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Abstract: How different are the emerging and the well-developed stock markets in terms of efficiency?
To gain insights into this question, we compared an important emerging market, the Chinese
stock market, and the largest and the most developed market, the US stock market. Specifically,
we computed the Lempel–Ziv complexity (LZ) and the permutation entropy (PE) from two composite
stock indices, the Shanghai stock exchange composite index (SSE) and the Dow Jones industrial
average (DJIA), for both low-frequency (daily) and high-frequency (minute-to-minute)stock index
data. We found that the US market is basically fully random and consistent with efficient market
hypothesis (EMH), irrespective of whether low- or high-frequency stock index data are used.
The Chinese market is also largely consistent with the EMH when low-frequency data are used.
However, a completely different picture emerges when the high-frequency stock index data are used,
irrespective of whether the LZ or PE is computed. In particular, the PE decreases substantially in
two significant time windows, each encompassing a rapid market rise and then a few gigantic stock
crashes. To gain further insights into the causes of the difference in the complexity changes in the
two markets, we computed the Hurst parameter H from the high-frequency stock index data of the
two markets and examined their temporal variations. We found that in stark contrast with the US
market, whose H is always close to 1/2, which indicates fully random behavior, for the Chinese
market, H deviates from 1/2 significantly for time scales up to about 10 min within a day, and
varies systemically similar to the PE for time scales from about 10 min to a day. This opens the door
for large-scale collective behavior to occur in the Chinese market, including herding behavior and
large-scale manipulation as a result of inside information.

Keywords: EMH; Lempel–Ziv complexity; permutation entropy; Hurst parameter; the US and
China’s stock market

1. Introduction

It is generally thought that the level of development of a capital market of a country is closely
related to the degree of its economic development. A healthy capital market can provide an effective
platform for financing the enterprise of the country. To realize this goal, stock prices in the market have
to fluctuate randomly [1], so that wealth will not be drawn out of the market by simple exploitation
of the systemic patterns in the market. When the prices of a market deviate from being completely
random, the behaviors of the market are considered to be inconsistent with what efficient market
hypothesis (EMH) [2–4] stipulates.
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There has been much effort to empirically test the validity of EMH in various markets. Major
approaches include using traditional statistical methods such as autocorrelation or cross-correlation [5–7],
variance ratio [8–11], the state space model [12], as well as metrics from complexity science such as
Lempel–Ziv complexity (LZ) [13–19], permutation entropy (PE) [20–33], and Hurst parameter and
multifractal measures [11,34–52]. The approaches from complexity science are especially appealing as
they are fundamentally different from machine-learning-based black-box approaches. In particular,
complexity science is rich in concepts, theories, and models, and thus can not only offer innovative
solutions in vastly different scenarios, but also tremendously help with problem formulation. It is
especially interesting to note that complexity science has been successfully applied to study many
important problems in humanities, including disasters, crime, terrorism, wars, and epidemics [53,54].

As most published studies use low-frequency daily stock index data to test the validity of EMH in
various markets [25–28], they only point out whether a market was efficient or not in a certain time span
(such as a few years), but do not shed much light on the temporal variation of the market efficiency,
nor help to characterize the difference in the efficiency between different markets. While the finding that
developed markets are more consistent with the EMH than the emerging ones [26] is very appealing,
the reported PE value for emerging markets is actually very close to a scenario of complete randomness,
which is 1. The few studies that used high-frequency data were more stimulating [18,20] as it was
found that minute-to-minute price data were slightly (but statistically significantly) more predictable
than daily prices [18], and on very short time scales, stock data demonstrated microbehaviors that
were not fully random. Unfortunately, the high-frequency data used in those studies only covered
a short time span, and thus were not quite viable for examining the dynamical changes in market
efficiency. Fortunately, this shortcoming can be readily overcome by working with high-frequency
data collected over a long time span, as shown by a recent analysis of the Chinese stock market using
minute-to-minute stock price data, where it was found that the values of PE can be significantly smaller
than 1 [29]. In this paper, we examine whether similar results can be obtained with developed markets
using high-frequency data, and whether the difference between emerging and developed markets can
be better captured by high-frequency data.

To answer the above questions, and specifically to gain insights into the temporal variations in
efficiency and complexity between emerging and developed stock markets, we chose to compare two
important markets, the US market, which is the largest, the best developed, and the most important
market, and the Chinese market, which is the most observed emerging market in the world. We will
examine both low-frequency (daily) and high-frequency (minute-to-minute) stock index data by
computing the Lempel–Ziv complexity (LZ), the permutation entropy (PE), and the Hurst parameter,
and study how the two markets differ at different time scales and in different time windows.

The remainder of the paper is organized as follows. In Section 2, we describe the data used
in this study, the algorithms of LZ, PE, and the adaptive fractal analysis (AFA) for computing the
Hurst parameter H. In Section 3, we compute the LZ and the PE of the US and Chinese stock markets
using both the low- and high-frequency data, compare their complexity changes, and finally compute
the Hurst parameter of these two markets using high-frequency data to further clarify the cause of
complexity changes. In Section 4, we make the concluding remarks.

2. Data and Methods

2.1. Data

We analyzed both the daily and minute-to-minute composite indices of the Shanghai stock market
(SSE), China, from 2 January 2003 to 8 August 2016, and the Dow Jones industrial average (DJIA) of
the US market from 2 January 2003 to 31 December 2014. In China, generally, the trading time in a
trading day is from 9:30 to 11:30 in the morning and 13:00 to 15:00 in the afternoon, while in the US,
the trading time is from 9:30 to 16:00. Thus, there are 240 min by minute data points for the SSE and
390 points for the DJIA on each trading day, Monday through Friday.



Entropy 2020, 22, 75 3 of 13

Concretely, we analyzed the logarithmic returns of the composite indices of SSE and DJIA,

Rt = ln(Pt)− ln(Pt−1). (1)

2.2. Methods

2.2.1. Lempel–Ziv (LZ) Complexity

The LZ complexity [55] and its derivatives are closely related to the Kolmogorov complexity [56,57]
and the Shannon entropy. They can be easily computed and have found wide applications in characterizing
the randomness of complex data.

To compute the LZ complexity, a numerical sequence has to first be transformed into a symbolic
sequence. The most popular approach is to convert the signal into a 0–1 sequence by comparing the
signal with a threshold value Sd [14]. That is, whenever the signal is larger than Sd, one maps the
signal to 1; otherwise, one maps it to 0. One good choice of Sd is the median of the signal [15]. When
multiple threshold values are used, one may map the numerical sequence to a multisymbol sequence.
Note that if the original numerical sequence is a nonstationary random walk-type process, one should
analyze the stationary difference data instead of the original nonstationary data.

After the symbolic sequence is obtained, it can then be parsed to yield distinct words, and the
words can be encoded. Let L(n) denote the length of the encoded sequence for those words. The LZ
complexity can be computed as

CLZ =
L(n)

n
. (2)

Note, this is very much in the spirit of the Kolmogorov complexity [56,57].
There exist many different methods for performing parsing. One popular scheme was proposed

by the original authors of the LZ complexity [55]. Another attractive method is proposed by Cover
and Thomas [58]. Let c(n) denote the number of words in the parsing of the source sequence by
the second scheme. For each word, we can use log2 c(n) bits to describe the location of the prefix
to the word and one bit to describe the last bit. Then, the total length of the encoded sequence is
L(n) = c(n)[log2 c(n) + 1]. Equation (2) then becomes

CLZ = c(n)[log2 c(n) + 1]/n. (3)

When n is very large, c(n) ≤ n/ log2 n [55,58]. Dropping terms much smaller than log2 n, we can
replace log2 c(n) in Equation (3) by log2 n and obtain

CLZ =
c(n)

n/ log2 n
. (4)

This is the functional form for the definition of the commonly used LZ complexity. Unfortunately, CLZ
depends on the sequence length. Rapp et al. [59] were among the first to consider normalizing the LZ
complexity to make it independent of the sequence length by computational means. This issue was
reconsidered by Hu et al. [60] using an analytic approach.

2.2.2. Permutation Entropy (PE)

PE is introduced in [21] as a convenient means of analyzing a time series. It may be considered as
a measure from chaos theory, since embedding vectors are used in the analysis. Using the notations of
[22], it can be described as follows.

For a given but otherwise arbitrary i, the m number of the real values of Xi = [x(i), x(i +
L), . . . , x(i + (m− 1)L)] are sorted in ascending order, [x(i + (j1 − 1)L) ≤ x(i + (j2 − 1)L) ≤ · · · ≤
x(i + (jm − 1)L]. When an equality occurs, e.g., x(i + (ji1 − 1)L) = x(i + (ji2 − 1)L), the quantities
x are ordered according to the values of their corresponding j’s; that is, if ji1 < ji2, then we write
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x(i + (ji1 − 1)L) ≤ x(i + (ji2 − 1)L). Therefore, the vector Xi is mapped onto a sequence of numbers,
(j1, j2, . . . , jm), which is one of the m! permutations of m distinct symbols (1, 2, . . . , m). When each such
permutation is considered as a symbol, the reconstructed trajectory in the m-dimensional space is
represented by a symbol sequence. Let the probability for the K ≤ m! distinct symbols be P1, P2, . . . , PK.
Then, PE, denoted by Ep, for the time series {x(i), i = 1, 2, . . . } is defined as

Ep(m) = −
K

∑
j=1

Pj ln Pj. (5)

The maximum of EP(m) is ln(m!) when Pj = 1/(m!). It is convenient to work with

0 ≤ Ep = Ep(m)/ ln(m!) ≤ 1. (6)

Thus, Ep gives a measure of the departure of the time series under study from a completely random
one: the smaller the value of Ep is, the more structure the time series has.

To detect interesting dynamical changes in a time series, one can partition a time series into
overlapping or nonoverlapping segments of short length, compute the PE from each segment, and
examine how the PE changes with the segments [22]. Here, we apply this approach to compute the
PE from the minute-to-minute logarithmic yields of the composite indices of SSE and DJIA on each
trading day, then check how the PE varies with time.

In this paper, for the daily stock index data of both USA and China, we employ the same
segmentation and choose m = 5 and L = 1. For the intraday stock index data, since on each day,
the data for the Chinese market is shorter than for the USA, we choose m = 4, L = 1 for SSE and
m = 5, L = 1 for DJIA, respectively. Note that the time delay L was always chosen to be 1; this
is based on the reasoning that stock data are basically random. As explained in [36], such a choice
is not only sufficient, but optimal. The selection of m is basically constrained by the length of each
sub-dataset under computation—if the data segment is short, then m cannot be too big. To better
cope with the randomness in the data, m should not be too small either. The fact that the embedding
window (m− 1)L is often larger than 1 (and as a result of the patterns in the dataset) makes it possible
to quantify the correlations in the data to some degree with the PE. This will be discussed in more
depth later in the paper.

2.2.3. Adaptive Fractal Analysis (AFA)

Consider a 1/ f 2H+1 process, where 0 < H < 1. Such processes are normally called nonstationary
random-walk processes. Its differentiation, denoted as X = {xt : t = 0, 1, 2, . . . }, is a covariance
stationary stochastic process, with mean µ, variance σ2, and autocorrelation function r(w) have the
form [35]

r(w) ∼ w2H−2, as w→ ∞. (7)

When 1/2 < H < 1, ∑w r(w) = ∞, leading to long-range temporal correlation. The process X has a
PSD of 1/ f 2H−1. A 1/ f process cannot be aptly modeled by a Markov process or an ARIMA model
[61] since the PSD of those processes are distinctly different from 1/ f . To adequately model a 1/ f
process, a fractional order process has to be used. A well-known process of this class is the fractional
Brownian motion model [34].

There are many excellent methods to estimate the Hurst parameter [36]. One of the most popular
methods for estimating the Hurst parameter H is detrended fluctuation analysis (DFA) [62]. This
involves constructing a random walk process

u(n) =
n

∑
k=1

(xk − x), i = 1, 2, . . . , n, (8)
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where x is the mean of the series x(i), i = 1, 2, . . . , dividing the constructed random walk process
into nonoverlapping segments, determining the best linear or polynomial fits in each segment as the
local trends, getting the variance of the differences between the random walk process and the local
trends, and averaging them over all the segments. Clearly, DFA may involve discontinuities at the
boundaries of adjacent segments. Such discontinuities could be detrimental when the data contain
trends [63], or nonstationarity [64] or nonlinear oscillatory components such as signs of rhythmic
activity [65,66]. Fortunately, this shortcoming can be readily overcome using a method called adaptive
fractal analysis (AFA) [38,39]. AFA is based on a nonlinear adaptive multiscale decomposition, which
starts by partitioning a time series into segments of length w = 2n + 1, where neighboring segments
overlap by n + 1 points. Each segment is then fitted with the best polynomial of order M. We denote
the fitted polynomials for the i-th and (i + 1)-th segments by y(i)(l1) and y(i+1)(l2), respectively, where
l1, l2 = 1, . . . , 2n + 1. We then define the fitting for the overlapped region as

y(c)(l) = w1y(i)(l + n) + w2y(i+1)(l), l = 1, 2, . . . , n + 1, (9)

where w1 =
(
1− l−1

n
)

and w2 = l−1
n can be written as (1− dj/n) for j = 1, 2, and where dj denotes the

distances between the point and the centers of y(i) and y(i+1), respectively. This means that the weights
decrease linearly with the distance between the point and the center of the segment. Such a weighting
ensures symmetry and effectively eliminates any jumps or discontinuities around the boundaries of
neighboring segments, and therefore can maximally suppress the effect of complex nonlinear trends
on the scaling analysis.

With the above procedure, AFA can be readily described. For an arbitrary window size w, we
determine, for the random walk process u(i), a global trend v(i), i = 1, 2, . . . , N, where N is the
length of the walk. The residual, u(i)− v(i), characterizes fluctuations around the global trend, and its
variance yields the Hurst parameter H according to

F(w) =
[ 1

N

N

∑
i=1

(u(i)− v(i))2
]1/2
∼ wH . (10)

3. Results

3.1. Detecting Complexity Changes by LZ and PE Using Low-Frequency Data

We examined whether low-frequency stock data can be used for detecting the complexity changes
in the Chinese and the US stock markets by computing the temporal variations of LZ and PE using
daily stock index data. The results for LZ and PE are shown as the green and blue curves in Figure 1a,b
and c,d, respectively. The curves were computed from daily stock data, using a moving window of
size 200 days, where adjacent windows overlap by 199 days. LZ and PE were also computed from the
shuffled data without any correlations. They are shown in the plots as the red curves. It is observed
that the red curves are essentially indistinguishable from the green and blue curves computed from
the daily stock data in these two stock markets. Therefore, the daily SSE and DJIA data are essentially
random. Consequentially, the behavior of both markets is basically consistent with the EMH, when
time scales of 1 day and longer are concerned.

The above result has two interesting implications: (1) daily low-frequency stock data may not
be viable for detecting complexity changes in SSE and DJIA; (2) LZ or PE may not be capable of
characterizing complexity changes in the two stock markets. In the next subsection,to find out which
implication is more relevant, we examine the variations of LZ and PE using high-frequency stock data.
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Figure 1. Temporal variations of Lempel–Ziv complexity (LZ) (the green curves) and permutation
entropy (PE) (the blue curves) for the Chinese (a,c) and the US (b,d) markets. The curves were computed
from daily stock data, using a moving window of size 200 days, where adjacent windows overlap by
199 days. The LZ and PE of the shuffled data for the Shanghai stock exchange composite index (SSE)
and Dow Jones industrial average (DJIA) were also plotted as red curves.

3.2. Detecting Complexity Changes by LZ and PE Using High-Frequency Data

With the minute-to-minute high-frequency stock data, we are able to compute LZ and PE on each
day and examine their temporal variations. The results for LZ and PE are summarized in Figure 2a,b
and c,d, respectively. As benchmark, LZ and PE were also computed from the shuffled data without
any correlations and plotted as the red curves in the plots. For the US market, what we observe
from Figure 2b,d is basically the same as what is revealed by the low-frequency daily data shown
in Figure 1b,d: the market is essentially random. However, a completely different picture emerges
for the Chinese market. Concretely, we observe from Figure 2a that LZ for the Chinese stock market
fluctuates wildly during the entire time span from 2003 to 2016 and is significantly smaller than the
LZ for the fully random shuffled data. This plainly suggests that the Chinese stock market usually
violates the EMH. The plot of PE is even more interesting. As shown in Figure 2c, PE for the Chinese
stock market not only fluctuates wildly during the entire time span, but also decreases substantially
in two significant time windows, one being from mid-2006 to mid-2011, the other from the end of
2014 to 2016. Each period encompasses a rapid market rise (bull market) and then a few gigantic stock
crashes. As the first period also encompasses the global financial crisis, it is much longer than the
second period. While both PE and LZ have indicated unambiguously that the Chinese stock market is
highly inconsistent with the EMH on time scales shorter than a day, we have to conclude that PE offers
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a better means of characterizing the complexity changes in the Chinese stock market than LZ when
high-frequency stock index data are used.

Figure 2. Temporal variations of LZ (the green curves) and PE (the blue curves) for the Chinese (a,c)
and the US (b,d) stock markets. The computation was performed day by day using minute-to-minute
data. As benchmark, the LZ and PE of the shuffled data for SSE and DJIA are also shown as red curves.

3.3. Cause of Complexity Changes: Long-Range Correlation

To gain further insights into the mechanism for the huge difference between the complexity
changes in the Chinese and the US stock markets, we carried out AFA of the high-frequency
minute-to-minute stock data on each day for the two markets and examined the temporal variation
of the Hurst parameter. Two examples of typical fractal scaling log2 F(w) vs. log2 w curves for the
Chinese market are shown in Figure 3a,b, where we observe two distinct scaling regimes, one is from 1
min to about 10 min, with an HS larger than 1. The other is for time scales above 10 minutes, with an
1/2 < HL < 1. In contrast, the US stock data only exhibits a single scaling, with an H very close to
1/2, as shown in Figure 3e. The variations of HS and HL with time for the Chinese market and the H
for the US market are shown in Figure 3c,d,f, together with a curve of H (designated as red) for the
fully random shuffled data. We observe that the behavior of the US market is consistent with the EMH,
and is fully consistent with what was revealed by LZ and PE. However, the behavior of the Chinese
market is totally different; while HS is often larger than 1 and fluctuates widely with time, HL also
varies systematically. In fact, on the basis of the variations of HL, three periods can be identified. One
is from 2004 to mid-2006, the second is from mid-2006 to the end of 2014, the third is from the end of
2014 to 2016. During each period, HL steadily increases. As mid-2006 and the end of 2014 coincide
with the two strongest bull markets in China, the variation of HL suggests that the decrease in HL
coincides with the occurrence of the bull markets. Not only so, the mean level of HL during those
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two bull market periods is smaller than 0.5, highlighting the persistence of the two bull markets—the
antipersistent correlations characterized by HL < 0.5 means that any deviations from a bull market are
soon stabilized. Indeed, both bull markets were sustained for about half year because of favorable
governmental policies, even though basic economic conditions in those two periods were not very
different from other periods.

Figure 3. Adaptive fractal analysis assessing the long-range correlations in the Chinese and the US
stock markets: (a,b,e) log2 F(w) vs. log2 w for arbitrarily chosen days in China and the USA, which
exhibits two scaling regimes (with slopes denoted as Hs and HL) for China’s market, and a simple
scaling similar to a Brownian motion for the US market; (c,d) temporal variations of Hs and HL for
China, where Hs differs from 1/2 significantly, while HL shows systematic variations consistent with
the timing of the two strong bull markets, occurring in the middle of 2006 and the end of 2014; H ≈ 0.5
for the shuffled data is shown as red curves in the plots; (f) temporal variation of H for the USA, the
value of which is close to 1/2 and so indistinguishable from that of the shuffled data.
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3.4. Correlation between LZ, PE, and H for SSE and DJIA

To examine whether correlations exist between LZ and the Hurst parameter, we can simply plot
the scatter plots between LZ and H. As can be seen from Figure 4, indeed correlations exist between
HS and LZ for the Chinese market. The correlation coefficients between H and LZ for SSE and DJIA
are 0.68 and −0.03, respectively. The lack of any correlation between H and LZ for the US market is
as expected, since H corresponds to the fully random case and essentially does not change with time
(and thus cannot be expected to be correlated with any variable). What is surprising is that for the
Chinese market, a strong negative correlation does exist between LZ and the short time scale H. This is
consistent with our finding that the Chinese market has some nonrandom structural properties on
time scales shorter than 10 min.

Figure 4. Scatter plots of H and LZ for the two stock markets: (a) the Chinese market (b) the US market.

The correlations between PE and H can also be examined by plotting the scatter plots. As shown
in Figure 5a,b, we observe that PE has fairly strong nonlinear correlations with H on both short and
long time scales for the Chinese market. In particular, the largely positive and weakly nonlinear
correlation between HL and PE suggests that the variation of HL with time would be similar to the
variation of PE with time. Indeed, this is clearly shown in Figures 2c and 3d. The correlation between
PE and H is weak for the US market, and thus is not shown here.

Figure 5. Scatter plots of H and PE for the Chinese market. (a) HS vs. PE, (b) HL vs. PE.

One might be intrigued by the relationships between complexity measures (LZ and PE) and the
Hurst exponents, as the former quantifiers are estimated for a particular time scale while the latter
one considers a time scale range. To understand this monoscale (LZ and PE) versus multiscale (Hurst
exponent) approaches, it is best to consider data in terms of patterns. The long-range correlations
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captured by the Hurst exponent amount to certain special patterns in the data. The patterns in turn
determine the values of LZ and PE.

4. Discussion

Capital markets sometimes exhibit behaviors that are inconsistent with the EMH. Are deviations
from the EMH equally likely to occur with both developed and emerging markets? To gain insights
into this question, we compared the behaviors of the US and the Chinese stock markets by computing
the LZ complexity and the PE from two stock composite indices, the SSE and the DJIA. We found that
the US stock market is largely fully random and consistent with the EMH, irrespective of whether low-
or high-frequency stock index data are used. The Chinese stock market is also largely consistent with
the EMH when low-frequency data are used. However, a completely different picture emerges when
the high-frequency stock index data are used, irrespective of whether the LZ or PE is computed. In
particular, the PE decreases substantially in two significant time windows, each encompassing a rapid
market rise and then a few gigantic stock crashes. To further clarify the mechanism of complexity
changes, we examined the memory effect from the USA and the Chinese minute-to-minute stock
index data by computing the Hurst parameter H on each day. As expected, H is always close to 1/2
for the US stock market. However, in stark contrast, the fractal scaling for the Chinese stock market
showed two scaling regimes, one is for time scales up to about 10 minutes, where H deviates from 1/2
significantly, the other for time scales from about 10 minutes to a day, where the systematic variations
in H between 2004 and 2016 suggest three periods, consistent with what the PE indicated.

The significant deviations from the EMH in the Chinese stock market strongly suggests the
existence of irrational behavior in the Chinese markets. Indeed, large-scale collective behaviors,
such as herding effects [67,68], were frequently observed in the Chinese stock market in 2015 [69].
Large scale manipulation of the market also occurred, as was revealed by the arrest of a number of
high-profile investors.

Our analysis strongly suggests that the complexity measures employed here can effectively
forewarn of problems in the Chinese market. This is revealed by the wild variations in the LZ
complexity and the short time scale Hurst parameter, as well as by the PE and the long-time scale
Hurst parameter, which dropped significantly during the strong bull market periods both in the middle
of 2006 and at the end of 2014. To make the Chinese and other emerging capital markets more healthy,
and to promote more effective cooperation among different economies (which is essential for the
successful continuation of globalization), methods for forewarning of deviations from the EMH of a
market are invaluable. Thus, by monitoring the complexity changes in the market, it might be possible
to guide regulators to the exact mechanisms responsible for the deviations.
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