserved nephron mass. However, nephron mass
starts to progressively decline at �25–30 years of age, and the
decrease is faster in people with risk factors such as diabetes
and hypertension [36]. Therefore there is likely a substantial
portion of people with single-nephron hyperfiltration who are
misclassified as being normofilterers based on their apparently
normal ‘whole-kidney GFR’ in the setting of a reduced nephron
mass. This is a recognized problem in nephrology, for which
reason there are substantial efforts being made to non-
invasively quantify nephron mass (e.g. cationic-enhanced mag-
netic resonance imaging) and thereby estimate single-nephron
GFR [37].

This is also the reason it is preferred to study hyperfiltration
as defined by ‘whole-kidney GFR’ in young people prior to pro-
gressive nephron loss, as there may be less heterogeneity in
nephron numbers and therefore less misclassification bias.
There is also no consensus on what rate of annual GFR loss
constitutes rapid GFR decline. Annual declines >3–5 mL/min/
1.73 m2 or 3.3% have been proposed to predict DKD progres-
sion and mortality by different groups [34, 35, 38–40]. The im-
plication of moderately increased albuminuria, previously
known as microalbuminuria, has also been questioned over the
past few years after the demonstration that it does not necessar-
ily imply progressive nephropathy and regresses to normoalbu-
minuria in a significant proportion of people without therapy
[41, 42]. However, in those with persistent moderately increased
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albuminuria in the DCCT/EDIC study, the 15-year cumulative
incidences of increased albuminuria (previously known as mac-
roalbuminuria), impaired GFR and ESKD were 39, 19 and 7%,
respectively [43]. Accordingly, persistent moderately increased
albuminuria remains an important early phenotype of DKD.
Further longitudinal research is needed to better understand the
relationships between single-nephron hyperfiltration, rapid
GFR decline and progressive nephropathy in people with T1D.

An energetic role of SGLT2 inhibition in DKD
pathogenesis in people with T1D

The salutatory effects of SGLT2 inhibition in impeding
DKD progression are incompletely accounted for by the modest
improvements in HbA1c, weight and blood pressure. Metabolic
and non-metabolic effects of SGLT2 inhibition have been pro-
posed to explain the impressive cardiorenal benefits. The kid-
neys are highly metabolically active and are second only to the
heart with respect to oxygen (O2) consumption per tissue mass.
To sustain this activity, the kidneys rely on various substrates to
generate adenosine triphosphate (ATP), including citrate, gluta-
mine, glucose and free fatty acids [44]. Early DKD is associated
with an environment that exacerbates renal O2 consumption in
experimental models due to (i) elevated GFR and increased fil-
tered sodium [34, 45, 46], (ii) increased activity of the Naþ/Kþ

ATPase pump due to high tubular glucose and Naþ reabsorp-
tion and (iii) neurohormonal changes including increased vaso-
pressinergic and RAAS activity [47–50]. In fact, animal models
suggest that renal O2 consumption is increased by 40% in all
cortical segments and by 160% each in the S3 segment and
medullary collecting duct in the setting of renal hypertrophy
and hyperfiltration [51–55]. Furthermore, emerging animal
data suggest that in diabetes the kidneys are unable to suffi-
ciently compensate for the increased O2 consumption due to
the effects of insulin resistance and mitochondrial dysfunction
on energy utilization [44, 56–58]. Data on renal O2 consump-
tion in DKD are currently limited to animal models. SGLT2

inhibition attenuates whole-kidney hyperfiltration in adults
with T1D [59] and single-nephron hyperfiltration in animal
models [60] and offers renal protection in adults with T2D and
CKD [61]. In addition, adult data suggest that SGLT2 inhibition
can improve insulin sensitivity [62]. Finally, animal data suggest
that SGLT2 inhibition improves renal oxygenation and amelio-
rates renal hypoxia [63]. It is unclear whether the improved
renal oxygenation in response to SGLT2 inhibition relates to
natriuresis, as sodium excretion is not expected to be altered
with prolonged treatment [64, 65], likely through compensatory
sodium reabsorption at more distal tubular segments. However,
alterations in the location of sodium reabsorption may affect
the reuptake of other molecules, such as uric acid, that may also
play a role in ATP consumption and generation [20, 66]. The
consequences of SGLT2 inhibitor-induced alterations in so-
dium handling are not limited to renal energetics and include
important non-metabolic changes in interstitial fluid volume,
systemic haemodynamics and vascular function, which are all
likely to contribute to the observed cardiorenal benefits [67, 68].

D I F F E R E N C E S I N I N T R A R E N A L
H A E M O D Y N A M I C E F F E C T S O F S G L T 2
I N H I B I T O R S I N P E O P L E W I T H T 1 D A N D T 2 D

Above, we described that several similarities exist between
DKD in people with T1D and T2D. However, important differ-
ences should also be noted. In young adults with T1D, 8 weeks
of SGLT2 inhibition resulted in afferent arteriolar vasoconstric-
tion and a decrease in GFR in participants with baseline hyper-
filtration [59]. The afferent arteriolar vasoconstriction is
proposed to be mediated by increased distal sodium delivery
and tubuloglomerular feedback. In contrast, recent data in older
adults with T2D suggest that SGLT2 inhibition confers efferent
arteriolar vasodilation with attenuated renal vascular resistance,
possibly due to increased prostaglandin release [69]. The mech-
anisms underlying the different effects on intrarenal
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haemodynamic function remain incompletely understood but
may relate to differences in factors governing arteriolar tone, in-
cluding RAAS blockade and prostaglandin activity (Figure 2).
For example, RAAS activation in DKD in T1D is associated
with greater afferent arteriolar than efferent arteriolar vasocon-
striction [70]. People with T1D are also known to have elevated
circulating plasma cyclic guanosine monophosphate, which has
been linked to greater efferent arteriolar tone and may explain
the lack of efferent vasodilation in response to SGLT2 inhibition
in people with T1D [71]. Furthermore, the role of renal vasoac-
tive factors such as adenosine may be markedly different in the
presence or absence of concurrent RAAS blockade, a group of
drugs that is more commonly prescribed in adults with T2D. It
also remains poorly understood whether these differences in
intrarenal haemodynamic function relate to T1D versus T2D or
rather are a function of age and diabetes duration. Future re-
search should interrogate the mechanisms underlying the dif-
ferences observed in people with T1D and T2D to better
understand the role of SGLT2 inhibition in people with T1D.
To better understand these differences, trials should enrol peo-
ple with both T1D and T2D in adequate numbers to allow
meaningful comparative analyses.

U N M E T M E D I C A L N E E D I N T 1 D T R E A T M E N T

Due to the deleterious effects of hyperglycaemia on microvascu-
lar and macrovascular outcomes, intensive insulin therapy, ei-
ther by multiple insulin injections or via continuous
subcutaneous insulin infusion, is employed in people with T1D

to achieve optimal glucose control (HbA1c <7.0% or 53 mmol/
mol). Based on the data from the DCCT/EDIC, optimal glycae-
mic control was shown to impede the onset of vascular compli-
cations [72, 73]. In terms of DKD, in the DCCT/EDIC study,
the development of macroalbuminuria was reduced by 54%
(range 19–74) by strict glycaemic control, indicating the impor-
tance of glycaemic control for the kidney [73]. However, rigor-
ous lowering of glycaemia by intensive insulin therapy, due to
the absence of a feedback system, comes at the price of (severe)
hypoglycaemia, particularly in the face of impaired awareness
of hypoglycaemia in people with long-standing disease.
Another undesired consequence of intensive insulin therapy is
clinically significant weight gain, particularly in patients with
frequent hypoglycaemia, and potentially insulin resistance,
which has been causally linked to vascular complications [39,
74, 75]. Thus it is not surprising that many people with T1D fail
to reach glycaemic targets, which represents a clear unmet med-
ical need. Several efforts have been implemented to address
these needs. First, pancreatic transplantation to restore islet cell
function is sometimes combined with kidney transplant.
Although pancreatic transplant can induce sustained diabetes
remission, the surgery is associated with high mortality rates.
Therefore ongoing research is focused on transplanting func-
tional human pancreatic islets to people with T1D. In addition,
current research aims to halt b-cell destruction through immu-
nomodulatory therapies. Another approach is directed at im-
proving insulin delivery, e.g. with closed-loop systems that
allow glucose feedback on insulin delivery by reducing the risk
for both hypo- and hyperglycaemia. Finally, strategies have
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been pursued whereby additional (oral) pharmacotherapies are
initiated to complement insulin therapy. Focusing on the latter,
this has proven to be a challenging area. Studies with metformin
[REMOVAL trial (NCT01483560)], the glucagon-like peptide-1
receptor agonist liraglutide [ADJUNCT ONE (NCT01836523)],
the dipeptidyl peptidase-4 inhibitor sitagliptin and pramlintide
showed overall modest benefits in adults with T1D when added
to insulin therapy and could even increase adverse effects such
as hypoglycaemia [76]. On the other hand, metformin therapy
compared with placebo in adolescents with T1D was found to
improve markers of CVD [77, 78]. The rationale for adjunct
therapies in T1D is clearly evident based on the need for both
glycaemic control and cardiorenal protection. However, the evi-
dence to support the use of the above-mentioned therapies
remains limited and future studies are needed.

G L Y C A E M I C E F F E C T S O F S G L T 2 I N H I B I T I O N
I N T 1 D

Recent studies have defined the effects of different SGLT2
inhibitors and dual SGLT1 and 2 inhibitors in people with T1D,
adjunctive to standard of care insulin therapy (Table 1). In the
DEPICT 1 trial (NCT02268214), dapagliflozin 5 and 10 mg
once daily, compared with placebo, reduced HbA1c by 0.42 and
0.45%, respectively, at 24 weeks of treatment [79]; at Week 52,
the differences remained �0.33% and �0.36% [80]. In the
Empagliflozin as Adjunctive to InSulin thErapy trials, similar
reductions were observed for 10 and 25 mg dosages (currently
approved in T2D): �0.53% and �0.54%, respectively. The dos-
age of 2.5 mg yielded a placebo-corrected HbA1c reduction of
�0.28% [81]. Finally, sotagliflozin reduced HbA1c by 0.36%
and 0.41% in the inTandem 1 and inTandem 2 studies [82, 83].
Most patients in the trial programmes had reasonable glycaemic
control prior to drug initiation due to insulin optimization dur-
ing run-in and had preserved kidney function. It is important
to emphasize that the achieved reduction in HbA1c was not ac-
companied by increased occurrence of (severe) hypoglycaemic
episodes. Insulin reductions were seen across the trials and were
mostly on the order of 10–15%. In glucose management of
T1D, much attention has shifted from average glucose values as
determined by HbA1c (an HbA1c value on target may include
many hypo- and hyperglycaemic events that average out) to
more complex measurements done by devices, such as flash
glucose monitoring or continuous glucose monitoring (CGM).
As such, the glycaemic parameter time in range (TIR), usually
defined as glucose levels between 3.9 and 10.0 mmol/L, has re-
ceived much attention. In the Dapagliflozin Evaluation in
Patients With Inadequately Controlled Type 1 Diabetes trials,
in 1591 participants with CGM analyses, dapagliflozin dosages
increased TIR by 10–11% versus placebo [84, 85]. Furthermore,
reductions in mean amplitude of glucose excursion (MAGE)
were observed as well as 24-h mean glucose values, while values
<3.9 mM were not increased. For sotagliflozin, a placebo-
adjusted increase in TIR occurred in 5.4% for the 200 mg dose
and 11.2% for the 400 mg dose [85]. Finally, EMPA 25 mg also
showed increases of 10% TIR, while reducing glucose variability
(glucose interquartile range and MAGE) [86]. The TIR percen-
tages indicated above corresponded to �3 h/day extra at the

highest dosages of each drug, without an increase in time for
hypoglycaemia. It should be mentioned that the association be-
tween TIR and the development of microvascular complication
is less well established as compared with the risk of high HbA1c
levels and microvascular complications. However, two recent
publications in people with T1D and T2D [87, 88] linked lower
TIR to progression of retinopathy and albuminuria. With the
increased use of sensor technology, more information will likely
be available in the near future.

E X T R A G L Y C A E M I C B E N E F I T S O F S G L T 2
I N H I B I T I O N I N P E O P L E W I T H T 1 D

The reason that SGLT2 inhibitors have received wide attention
recently is not due to their glucose-lowering potential, as de-
scribed above, but rather their impressive cardiorenal benefits.
As mandated by the Food and Drug Administration (FDA), all
trials with SGLT2 inhibitors have included placebo-controlled
cardiovascular safety trials in the past couple of years.
Unexpectedly, this drug class showed reductions in cardiovas-
cular endpoints (i.e. the composite 3-MACE endpoint) in peo-
ple with prior CVD, as reviewed extensively elsewhere [89, 90].
This improvement was driven by unprecedented reductions in
hospitalization for heart failure [hazard ratios (HRs) ranging
from 0.66 to 0.83]. Additionally, the composite endpoint of pro-
gression of nephropathy was improved (HRs ranging from 0.54
to 0.60), a finding that was confirmed in a study with DKD
patients [61, 91, 92]. Of great importance, hard renal outcomes
such as progression to ESKD were also reduced. The mecha-
nisms behind the observed cardiorenal benefit continue to be
incompletely understood. Although SGLT2 inhibitors modestly
improve cardiovascular and renal risk factors such as blood
pressure (�2–3 mmHg), body weight (�3 kg) and uric acid, it
is unlikely that these factors completely mediate the observed
benefits. Indeed, in a mediation analysis of the EMPA-REG
OUTCOME trial, the largest predictor of favourable outcome
was haematocrit, a marker of plasma volume. By inhibition of
SGLT2, sodium and glucose reabsorption are concomitantly
blocked. This in turn leads to temporary natriuresis, until so-
dium balance is restored by upregulation of other sodium trans-
porters [64, 65]. However, the natriuresis-induced volume
contraction is sustained over time. Thus alterations in sodium
homeostasis and extracellular volume are thought to drive the
observed cardiovascular benefit. At the kidney level, alterations
in sodium handling may also drive the observed renohaemody-
namic actions, where more distal sodium uptake could drive
beneficial amelioration of hyperfiltration as detailed above.

The key question is whether the renal and cardiovascular
benefits of SGLT2 inhibitors observed in people with T2D also
apply to individuals with T1D. However, no such trials have
been conducted, and it remains uncertain whether large-scale
CVOTs will be performed in this population. At present, we
have to carefully extrapolate T2D data and rely on biomarkers
of cardiorenal health. In this regard, post hoc analyses from the
EASE, DEPICT and inTandem trials may provide important
insights. In a pooled analysis of the inTandem 1 and 2 studies,
we found that sotagliflozin increased haematocrit by �2%, as
well as serum albumin, confirming volume contraction [22].
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This may indicate similar cardiovascular mechanisms as in
T1D adults. Salutary effects on blood pressure, body weight and
uric acid were also reported. Given the role of elevated blood
pressure, overweight and hyperuricaemia on hyperfiltration, re-
duction of these parameters could contribute to improved renal
outcomes in adults with T1D. In addition, an early drop in
eGFR similar to what has been shown in T2D was observed,
and in those with albuminuria at baseline, a 40–60% attenua-
tion of urinary albumin excretion was demonstrated [22].
These findings may implicate a reduction in glomerular pres-
sure as a potential mediator of the nephroprotective effects con-
sistent with the study by Cherney et al. [59]. Thus, while SGLT2
inhibitors have shown impressive beneficial effects on the cardi-
orenal axis in people with T2D, biomarkers suggest that these
effects may also present in people with T1D. Given the burden
of renal disease in people afflicted by T1D, this provides impe-
tus for dedicated large-scale trials and cohort studies.

D I A B E T I C K E T O A C I D O S I S R I S K I N T 1 D
M E C H A N I S M S : P R E V A L E N C E A N D
I M P L I C A T I O N S

SGLT2 and dual SGLT1 and 2 inhibitors are associated with
several side effects. Most of the adverse reactions relate to their
mode of action and are seen across the class. SGLT2 inhibitors
induce glucosuria that makes the urine an attractive culture me-
dium for bacteria, resulting in a slight increase in genitourinary
infections. Most commonly observed infections are fungal
infections of the genital skin (5–10% of treated women).
However, for people with T1D, the most critical potential ad-
verse effect concerns euglycaemic diabetic ketoacidosis (DKA).
SGLT2 inhibitors increase ketonaemia, also in people with
T2D. This is caused by reductions in plasma insulin concentra-
tions or a reduction in insulin dosage and concomitant incre-
ments in glucagon concentrations. While ketone bodies have
been hypothesized to explain beneficial cardiorenal effects of
SGLT2 inhibitors, in people with T1D they increase the risk for
acidosis. Due to apparent normoglycaemia secondary to

increased glucosuria, misdiagnosis of euglycaemic DKA contin-
ues to be a concern that could lead to delayed management.
Risk factors for DKA in people with T1D have been identified
and include large reductions in basal insulin therapy, insulin
pump failure, reduced carbohydrate intake, use of alcohol, acute
illness, vomiting and volume depletion/dehydration [93]. The
percentage of DKA in the conducted trials in people with T1D
was reported as 3.5% (4076 individuals treated with dual SGLT1
and 2 inhibitors) versus 0.6% (among 2362 placebo-treated
individuals), which yields a 5.8-fold relative risk increase. As
these numbers are derived from trials with motivated patients
and expert physicians using careful surveillance and monitoring
of ketonaemia (illustrated by very low DKA events in the pla-
cebo groups), it is plausible that the relative risk may be higher
in clinical practice. An exception to these data concerns the
novel low dose of EMPA (2.5 mg; currently not available),
which demonstrated no increase in DKA rates, albeit at the ex-
pense of attenuated glucose-lowering actions. It should be men-
tioned that this low dose of EMPA is not yet available for
clinical use.

A recently written consensus report written by international
experts highlights the need for appropriate patient selection for
SGLT2 inhibition and crucial knowledge available at the medi-
cal team. Finally, patients are required to measure ketones in ad-
dition to glucose levels and be trained on how to act upon
increments, which is uncommon in clinical practice in most
countries at present. Despite the usage of ketone metres, DKA
rates were significant, which suggests that ketone body measure-
ments are insufficient to mitigate DKA risk in people with T1D.

W E I G H I N G T H E R I S K S A N D B E N E F I T S O F
S G L T 2 I N H I B I T O R S I N T 1 D

The risk–benefit assessment of SGLT1 and 2 inhibitors in peo-
ple with T1D remains challenging for health authorities and
medical providers. In the USA, the FDA decided not to approve
sotagliflozin as adjunctive therapy in people with T1D. In
Europe, the European Committee for Medical Products for

Table 1. Studies with high-dose SGLT2 and dual SGLT1 and SGLT2 inhibitors in people with T1D

Clinical Trials in People with Type 1 Diabetes

DEPICT 1 DEPICT 2 inTandem 1 inTandem 2 inTandem 3 EASE 1 EASE 2 EASE 3

Number of patients,a n 556 442 530 521 1402 37 487 486
Study drug DAPA DAPA SOTA SOTA SOTA EMPA EMPA EMPA
Drug high dose (mg) 10 10 400 400 400 25 25 25
Study duration (weeks) 52 24 52 52 24 4 52 26
Baseline HbA1c (%) 8.5 8.4 7.5 7.8 8.2 8.2 8.1 8.2
Change in HbA1cb (%) �0.36 �0.42 �0.31 �0.32 �0.46 �0.49 �0.45 �0.52
Change in insulin TDDb (%) ��10 �11.1 �12.6 �8.2 �9.7 �13 �12.9 �12.6
Change in body weightb (kg) �3.6 �3.0 �4.3 �2.9 �3.0 �1.9 �3.6 �3.4
Change in time in rangeb,c (%) þ10.7 þ10.4 þ13.4 NA þ10.9 þ12.5 þ7.4
Ketoacidosis incidence rates,d,e n 13 versus 3 3 versus 0 11 versus 1 9 versus 0 21 versus 4 0 versus 0 16 versus 6

High-dose treatment with SGLT1 or SGLT2 inhibitor: dapagliflozin 10 mg, EMPA 25 mg or sotagliflozin 400 mg.
aIncluding placebo and high-dose SGLT1 or SGLT2 inhibitor treatment group.
bPlacebo-adjusted.
cCGM data for DEPICT-1 and DEPICT-2 were pooled for analyses.
dIncidence rates for SGLT1/2 inhibitor versus placebo.
eKetoacidosis incidence rates were pooled for EASE 2 and EASE 3 studies.
DAPA: dapagliflozin; SOTA, sotagliflozin; TDD, total daily dosage; NA, not available.
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Humans Use recommended the use of sotagliflozin and dapa-
gliflozin for people with T1D, however, it was restricted to indi-
viduals with BMI >27 kg/m2, based on post hoc analyses that
showed these individuals might have a reduced risk to develop
DKA. Based on preliminary data and biomarker analysis, low-
dose SGLT2 inhibition may hold promise as an adjunctive ther-
apy in people with T1D, especially those at high risk of DKD
and CVD. However, CVOTs in people with T1D are needed to
better understand the risk–benefit assessment, as data from
people with T2D may not be generalizable to people with T1D.
In fact, mechanistic studies suggest different effects of SGLT2
inhibition on intrarenal haemodynamic function in people with
T1D versus T2D. T1D continues to be an exclusion criterion in
the vast majority of pharma-sponsored clinical trials. However,
the ongoing EMPA-Kidney includes a subset of people with
T1D and DKD and may shed some important light. The medi-
cal community will likely remain sceptical until CVOTs in peo-
ple with T1D data are available. Accordingly, future efforts
should focus on designing a pragmatic CVOTs in people with
T1D who are at high risk of DKD and CVD. Strategic partner-
ships between academia, pharma, organizations (e.g. Juvenile
Diabetes Research Foundation, American Diabetes Association
and European Foundation for the Study of Diabetes) and fede-
ral and state sponsors are needed to facilitate the development
of pragmatic CVOTs in people with T1D. Real-world data from
carefully designed studies could also help in this regard. This
particularly holds true for the adverse effects. While efficacy can
be accurately determined in randomized clinical trials, real-
world evidence regarding ketoacidosis rates will provide crucial
information on the risk of this drug class in people with T1D
and will determine their future use.

C O N C L U S I O N

Trials have established that SGLT2 inhibitors impede DKD
progression in people with T2D. Although the mechanisms of
nephroprotection remain uncertain, it may relate to improve-
ments in renal haemodynamics, including reduced glomerular
pressure, as well as improvements in renal risk factors such as
blood pressure, hyperglycaemia, body weight and uric acid.
However, DKD pathogenesis may be different in people with
T1D compared with T2D. DKD in T1D may be characterized
by distinct metabolic and renal haemodynamic perturbations,
and data suggest that renal lesions from research biopsies also
differ in people with T1D and T2D. Thus the question remains
whether the renal benefits of SGLT2 inhibitors are also present
in T1D. At present, we are unable to address this question due
to the lack of dedicated trials in T1D, although certain renal bio-
markers in non-dedicated renal studies as well as a mechanistic
study focusing on renal haemodynamics suggest that SGLT2 in-
hibition may also confer nephroprotection in people with T1D.
Renal trials investigating the effects of SGLT2 inhibitors in
adults with T1D are now urgently needed. A major focus when
designing these trials should be safety, as SGLT2 inhibitors, de-
spite extensive surveillance measures, increase DKA risk.
Without dedicated renal trials in people with T1D, the benefit–
risk ratio cannot be meaningfully balanced for individual
patients.
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