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Abstract 

Sex is an important factor that contributes to the clinical and biological heterogeneities in Alzheimer’s disease 
(AD), but the regulatory mechanisms underlying sex disparity in AD are still not well understood. DNA methylation 
is an important epigenetic modification that regulates gene transcription and is known to be involved in AD. We 
performed the first large-scale sex-specific meta-analysis of DNA methylation differences in AD neuropathology, 
by re-analyzing four recent epigenome-wide association studies totaling more than 1000 postmortem prefrontal 
cortex brain samples using a uniform analytical pipeline. For each cohort, we employed two complementary ana-
lytical strategies, a sex-stratified analysis that examined methylation-Braak stage associations in male and female 
samples separately, and a sex-by-Braak stage interaction analysis that compared the magnitude of these associations 
between different sexes. Our analysis uncovered 14 novel CpGs, mapped to genes such as TMEM39A and TNXB that 
are associated with the AD Braak stage in a sex-specific manner. TMEM39A is known to be involved in inflammation, 
dysregulated type I interferon responses, and other immune processes. TNXB encodes tenascin proteins, which are 
extracellular matrix glycoproteins demonstrated to modulate synaptic plasticity in the brain. Moreover, for many 
previously implicated genes in AD neuropathology, such as MBP and AZU1, our analysis provided the new insights 
that they were predominately driven by effects in only one sex. These sex-specific DNA methylation differences were 
enriched in divergent biological processes such as integrin activation in females and complement activation in males. 
Our study implicated multiple new loci and biological processes that affected AD neuropathology in a sex-specific 
manner.
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Introduction
Late-onset Alzheimer’s disease (LOAD) is the most com-
mon cause of dementia. With the aging population in the 
U.S., Alzheimer’s disease (AD) has become a major pub-
lic health concern and one of the most financially costly 
diseases [1]. Almost two-thirds of AD patients in the U.S. 
are women [2]. After diagnosis, women also progress 
faster with more rapid cognitive and functional declines 

[3–8]. On the other hand, it has also been reported 
men with AD have an increased risk for death [9–11]. 
However, the molecular mechanisms underlying these 
observed disparities in AD are still not well understood. 
Previous studies have shown that epigenetics is an impor-
tant contributor to the sex differences in brain functions 
and vulnerability to diseases [12–16]. Among epigenetic 
modifications, DNA methylation profiles differ signifi-
cantly between males and females at many loci in adult 
brains [17]. Importantly, alterations of DNA methylation 
levels have also been implicated in multiple neurological 
disorders including AD [18–22].
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However, thus far, a comprehensive characterization 
for the contribution of sex to DNA methylation differ-
ences in AD neuropathology has not been performed. In 
the identification of sex-specific effects, statistical power 
is a major challenge [23]. Stratifying by sex reduces the 
sample size of both groups. Also, comparing methylation 
to disease associations between the sexes by testing the 
interaction effect would require a much larger sample 
size than detecting the main effect with the same mag-
nitude [24]. To address these challenges, we performed 
a comprehensive meta-analysis of more than 1000 post-
mortem brain prefrontal cortex (PFC) samples, collected 
from four recent AD epigenome-wide association stud-
ies [18–21], to identify the most consistent DNA meth-
ylation differences affected by AD neuropathology in a 
sex-specific manner. Within each cohort, to identify sex-
specific differences in AD neuropathology, we employed 
two complementary approaches, a sex-stratified analysis 
that examined methylation-Braak stage associations in 
female and male samples separately, and a sex-by-Braak 
stage interaction analysis that compared the magnitude 
of these associations between different sexes. As sex is a 
strong factor in driving inter-personal variabilities in AD, 
the results of this study are particularly relevant for pre-
cision medicine.

Methods
Study cohorts
Our meta-analysis included 1,030 prefrontal cortex brain 
samples (642 female samples and 388 male samples) from 
four independent cohorts (Additional file  2: Table  S1), 
previously described in the ROSMAP [18], Mt. Sinai 
[20], London [19], and Gasparoni [21] DNA methylation 
studies.

Pre‑processing of DNA methylation data
All the samples in this study were measured using the 
Infinium HumanMethylation450 BeadChip. Additional 
file 2: Table S2 shows the number of CpGs and samples 
removed at each quality control step. Quality control 
for CpG probes included removing probes with detec-
tion P-value < 0.01 in all samples of a cohort using the 
minfi R package, removing the 2623 CpGs associated 
with cigarette smoking identified in Joehanes et  al. [25] 
(at P-value < 1 ×  10–7 threshold), and removing CpGs 
having a single nucleotide polymorphism (SNP) with 
minor allele frequency (MAF) ≥ 0.01 present in the last 
5 base pairs of the probe using the DMRcate R pack-
age (with function rmSNPandCH and option dist = 5, 
mafcut = 0.01). For the quality control of samples, we 
removed samples with low bisulfite conversion effi-
ciency (i.e., < 88%) or detected as outliers in principal 
component analysis (PCA). More specifically, PCA was 

performed using the 50,000 most variable CpGs for each 
cohort. Samples that were within ± 3 standard devia-
tions from the means of PC1 and PC2 were selected 
to be included in the final sample set. The quality-con-
trolled methylation datasets were next subjected to the 
QN.BMIQ normalization procedure as recommended 
by a recent systematic study of different normalization 
methods [26]. More specifically, we first applied quan-
tile normalization as implemented in the lumi R package 
to remove systematic effects between samples. Next, we 
applied the β-mixture quantile normalization (BMIQ) 
procedure [27] as implemented in the wateRmelon R 
package [28] to normalize beta values of type 1 and type 
2 design probes within the Illumina arrays. Finally, to 
remove batch effects, we applied the linear model meth-
ylation M value ~ methylation slide to M values of each 
CpG. The methylation residuals from these linear models 
were then used for subsequent analysis.

Single cohort analysis
To identify sex-specific DNA methylation differences in 
AD neuropathology, we performed both a sex-stratified 
analysis and a sex-by-Braak stage interaction analysis 
for each of the four brain sample cohorts. In the sex-
stratified analysis, we tested methylation-Braak stage 
associations in female and male samples separately. In 
sex-by-Braak stage interaction analysis, we analyzed 
both female and male samples simultaneously and com-
pared slopes for methylation-Braak stage associations in 
females and males.

More specifically, in the sex-stratified analysis, for each 
CpG, we applied the model methylation residuals ~ age 
at death + Braak stage + estimated neuron proportions 
to female samples and male samples separately, where 
methylation residuals were obtained in “Pre-processing 
of DNA methylation data” described above. Here, the 
neuron proportion for each sample was estimated using 
the CETS R package [29], an R software that quantifies 
neuronal proportions from DNA methylation data using 
cell epigenotype specific (CETS) marks. In sex-by-Braak 
stage interaction analysis, for each CpG, we applied the 
model methylation residuals ~ age at death + sex + Braak 
stage + sex*Braak stage + sex*age at death + estimated 
neuron proportions to samples including both sexes.

For the analysis of differentially methylated regions 
(DMRs), we used the coMethDMR R package [30] to ana-
lyze 40,010 pre-defined genomic regions on the Illumina 
450  k arrays and identify co-methylated DMRs associ-
ated with Braak stage. The pre-defined genomic regions 
are regions on the Illumina array covered with clusters 
of contiguous CpGs where the maximum separation 
between any two consecutive probes is 200 base pairs. 
First, coMethDMR selects co-methylated regions within 



Page 3 of 19Zhang et al. acta neuropathol commun            (2021) 9:77  

these pre-defined contiguous genomic regions. Next, we 
summarized methylation M values within these co-meth-
ylated regions using medians and tested them against 
the AD Braak stage. The same linear models described 
for the analysis of CpGs were then applied to the median 
value of each DMR. We considered CpGs (or DMRs) 
with a false discovery rate (FDR) less than 0.05 in female 
samples or male samples to be significant.

Inflation assessment and correction
For genome-wide discoveries to be valid, the false posi-
tive rate of the study should be properly controlled. 
Because systematic inflation of test statistics can lead to 
an increase in the number of false-positive results, tradi-
tionally genomic inflation factor [31] is typically used to 
quantify the amount of inflation in genome-wide asso-
ciation studies (GWAS) of genetic variants. However, as 
shown by simulation studies [32], real datasets [32], and 
theory [31], the conventional genomic inflation factor 
(lambda or � used interchangeably below) is dependent 
on the expected number of true associations. Because 
in a typical epigenome-wide association study (EWAS), 
it is expected that small effects from many CpGs might 
be associated with the phenotype, the genomic infla-
tion factor would overestimate actual test-statistic infla-
tion. To estimate genomic inflations more accurately in 
EWAS, Iterson et  al. [32] developed a Bayesian method 
that estimates inflation in EWAS based on empirical null 
distributions, which is implemented in the Bioconductor 
package bacon.

In this study, to assess inflation of the test statistics, 
we used quantile–quantile (QQ) plots and estimated 
genomic inflation factors using both the conventional 
approach and the bacon method [32] (Additional file  1: 
Fig. S1). The bacon method was also used to obtain infla-
tion-corrected effect sizes, standard errors, and P-values 
for each cohort, which were then combined by inverse-
variance weighted meta-analysis models using R package 
meta.

Meta‑analysis
The evidence for heterogeneity of study effects was tested 
using Cochran’s Q statistic [33]. The inverse-variance 
weighted fixed effects model was first applied to syn-
thesize statistical significance from individual cohorts. 
Even though the fixed effects model for meta-analysis 
does not require the assumption of homogeneity [34], for 
the CpGs (or genomic regions) with nominal evidence 
for heterogeneity (nominal  Pheterogeneity < 0.05), we also 
applied random effects meta-analysis [35] and assigned 
final meta-analysis P-value based on the random effects 
model. For each CpG (and for each genomic region), we 
used the R package meta to obtain Braak stage effect in 

female samples and male samples separately in sex-strati-
fied analysis, as well as meta-analysis P-values for sex-by-
Braak stage interaction.

Identifying sex‑specific differences
In the sex-stratified analysis, we selected significant CpGs 
(or genomic regions) with FDR < 0.05 in female samples 
or male samples separately. In sex-by-Braak stage inter-
action analysis, because the standard error of interac-
tion effect sex × Braak stage is typically much larger 
than those for main Braak stage effects, the conventional 
approach for controlling false discovery rate often results 
in low power for discovering interaction effects [36]. 
Therefore, we used a stagewise analysis approach, previ-
ously proposed by van de Berge et al. (2017) [36], to help 
improve power in high-throughput experiments where 
multiple hypotheses are tested for each gene. More spe-
cifically, in the screening step, for each CpG (or genomic 
region), we tested the global null hypothesis that there 
is methylation-Braak stage association in either male or 
female samples. Next, in the confirmation step, we con-
sidered three individual null hypotheses for each CpG (or 
DMR): (a) there is no methylation-Braak stage associa-
tion in male samples, (b) there is no methylation-Braak 
stage association in female samples, and (c) the methyla-
tion-Braak stage associations in male samples and female 
samples are the same. For the CpGs (or genomic region) 
selected in the screening step, these three individual 
hypotheses were then tested while controlling family-
wise error rate (FWER) as described in van de Berge et al. 
(2017)[36].

The stagewise analysis described above was imple-
mented using the stageR package to identify CpGs (or 
genomic regions) with significant differential methyla-
tion—Braak stage associations in females and males. In 
the screening step, we considered meta-analysis P-values 
for the Braak stage in female samples and male samples 
(p.meta.female, p.meta.male), and used the minimum of 
these two meta-analysis P-values to represent each CpG 
(or genomic region). In the confirmation step, the param-
eter pConfirmation was defined using three P-values for 
each CpG (or genomic region): p.meta.female, p.meta.
male, and p.meta.interaction (meta-analysis P-value for 
sex × Braak stage).

Enrichment and pathway analysis
The probes on the Illumina 450k array are annotated 
according to their locations with respect to genes 
(TSS1500, TSS200, 5′UTR, 1stExon, gene body, 3′UTR, 
intergenic) or CpG islands (island, shore, shelf, open sea). 
To understand the genomic context of sex-specific DNA 
methylation differences in AD neuropathology, we com-
pared the FDR significant methylation differences from 



Page 4 of 19Zhang et al. acta neuropathol commun            (2021) 9:77 

sex-stratified analysis with different types of genomic 
features. As Braak-associated methylation differences can 
occur at both significant individual CpGs and significant 
DMRs, we considered the CpGs located at significant 
individual CpGs or within significant DMRs jointly in 
this analysis, by testing their over- and under-representa-
tion in different types of genomic features using Fisher’s 
exact test. More specifically, the proportion of signifi-
cant CpGs mapped to a particular type of genomic fea-
ture (e.g., CpG islands) (foreground) was compared to 
the proportion of CpGs on the array that mapped to the 
same type of genomic feature (background).

Also, we used Fisher’s test to assess enrichment of sig-
nificant CpGs and DMRs in different chromatin states by 
comparing with the 15-chromatin state data for bulk PFC 
tissue samples (E073) from the Roadmap Epigenomics 
Project [37]. Using combinations of histone modification 
marks, ChromHMM [38] was previously used to anno-
tate segments of the genome with different chromatin 
states (repressed, poised, and active promoters, strong 
and weak enhancers, putative insulators, transcribed 
regions, and large-scale repressed and inactive domains), 
which were shown to vary across sex, tissue type, and 
developmental age [39]. Similarly, we tested enrich-
ment of significant CpGs and DMRs in binding sites of 
transcription factors and chromatin proteins from the 
ENCODE project [40] and CODEX database [41] using 
Locus Overlap Analysis as implemented in the LOLA R 
package [42].

Finally, we performed pathway analysis by comparing 
the genes with significant DNA methylation differences 
in AD neuropathology (identified in sex-stratified analy-
sis) with the canonical pathways and biological process 
GO terms in MSigDB using Gene Set Enrichment Analy-
sis (GSEA) [43]. First, we linked each CpG and each pre-
defined genomic region tested in DMR analysis to genes 
by annotating them using the GREAT (Genomic Regions 
Enrichment of Annotations Tool) software, which asso-
ciates genomic regions to target genes. With the default 
“Basal plus method”, GREAT links each gene to a regu-
latory region consisting of a basal domain that extends 
5 kb upstream and 1 kb downstream from its transcrip-
tion start site, and an extension up to the basal regulatory 
region of the nearest upstream and downstream genes 
within 1 Mb [44]. Next, we represented each gene by the 
smallest P-value if there are multiple CpGs or genomic 
regions associated with them. To remove selection bias 
due to different numbers of CpGs or genomic regions 
associated with each gene (i.e., the smallest P-value for a 
gene with many CpGs or genomic regions linked to it is 
likely to be smaller than the smallest P-value for a gene 
with only a few linked CpGs or genomic regions), we next 
fit a generalized additive model [45] using the R package 

mgcv: Yi ∼ f (n.linksi) where Yi is negative log (base 10) 
transformation of the smallest P-value for gene i in the 
analysis of female samples (or male samples), n.linksi is 
the number of CpGs or genomic regions linked to gene i, 
and f is a penalized spline function. We assumed gamma 
distribution for Yi, as under the null hypothesis of no 
association, Yi follows the chi-square distribution (a spe-
cial case of gamma distribution). The residuals from this 
model were estimated and used to generate a ranked 
gene list, which was then used as input for GSEA (in pre-
ranked mode) to identify canonical pathways and gene 
ontology terms (MsigDB C2:CP and C5:BP collections of 
gene sets) enriched with significant methylation differ-
ences in female samples and male samples separately.

Integrative methylation and gene expression analysis
To systematically evaluate transcriptional differences 
near the observed sex-specific DNA methylation differ-
ences, we next performed integrative methylation—gene 
expression analysis using data on 333 female samples 
and 196 male samples from the ROSMAP study with 
matched DNA methylation and RNA-seq gene expres-
sion profiles measured on the prefrontal cortex. To this 
end, normalized FPKM (Fragments Per Kilobase of tran-
script per Million mapped reads) gene expression values 
for the ROSMAP study were downloaded from the AMP-
AD Knowledge Portal (Synapse ID: syn3388564).

First, we linked significant CpGs (or DMRs) to nearby 
genes using GREAT [44], which associates genomic 
regions to target genes. Next, we removed confound-
ing effects in DNA methylation data by fitting the model 
methylation M value ~ neuron.proportion + batch + sam-
ple.plate + ageAtDeath and extracting residuals from this 
model; these are the ROSMAP methylation residuals. 
Similarly, we also removed potential confounding effects 
in RNA-seq data by fitting model log2(normalized FPKM 
values + 1) ~ ageAtDeath + markers for cell types. The last 
term, “markers for cell types,” included multiple covari-
ate variables to adjust for the multiple types of cells in the 
brain samples. More specifically, we estimated expres-
sion levels of genes that are specific for the five main cell 
types present in the CNS: ENO2 for neurons, GFAP for 
astrocytes, CD68 for microglia, OLIG2 for oligodendro-
cytes, and CD34 for endothelial cells, and included these 
as variables in the above linear regression model, as in 
previous large study of AD samples [18]. The residuals 
extracted from this model are the ROSMAP gene expres-
sion residuals.

Finally, for each gene expression and CpG (or DMR) 
pair, we then tested the association between gene expres-
sion residuals and methylation residuals using a linear 
model: ROSAMP gene expression residuals ~ ROSMAP 
methylation residuals + Braak stage. For significant 
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DMRs, this analysis was repeated, except that methyla-
tion M value was replaced with median methylation M 
value from multiple CpGs in the DMR.

Sex‑specific mQTL analysis
To identify methylation quantitative trait loci (mQTLs) 
for the significant DMRs and CpGs, we tested associa-
tions between the methylation levels with nearby SNPs, 
using the ROSMAP study dataset, which had matched 
genotype data and DNA methylation data for 434 female 
samples and 254 male samples. The ROSMAP genotype 
data was downloaded from AMP-AD (syn3157325) and 
imputed to the Haplotype Reference Consortium r1.1 
reference panel [46]. There were two batches of genotype 
data, measured by Affymetrix GeneChip 6.0 (Affymetrix, 
Inc, Santa Clara, CA, USA) and Illumina HumanOmni-
Express (Illumina, Inc, San Diego, CA, USA).

The male samples and female samples were analyzed 
separately. To reduce the number of tests, we focused 
on identifying cis mQTLs located within 500  kb from 
the start or end of the DMR (or position of the signifi-
cant CpG) [47]. We additionally required SNPs to (1) 
have a minor allele frequency of at least 1%, (2) be 
imputed with good certainty: information metric (info 
score) ≥ 0.4, and (3) be associated with AD case–con-
trol status (as determined by clinical consensus diag-
nosis of cognitive status), after adjusting for age, batch, 
and the first 3 PCs estimated from genotype data, at 
nominal P-value less than 0.05. Next, for the ROSMAP 
methylation residuals obtained in section “Integrative 
methylation—gene expression analysis”, we fit the lin-
ear model ROSMAP methylation residual ~ SNP dos-
age + batch + PC1 + PC2 + PC3, where PC1, PC2, and 
PC3 are the first three PCs estimated from genotype data, 
to test the association between methylation residuals in 
CpGs and the imputed allele dosages for SNPs to identify 
mQTLs. The analysis for DMRs was the same except that 
we replaced ROSMAP methylation residual with median 
(ROSMAP  methylation residuals) of all CpGs located 
within the DMR. SNPs with FDR less than 0.05 in the lin-
ear model described above were considered to be signifi-
cant mQTLs.

Drug target analysis
We compared our list of sex-specific DNA methyla-
tion differences with targets of drugs prescribed to AD 
patients or in the development for AD in the ChEMBL 
database [48] (https:// www. ebi. ac. uk/ chembl/). To this 
end, we overlapped genes mapped to significant CpGs or 
DMRs with the genes targeted by compounds annotated 
to “Alzheimer Disease” in ChEMBL.

Results
Description of EWAS cohorts and data
Among the four cohorts (Additional file  2: Table  S1), 
the mean age at death ranged from 79.3 to 87.2 years in 
females and from 67.5 to 85.0 years in males. The num-
ber of CpGs and samples removed at each quality con-
trol step are presented in Additional file  2: Table  2. For 
females, inflation factor lambdas ( �) by the conventional 
approach ranged from 1.060 to 1.154, and lambdas based 
on the bacon approach [32] ( �bacon ) ranged from 1.021 
to 1.059 (Additional file 1: Fig. S1). Similarly, for males, � 
ranged from 0.906 to 1.265, and �bacon ranged from 0.957 
to 1.114. These values are comparable to those obtained 
in other recent large-scale EWAS [49].

Sex‑specific DNA methylation differences in AD 
neuropathology
In the sex-stratified analysis, at 5% FDR, our meta-anal-
ysis identified 381 and 76 CpGs, mapped to 245 and 51 
genes in female and male samples, respectively (Fig.  1, 
Table  1, Additional file  2: Tables S3, S4). Similarly, at 
5% FDR, we also identified 72 and 27 DMRs, mapped 
to 66 and 22 genes, in female and male samples, respec-
tively (Table  2, Additional file  2: Tables S5, S6). Among 
them, 3.6% (16 out of 441 unique FDR-significant CpGs) 
and 12.5% (11 out of 88 unique FDR-significant DMRs) 
were significant in both females and males with the same 
direction of change. The average number of CpGs per 
DMR was 6.5 ± 8.9. Also, the FDR-significant methyla-
tion differences at CpGs and DMRs did not completely 
overlap. Only 89 out of the 381 (23.4%) significant CpGs 
in females, and 13 out of the 76 (17.1%) significant CpGs 
in males overlapped with the significant DMRs. Among 
all CpGs and all DMRs, the effect estimates in males 
and females correlated only modestly (rCpG = 0.124, 
rDMR = 0.170, Additional file  1: Fig.  S2), and about half 
(53% of CpGs, 54% of DMRs) were in the same direction 
of change in males and females, similar to what would be 
expected by chance.  

In sex-by-Braak stage interaction analysis, we identi-
fied significant interaction at 14 CpGs, but no signifi-
cant interactions at DMRs at 5% FDR. There was also 
little overlap between significant DNA methylation dif-
ferences identified in sex-stratified and sex-by-Braak 
stage interaction analyses. Only 4 CpGs were identified 
by both analyses (Table 3). To understand this discrep-
ancy, note that the sex-stratified analysis detected many 
differences that are attenuated but might be in the same 
direction in one sex group compared to the other. More 
specifically, among the FDR-significant CpGs identified 
in the sex-stratified analysis, many of them (370 out 
of 381 significant CpGs in the analysis of female sam-
ples, and 65 out of 76 significant CpGs in the analysis 

https://www.ebi.ac.uk/chembl/


Page 6 of 19Zhang et al. acta neuropathol commun            (2021) 9:77 

of male samples) had the same direction of change 
for methylation-Braak stage association in both sexes 
(Additional file 2: Tables S3, S4). In Table 1, among the 
10 most significant CpGs from the sex-stratified analy-
sis, 9 female-specific and 6 male-specific CpGs had the 
same direction of methylation-Braak stage associa-
tion in both sexes. On the other hand, in sex-by-Braak 
stage interaction analysis, 13 out of the 14 significant 
CpGs had the opposite directions of differences for 
methylation-Braak stage associations in females and 
males (Table 3). Therefore, the interaction analysis was 
able to identify CpGs with large differences in sex-spe-
cific effect estimates, often in different directions, but 
these effects might not have reached FDR significance 
in sex-stratified analysis. For example, in Table  3, the 
CpG with the most significant interaction (cg13212831) 
had effect estimates of 0.083 and −  0.139 for females 
and males, respectively. In sex-stratified analysis, 
although the methylation-Braak stage associations 
were highly significant (P-valuefemale = 0.006, P-value-
male = 4.1 ×  10–5), they did not reach 5% FDR signifi-
cance threshold  (FDRfemale = 0.413,  FDRmale = 0.097). 
Therefore, the results from sex-stratified analysis and 
sex-by-Braak stage interaction analysis complemented 
each other.

Enrichment analysis of sex‑specific DNA methylation 
differences across genomic features
Figure  2 presents an overview of the enrichment analy-
sis results. Compared to background probes, significant 
hypermethylated DMRs and CpGs in females are over-
represented in CpG islands and gene bodies (Additional 
file  1: Fig.  S3a, Additional file  2: Table  S7). Significant 
hypermethylated DMRs and CpGs in males are over-rep-
resented in CpG island shores, 5′UTRs, and TSS1500s. 
In contrast, significant hypomethylated differences in 
females and males are over-represented in open seas 
(Additional file  1: Fig.  S3b, Additional file  2: Table  S7). 
These observations are consistent with the knowledge 
that during aging, human brain DNA methylation levels 
gradually increase (hypermethylation) at genomic loci 
located at CpG islands and gene promoters, whereas 
intergenic CpG sites are marked with hypomethylation 
[50, 51].

Our enrichment analysis for chromatin states showed 
that significant hyper-methylated differences in females 
were enriched in bivalent enhancer, flanking active TSS, 
repressed polycomb, and transcription at gene 5′ and 
3′ regions (Additional file  1: Fig.  S3c, Additional file  2: 
Table  S8). On the other hand, significant hypermethyl-
ated differences in males were enriched in active TSS, 
flanking active TSS, and repressed polycomb regions. 
Hypomethylated differences in females were enriched 
in enhancers, weak repressed polycomb, and weak 

Fig. 1 Miami plot of sex‐stratified analysis results. The X‐axis are chromosome numbers. The Y‐axis show –log10(P-value) of CpG – Braak stage 
associations in males (above X‐axis) or in females (below X‐axis). The genes corresponding to top 10 CpGs that are the most significant in one sex 
(FDR < 0.05), but not significant in another sex (P‐value > 0.05) are highlighted
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transcription regions, while hypomethylated differences 
in males were enriched in flanking active TSS and weak 
repressed polycomb regions (Additional file  1: Fig.  S3d, 
Additional file  2: Table  S8). Notably, the enrichment 
of hypermethylated differences in repressed polycomb 
regions in both female and male samples is consistent 
with our previous sex-combined meta-analysis, which 
also highlighted the enrichment of hyper-methylated 
Braak-associated DNA methylation differences in poly-
comb repressed regions [22].

Similarly, enrichment tests for regulatory elements 
using the LOLA software also supported the poten-
tial functional relevance of these significant differences 
in DNA methylation. Significant DMRs and CpGs in 
females and males were both enriched in binding sites 
of EZH2 and SUZ12 (Additional file 2: Table S9), which 
are subunits of polycomb repressive complex 2 (PRC2), 
consistent with the observed enrichment of methylation 
differences in PRC2 repressed regions (Additional file 1: 

Fig. 2 An overview of the sex-stratified analysis and sex-by-Braak stage interaction analysis. For each CpG, we performed two complementary 
analytical strategies, a sex-stratified analysis that examined methylation-Braak stage associations in male and female samples separately, and a 
sex-by-Braak stage interaction analysis that compared the magnitude of these associations between different sexes. At 5% FDR, the sex-stratified 
analysis identified 381 CpGs in the analysis of female samples and 76 CpGs in analysis of male samples, which were enriched in different biological 
pathways and genomic features
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Fig.  S3c) and previous observations that DNA methyla-
tion often interact with PRC2 binding [52, 53]. PRC2 is a 
type of polycomb group (PcG) protein and plays impor-
tant roles in multiple biological processes including 
proliferation and differentiation as well as maintenance 
of cellular identity through regulation of gene expres-
sion. Of particular relevance to AD, PRC2 silences genes 
involved in neurodegeneration and its deficiency leads 
to the de-repression of developmental regulators such as 
the Hox gene clusters, which manifest in progressive and 
fatal neurodegeneration in mice [54].

Gene ontology and pathway analysis
Because of the relatively smaller number of gene sets 
being tested, a 25% FDR significance threshold, instead 
of the conventional 5% FDR, was suggested for GSEA 
[55]. At 25% FDR, the significant DNA methylation dif-
ferences in females were enriched in TYROBP causal 
network (FDR = 0.014), TCR signaling in naïve CD4 + T 
cells (FDR = 0.130) and ROBO receptors bind AKAP5 
(FDR = 0.160) gene sets, and significant methylation dif-
ferences in males were enriched in the initial triggering of 
complement gene set (FDR = 0.245). The TYROBP causal 
network was previously inferred from a large-scale net-
work analysis of human late-onset AD brains [56]; it was 
FDR significant (P-value < 0.001, FDR = 0.014) in females 
(Additional file 1: Fig. S4a), compared to a nominal asso-
ciation in males (P-value < 0.001, FDR = 0.620). Interest-
ingly, the core enrichment subset of genes identified by 
GSEA in the female and male networks regulated by 
TYROBP involved DNA methylation differences at dif-
ferent genes (Additional file 1: Fig. S4b), highlighting dif-
ferent regulatory mechanisms for this gene network in 
males and females.

The comparison with gene ontology (GO) terms 
showed at 25% FDR, significant methylation differences 
in females were enriched in 25 GO biological processes 
(Table  4,  Additional file  2: Table  S10), many of which 
are involved in inflammatory responses associated with 
AD pathology including CD8 positive alpha beta T cell 
activation and interferon alpha production, as well as 
other biological processes critical for AD pathogenesis 
such as response to platelet derived growth factor and 
positive regulation of axon extension. For males, we did 
not identify any significant GO terms at 25% FDR; the 
strongest enrichment with nominal P-value less than 
0.001 involved immune responses to the accumulation of 
amyloid-β (Aβ) in the brain, such as regulation of T cell 
activation via T cell receptor contact with antigen bound 
to MHC molecule on antigen presenting cell, and other 
biological processes recently implicated in AD such as 
response to angiotensin [57, 58] and cell redox homeo-
stasis [59, 60].

Correlation of sex‑specific DNA methylation differences 
in AD neuropathology with expression levels of nearby 
genes
At 5% FDR, among FDR significant CpGs in females, all 
381 CpGs were linked to a nearby gene by GREAT soft-
ware, in which 14 were significantly associated with tar-
get gene expression levels (Additional file  2: Table S11), 
and half of them (n = 7) had effects in the negative direc-
tion. Among FDR significant CpGs in males, out of the 
46 CpGs that were linked to a nearby gene, 2 were sig-
nificantly associated with target gene expression and 
both were in the negative direction. Notably, in females, 
several of the most significant CpG methylation-gene 
expression associations were observed for the HLA-
DPA1 gene, which encodes microglia receptors involved 
in antigen presentation and is regulated by PU.1 [61]. In 
males, the most significant CpG-gene expression was for 
HLA-DRB1, another PU.1 target gene [61]. For the 14 
CpGs identified by our sex-by-Braak stage interaction 
analysis, only one CpG (cg24917065) was significantly 
associated with target gene (SLC25A37) expressions.

Correlation and overlap of sex‑specific DNA methylation 
differences in AD neuropathology with genetic 
susceptibility loci
To evaluate if the significant methylation differences 
are located in the vicinity of sex-specific genetic vari-
ants implicated in AD, we compared our sex-specific 
CpGs and DMRs with the recently identified sex-specific 
SNPs associated with AD biomarkers [62] or AD pathol-
ogy [63]. We found only 5 CpGs, mapped to the SERP2, 
KCNE1, TNKS1BP1, FAM165B, PLCB4 genes were 
located within 500  kb of the sex-specific SNPs (Addi-
tional file 2: Table S12).

To search for mQTLs, which are genetic variants asso-
ciated with DNA methylations, we next tested asso-
ciations between the sex-specific CpGs and DMRs with 
SNPs that are located within 500 kb from them using 434 
female samples, 254 male samples from the ROSMAP 
study, which had both genotype and DNA methylation 
data. While no mQTL-DMR pairs reached 5% FDR sig-
nificance, we did identify 572 and 284 FDR-significant 
mQTL-CpG pairs associated with the sex-specific CpGs 
in females and males, respectively (Additional file  2: 
Tables S13, S14). Among the 381 and 76 sex-specific 
CpGs identified in female and male samples, respectively, 
41 (11%) and 15 (20%) had at least one corresponding 
mQTL in brain samples. Among the 14 CpGs identified 
in our sex-by-Braak stage interaction analysis, 2 and 7 
CpGs with at least one brain mQTL, corresponding to 
21 and 236 significant mQTL-CpG pairs, were identi-
fied at 5% FDR in females and males, respectively (Addi-
tional file 2: Table S15). These mQTL-CpG pairs point to 
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important potential molecular mechanisms of disease-
associated genetic variants that might due, at least in 
part, to their influences on DNA methylations, which can 
be further validated in mechanistic studies.

Drug target analysis of sex‑specific DNA methylation 
differences
To investigate the clinical impact of the sex-specific 
DNA methylation differences, we next compared them 
with targets of drugs in the ChEMBL database [48] that 
are annotated to Alzheimer’s disease, many of which are 
antipsychotic medications commonly prescribed to AD 
patients for treating psychiatric symptoms that accom-
pany AD. We found that 13 CpGs and 2 DMRs, mapped 
to 20 genes, had overlap with targets of 16 different drugs 
(Additional file  2: Table  S16). Among them, CACNA1C 
encodes a voltage-dependent calcium channel, which is 
a target of cholinesterase inhibitor donepezil. Previously, 
drug responses for donepezil were shown to be modu-
lated by the sex hormone estrogen receptor alpha (ESR1) 
genotype [64]. Several CpGs and one DMR are mapped 
to targets of valproic acid, a mood stabilizer often pre-
scribed for AD patients and was shown to have differ-
ent pharmacokinetic profiles between male and female 
subjects [65]. Interestingly, two CpGs and 1 DMR also 
mapped to targets of caffeine, which was included in 
cocktail therapy in AD clinical trials [66, 67]. Although 
caffeine reduces the risk for AD [68, 69] in both men 
and women, the protective effect seems to be greater in 
women [70]. Also, CHRM3 encodes muscarinic acetyl-
choline receptor, which is targeted by two commonly 
prescribed antipsychotic drugs for AD patients, trazo-
done and haloperidol. In both human and animal models, 
it has been observed treatment with haloperidol induces 
sex-specific DNA methylation differences [71, 72]. While 
this study could not establish the mechanisms at which 
DNA methylation interacts with drugs that AD patients 
take, we hypothesize that these might include the influ-
ence of DNA methylation on drug responses or the dif-
ferences in DNA methylation resulted from drug actions.

Discussion
To identify sex-specific differences in AD neuropathol-
ogy, we performed a sex-stratified analysis and a sex-by-
Braak stage interaction analysis for each cohort and then 
used a meta-analysis strategy to combine the cohort-spe-
cific association signals. In the sex-stratified analysis, as 
discussed above, a substantial number of the significant 
loci showed the same direction but attenuation of effect 
size for methylation-Braak stage association in a differ-
ent sex (Tables  1, 2). Therefore, it is not surprising that 
many of these significant CpGs were identified previ-
ously in sex-combined meta-analysis [22]. Among FDR 

significant methylation differences in females, 325 CpGs 
(85%) and 40 DMRs (56%), mapped to genes such as 
HOXA3, AZU1, and MBP were also previously identified 
in our sex-combined meta-analysis [22] (Additional file 2: 
Tables S3, S5). Similarly, in the analysis of male samples, 
among FDR significant differences, 58 (76%) CpGs and 
15 DMRs (56%), mapped to genes such as MAMSTR, 
RHBDF2, and AGAP2, overlapped with significant hits 
from sex-combined meta-analysis [22] (Additional file 2: 
Tables S4 and S6). However, our sex-specific analysis 
provided the new insight that the effects of these known 
AD genes appear to be predominately driven by effects in 
only one sex (Tables 1, 2).

On the other hand, our sex-specific analysis also 
uncovered novel methylation differences at 84 CpGs and 
42 DMRs that were not identified previously by sex-com-
bined analyses [22], which may had reduced power due 
to heterogeneity between the sexes. For example, among 
the top 10 CpGs in the sex-stratified analysis (Table  1), 
a new locus at cg22632947, which mapped to the gene 
body of the PRKCA gene, was highly significant in female 
samples (estimate = − 0.139, P-value = 1.50 ×  10–7, 
FDR = 3.00 ×  10–3), but not significant in male sam-
ples (estimate = − 0.005, P-value = 0.857, FDR = 0.995) 
(Additional file  1: Fig.  S5). The PRKCA gene encodes 
protein kinase Cα (PKCα), which participates in synap-
tic loss resulting from the accumulation of amyloid-β 
(Aβ) in AD neuropathology [73, 74]. Another novel 
locus is at cg18942110 in the promoter of the CRTC3 
gene, where methylation-Braak stage association was 
highly significant in male samples (estimate = − 0.164, 
P-value = 2.23 ×  10–6, FDR = 3.19 ×  10–2), but not 
significant in female samples (estimate = − 0.031, 
P-value = 0.306, FDR = 0.952) (Additional file 1: Fig. S5). 
CRTC3 is a member of the CRTC family, which are 
coactivators of the transcription factor CREB (cAMP-
response element binding protein). In addition to its cru-
cial role in maintaining synaptic plasticity and facilitation 
of short-term memory to long-term memory, the CREB 
signaling pathway also mediates synapse loss induced by 
Aβ in AD [75]. Notably, synapse loss significantly cor-
relates with cognitive impairment [76, 77] and has been 
observed to be an early feature of AD pathogenesis [78, 
79].

The sex-by-Braak stage interaction analysis also uncov-
ered several additional novel methylation loci that 
affected AD neuropathology in a sex-specific manner. 
Notably, none of the 14 CpGs detected in our interac-
tion analysis was identified in previous large-scale DNA 
methylation studies [18–22], suggesting that sex-specific 
differences such as these can be missed by conventional 
studies that do not consider the impact of sex. This is 
likely due to the cancelation of effects in sex-combined 
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analysis because the majority of these 14 CpGs had dif-
ferent directions of methylation-Braak stage effects 
in male and female samples (Table  3). Among genes 
mapped to these 14 CpGs, TMEM39A is a member of 
the transmembrane (TMEM) protein family. In recent 
GWAS, a genetic variant on TMEM39A was discovered 
and replicated as an important risk locus for multiple 
sclerosis, an autoimmune condition of the central nerv-
ous system [80, 81]. While relatively little is known about 
the role of TMEM39A in AD, given its important contri-
butions to inflammation, dysregulated type I interferon 
responses, and other immune processes [82] which are 
also implicated in AD, methylation differences affecting 
this gene are particularly relevant. Another notewor-
thy gene is TNXB and its pseudogene TNXA, which are 
located in the major histocompatibility complex (MHC) 
class III region on chromosome 6. TNXB encodes tenas-
cin proteins, which are extracellular matrix glycoproteins 
demonstrated to modulate synaptic plasticity in the brain 
[83]. In particular, genetic variants at the HLA-DQB1 
locus discovered in the recent AD genetic meta-analysis 
[84] included eQTLs for TNXB/TNXA in brain tissues 
[84, 85].

Consistent with previous studies [18, 19, 86, 87], we 
observed the majority of these sex-specific differences 
were hyper-methylated in samples with AD neuropa-
thology, for which methylation levels increased as the 
AD Braak stage increased (Additional file 2: Tables S17, 
S18). More specifically, 59% of the significant CpGs and 
69% of the significant DMRs in females, along with 66% 
of the significant CpGs and 89% of the significant DMRs 
in males were hyper-methylated in samples with AD neu-
ropathology (Additional file 2: Tables S3–S6).

To better understand the relevance of these Braak-
associated sex-specific differences, we also compared our 
results with several previous studies. The comparison 
with Xia et al. [16] and Xu et al. [17], which examined dif-
ferential methylation between males and females in the 
prefrontal cortex, but without considering AD neuropa-
thology [16, 17], showed our results were largely distinct. 
Among 451 unique CpGs identified in our sex-stratified 
analysis or sex-by-Braak stage interaction analysis, only 
16 were also identified in Xia et  al. [16] and none were 
identified in Xu et al. [17] (Additional file 2: Tables S3–
S6). This is probably due to different hypotheses tested 
in our study and the sexual dimorphism studies – while 
our study examined the impact of sex on methylation-
Braak stage association, the previous studies examined 
differential methylation between the sexes, regardless 
of AD neuropathology. The comparison of our results 
with sex-specific DNA methylation differences in fetal 
brain development [88, 89] also showed very little over-
lap (Additional file 2: Table S19); one hypothesis could be 

that the Braak-associated sex-specific DNA methylation 
differences identified in this study might be influenced 
by environmental risk factors for AD, such as diet and 
exercise.

The results of our gene set analysis highlighted a 
number of critical sex-specific biological processes in 
AD neuropathology. Notably, the TYROBP causal net-
work reached the FDR significance threshold in females 
(FDR = 0.014) but was only nominally significant in 
males. Interestingly, Braak-associated CpG methylation 
differences that drove pathway associations (core enrich-
ment genes) occurred at different genes in females and 
males (Additional file 1: Fig. S4), indicating a potentially 
sex-specific regulatory mechanism for this network. 
TYROBP (TYRO protein tyrosine kinase-binding pro-
tein) is a key regulator of the complement pathway in 
the immune/microglia network, which is activated as 
Aβ accumulates in LOAD brains [56, 90]. TYROBP is a 
transmembrane adaptor protein for TREM2, SIRPβ1, 
and CR3 receptors, which are known to be involved in 
AD pathogenesis [90–92]. Also, TYROBP is regulated 
by SPI1, a central hub for the network of genes involved 
in myeloid immune response in neurodegeneration 
[93]. In patients with LOAD, TYROBP was observed to 
be up-regulated in the brains in multiple cohorts [56]. 
Recent studies suggested TYROBP-mediated signaling is 
involved in multiple important functions as aggregating 
Aβ activates microglia, including enhanced phagocytosis 
of damaged neurons [56, 90] and suppression of inflam-
matory responses [94], as well as neuronal pruning activ-
ity [56]. Interestingly, in gene ontology (GO) analysis, 
among the most significant GO Biological Process terms 
(P-value < 0.001) in females and males, none of them 
overlapped (Additional file  2: Table  S10), even though 
the relevancy of all the top biological processes were sup-
ported by recent AD literature (Table  4). These results 
suggest different biological processes are associated with 
AD pathology in males and females.

Importantly, a number of these sex-specific biological 
processes pointed to important potential biomarkers and 
therapeutic targets for the treatment of AD. For exam-
ple, one of the top biological processes enriched with 
significant methylation differences in female samples is 
response to platelet derived growth factor. Recently, mul-
tiple studies have shown that reduced levels of platelet-
derived growth factors (PDGFs) in plasma significantly 
correlate with mild cognitive impairment and have pro-
posed PDGFs as a potential biomarker for AD [95, 96]. 
For the significant methylation differences in male sam-
ples, one of the top biological processes highlighted by 
our enrichment analysis is dysregulation in the comple-
ment system. Recently, a number of novel agents target-
ing the complement system are being developed and 
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tested in clinical trials for potential effective therapy for 
AD [97]. Therefore, clinical trials testing potential treat-
ment for AD patients might have more power for detect-
ing treatment effects by considering sex and targeting 
the subgroup with the higher predicted benefit based on 
patient molecular profiles such as DNA methylation.

There are several limitations for this study. The meth-
ylation levels in the studies analyzed here were measured 
on the bulk prefrontal cortex, which contains a complex 
mixture of cell types. To reduce confounding effects due 
to cellular heterogeneities, we included the estimated 
neuron proportion of each brain sample as a covariate 
variable in all our analyses. Currently, a challenge with 
cell-type-specific studies is that they are often limited to 
smaller sample sizes due to labor-intensive sample prepa-
ration procedures and therefore have limited statistical 
power. Also, we did not identify any CpGs or DMRs from 
chromosome X, this might suggest that sex differences 
in AD neuropathology are not primarily due to chro-
mosome X. Alternatively, the lack of association might 
also be due to the limited coverage by the 450k array. 
Future studies utilizing high throughput sequencing 

that provides better coverage of the epigenome will help 
clarify the role of the X chromosome in AD neuropathol-
ogy. Finally, the associations we identified in this study do 
not necessarily reflect causal relationships. Future studies 
that employ longitudinal designs are needed to identify 
causal changes in DNA methylation as AD initiates and 
progresses.

In summary, our study highlighted the importance of 
stratifying on sex and analyzing sex-by-disease interac-
tion in the analysis of DNA methylation data to discover 
the epigenetic architectures underlying AD neuro-
pathology. Our meta-analysis discovered many novel 
sex-specific DNA methylation differences consistently 
associated with the AD Braak stage in multiple stud-
ies. Because of cancelation of effects in different direc-
tions, or dilution from samples with no effect, these 
sex-specific effects would be missed by sex-combined 
analysis. Moreover, for many genes previously linked 
to AD neuropathology, our work provided evidence 
that the DNA methylation differences at these genes 
were predominately driven by effects in only one sex. 

Table 4 Top 10 most significant GO Biological processes enriched with sex-specific DNA methylation differences associated with 
AD Braak stage in females and males. Shown are GSEA results including the number of genes in the gene set (SIZE), normalized 
enrichment score (NES), P-value, FDR, and relevant AD literature for the gene set

Gene Set SIZE NES P‑value FDR Relevance to AD

Top 10 GO Biological Process terms in females

INTEGRIN_ACTIVATION 24 2.105 0 9.53E−02 Wennstrome et al. [98]

RESPONSE_TO_PLATELET_DERIVED_GROWTH_FACTOR 19 2.116 0 1.07E−01 Sil et al. [99]

I_KAPPAB_PHOSPHORYLATION 19 2.081 0 1.13E−01 Jha et al. [100]

NEGATIVE_REGULATION_OF_INTERLEUKIN_8_PRODUCTION 18 2.133 0 1.21E−01 Qin et al. [101]

POSITIVE_REGULATION_OF_MACROPHAGE_MIGRATION 25 2.048 0 1.46E−01 Bacher et al. [102]

TOLL_LIKE_RECEPTOR_SIGNALING_PATHWAY 142 2.031 0 1.61E−01 Fiebich et al. [103]

NEGATIVE_REGULATION_OF_TUMOR_NECROSIS_FACTOR_SUPERFAMILY_CYTOKINE_
PRODUCTION

57 2.007 0 1.90E−01 Chang et al. [104]

REGULATION_OF_SYNCYTIUM_FORMATION_BY_PLASMA_MEMBRANE_FUSION 28 1.944 0 1.98E−01 Armoto et al. [105]

RESPONSE_TO_VITAMIN_A 19 1.945 0 2.08E−01 Ono et al. [106]

POSITIVE_REGULATION_OF_AXON_EXTENSION 42 1.931 0 2.08E−01 Kanaan et al. [107]

Top 10 Biological Process terms in males

REGULATION_OF_T_CELL_ACTIVATION_VIA_T_CELL_RECEPTOR_CONTACT_WITH_ANTI-
GEN_BOUND_TO_MHC_MOLECULE_ON_ANTIGEN_PRESENTING_CELL

6 1.869 0 5.98E−01 Schetters et al. [108]

REGULATION_OF_SYSTEMIC_ARTERIAL_BLOOD_PRESSURE_BY_CIRCULATORY_RENIN_
ANGIOTENSIN

18 1.964 0 6.11E−01 Cosarderelioglu et al. [57]

NEGATIVE_REGULATION_OF_REACTIVE_OXYGEN_SPECIES_BIOSYNTHETIC_PROCESS 29 1.745 0 6.12E−01 Manoharan et al. [59]

COMPLEMENT_ACTIVATION 68 1.741 0 6.26E−01 Morgan [97]

RESPONSE_TO_ANGIOTENSIN 26 1.746 0 6.36E−01 Benigni et al. [58]

CELL_REDOX_HOMEOSTASIS 55 1.721 0 6.49E−01 Chen et al. [60]

PROTEIN_DEMETHYLATION 28 1.832 0 6.77E−01 Esposito et al. [109]

IMMUNE_RESPONSE_INHIBITING_CELL_SURFACE_RECEPTOR_SIGNALING_PATHWAY 6 1.781 0 7.02E−01 Schetters et al. [108]

DICARBOXYLIC_ACID_CATABOLIC_PROCESS 17 2.052 0 7.57E−01 Griffin et al. [110]

GLUTAMINE_FAMILY_AMINO_ACID_METABOLIC_PROCESS 70 1.657 0 7.75E−01 Conway et al. [111]
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Our enrichment analysis highlighted divergent biologi-
cal processes in males and females, which underscored 
sex-specific regulatory mechanisms involved in AD 
neuropathology. Finally, our results also have impor-
tant implications for precision medicine—many of the 
sex-specific DNA methylation differences also pointed 
to important potential AD biomarkers and therapeutic 
targets, suggesting a pressing need for developing and 
applying sex-specific treatment strategies for AD.
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