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Québec, Canada, 3 Institute of Parasitology, McGill University, Montréal, Québec, Canada

Abstract

Protozoan parasites of genus Leishmania are the causative agents of leishmaniasis. These digenetic microorganisms
undergo a marked environmental temperature shift (TS) during transmission from the sandfly vector (ambient temperature,
25–26uC) to the mammalian host (37uC). We have observed that this TS induces a rapid and dramatic increase in protein
release from Leishmania mexicana (cutaneous leishmaniasis) within 4 h. Proteomic identification of the TS-induced secreted
proteins revealed 72 proteins, the majority of which lack a signal peptide and are thus thought to be secreted via
nonconventional mechanisms. Interestingly, this protein release is accompanied by alterations in parasite morphology
including an augmentation in the budding of exovesicles from its surface. Here we show that the exoproteome of L.
mexicana upon TS induces cleavage and activation of the host protein tyrosine phosphatases, specifically SHP-1 and PTP1-B,
in a murine bone-marrow-derived macrophage cell line. Furthermore, translocation of prominent inflammatory transcription
factors, namely NF-kB and AP-1 is altered. The exoproteome also caused inhibition of nitric oxide production, a crucial
leishmanicidal function of the macrophage. Overall, our results provide strong evidence that within early moments of
interaction with the mammalian host, L. mexicana rapidly releases proteins and exovesicles that modulate signalling and
function of the macrophage. These modulations can result in attenuation of the inflammatory response and deactivation of
the macrophage aiding the parasite in the establishment of infection.
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Introduction

Parasites of genus Leishmania are the causative agents of

leishmaniasis, a spectrum of diseases ranging from self-healing

wounds known as cutaneous leishmaniasis (caused by Leishmania

major and Leishmania mexicana) to a potentially lethal form known as

visceral leishmaniasis (caused by Leishmania infantum and Leishmania

donovani). The life cycle of Leishmania comprises two stages. The

motile and flagellated promastigotes, live in the midgut of sandfly

and are transferred to the mammalian host during a blood meal.

In the mammalian host, promastigotes are internalized by

macrophages where they transform into non-motile amastigotes

and reside in the phagolysosome [1].

Leishmania is known to modulate the host’s innate immune

response to allow the parasite to multiply in the macrophage

phagolysosome (reviewed in [2]). The parasite utilizes various

strategies and virulence factors to alter the host cell signalling,

favouring its survival. We have previously shown that JAK/STAT,

IRAK-1 and MAP kinases signalling pathways are rapidly altered

by Leishmania, leading to partial inactivation of various transcrip-

tion factors such as STAT-1a, AP-1 and NF-kB [2,3,4]. In

addition, we have recently reported that Leishmania cleaves and

activates host protein tyrosine phosphatases (PTPs) in a process

that involves the surface metalloprotease gp63 [5]. Activation of

PTPs is pivotal to the pathogenesis of Leishmania. Activated PTPs

can dephosphorylate key kinases such as JAK2 and IRAK-1 that

could otherwise induce production of leishmanicidal molecules.

The presence of promastigotes is not necessary for this

phenomenon as conditioned parasite culture medium also induced

cleavage of various PTPs (e.g. PTP-1B, SHP-1 and TC-PTP ),

suggesting that Leishmania secreted proteins may be important for

virulence [5].

Protein secretion in eukaryotes occurs both conventionally

through the Golgi apparatus and nonconventionally via pathways

such as direct membrane translocation, exovesicle blebbing,

secretory lysosomes and exosomes. These pathways partly explain

the presence of proteins that lack a signal peptide in the

exoproteome of eukaryotes [6,7]. Interestingly, such nonconven-

tional secretion pathways have been recently observed in

Leishmania and Trypanosoma parasites [8,9,10,11,12].

The transfer from the insect vector to the mammalian host

involves a temperature shift (TS) from ambient temperature to

37uC, and contact with the host cell molecules. After internaliza-

tion into the macrophage, the environmental pH of the parasites
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decreases to 5.5. TS and the subsequent reduction in pH induce

the transformation of the vector promastigote form to the

mammalian host amastigote form. Morphological changes, cell-

cycle arrest, and alteration of the gene expression profile are

among the main developmental changes that occur during this

transformation [13].

In contrast to the long term effects of TS on the pathogenesis of

Leishmania, the early events following TS have not been addressed.

Here we provide evidence that TS induces a dramatic increase in

protein release by L. mexicana within a few hours. We have seen by

electron microscopy that this increase is concurrent with an

augmentation in budding of surface exovesicles. Finally, in line

with our previous studies, we observed that the exoproteome of L.

mexicana upon TS is able to modulate macrophage signalling and

functions such as activation of PTPs, modulation of transcription

factors and inhibition of nitric oxide (NO) production.

Results

Protein release from L. mexicana is augmented by TS
To examine the profile of protein secretion triggered by TS, L.

mexicana promastigotes were incubated for 2 or 4 h at 25uC or

37uC. The exoproteome of the parasites after these conditions are

depicted in Figure 1. The exoproteome of L. mexicana contains a

wide range of proteins and the levels of secretion are augmented

by the TS as soon as 2 h. Densitometry analysis on total released

proteins and selected bands shows a 1.7–2 fold increase in protein

release upon TS within both 2 and 4 h. Direct measurement of

protein content of the exoproteome showed that within 4 h

approximately 1.2 mg/ml and 1.9 mg/ml of protein is secreted by

108/ml parasites at 25uC and 37uC respectively. As a control, we

also measured protein content of total parasites after 4 h of TS and

observed that this increase in secretion is not due to a TS-induced

general increase in protein production (data not shown).

We assessed the integrity of the parasites during the 4 h

incubation by flow cytometry using propidium iodide (PI) staining.

Our results show that the percentage of PI-positive parasites was

negligible (,3%) and in line with what reported in similar studies.

This indicates that presence of proteins in the culture supernatant

was a result of secretion and not disruption of the plasma

membrane due to parasite damage. As a control, treatment with

H2O2, a reagent known to cause cell damage, lead to detection of

,90% PI-positive parasites (Supplementary Figure S1).

Analysis of the TS-induced proteome released by L.
mexicana

We performed Liquid Chromatography-Mass Spectrometry

(LC/MS/MS) to identify the proteins that were rapidly released

by L. mexicana upon 4 h of TS. In addition, MS analysis was

performed on the most prominent bands visualized on silver-

stained SDS-PAGE of the exoproteome to further corroborate the

proteins identified by LC/MS/MS analysis of the total exopro-

teome. Together 72 proteins were identified, 11 (,15%) of which

were not reported in other studies [8,9].

We used Gene Ontology (GO) analysis under the molecular

function filter to look at the exoproteome more closely. A high

percentage of the proteins exhibit catalytic (GO:0003824) and

binding (GO:0005488) activities (Figure 2), the latter term

representing interactions among molecules.

Using the SignalP server, signal peptides were detected on two

proteins (,3%) suggesting their secretion to be through the

conventional pathway. On the other hand, using the SecretomeP

server, a program for prediction of nonconventionally secreted

proteins from mammalian cells, we predicted 24 proteins

(,33.5%) as candidates for nonconventional secretion (Supple-

mentary Table S1, Supplementary file S1).

To analyze the effect of TS on protein secretion from different

compartments of the cell, we examined the levels of a subset of the

detected proteins by Western blot analysis. This panel of proteins

have different subcellular localizations: the metalloprotease gp63 is

a plasma membrane GPI-anchored and conventionally secreted

[14], cysteine protease b (CPB) is a lysosomal and flagellar pocket

enzyme [15], Leishmania homolog for activated c-Kinase (LACK) is a

cytosolic protein [16] , peroxiredoxin is a cytosolic and mitochon-

drial enzyme [17], heat shock protein 70 (HSP-70) is a cytoplasmic

and mitochondrial protein [18], heat shock protein 83 (HSP-83) is a

cytosolic protein [19], hexokinase [20] and hypoxanthine-guanine

phosphoribosyltransferase are glycosomal enzymes [21]. Figure 3A

shows an increase in the release of all proteins, except for the

glycosomal proteins. These results support our previous observation

on general augmentation of protein release in response to TS. They

also show that the pathway by which glycosomal proteins are

released is unaffected by TS. More importantly, they confirm that

the augmentation of protein release upon TS is not due to parasite

damage, since the release of glycosomal proteins does not increase.

To validate the presence of a protein phosphatase in the MS

analyses, we performed a p-nitrophenyl phosphate (pNPP) assay to

Figure 1. Protein secretion augments following TS. Stationary
parasites were washed 3 times in PBS and resuspended in serum free
medium to final density of ,26108/ml. Parasites were incubated at
25uC or 37uC for 2 and 4 h. Following incubation, parasites were
removed by centrifugation and the supernatant immediately precipi-
tated with TCA/acetone. Precipitated proteins were run on SDS-PAGE
and visualized by silver staining. Clear augmentation of protein release
in response TS can be seen.
doi:10.1371/journal.pone.0018724.g001

Secreted Proteins of Leishmania Alter Macrophage
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measure phosphatase activity in the exoproteome induced by TS.

As shown in Figure 3B, TS induces a significant augmentation in

phosphatase activity further reinforcing rapid augmentation of

protein release upon TS.

TS induces an amplification of exovesicle release from
the surface of L. mexicana

In order to study the possible routes of protein secretion from L.

mexicana we performed scanning electron microscopy (SEM) of TS

and non-TS parasites. SEM analysis of L. mexicana promastigotes

cultured at 25uC showed that the parasite surface was covered

with budding exovesicles. Interestingly, as parasites decreased in

size, the quantity of the budding exovesicles increased notably

following TS (Figure 4A–C). Exovesicles isolated by ultracentri-

fugation of 4 h of TS exoproteome are 40–100 nm in diameter,

similar to the size range of exosomes (Figure 4E) [22].

TS-induced exoproteome of L. mexicana cleaves and
activates macrophage PTPs

Having previously seen the impact of the conditioned medium

of Leishmania parasites on modulation of host signalling [5], we

examined the effect of proteins released by L. mexicana on

macrophage PTPs. Incubation of B10R macrophages with

exoproteome preparations induced cleavage of SHP-1 and

PTP1-B, however to a lesser extent than that observed with L.

mexicana infection (Figure 5A). PTP in-gel assay shows that the

pattern of active PTPs in the macrophages is heavily modulated

after infection or exoproteome treatment. White spots in Figure 5B

represent the results of enzymatic activity of SHP-1 and PTP-1B

cleavage fragments as well as modulation of other PTPs of the

macrophage (Figure 5B). Finally the pNPP assay results directly

illustrate that PTP activity in the macrophage significantly

increases following incubation with the exoproteome. We have

shown previously that inhibition of PTPs completely blocks pNPP

hydrolysis in macrophages. Thus the phosphatase activity

measured by this assay belongs mainly to PTPs [23]. Overall,

the exoproteome of L. mexicana induces an increase in the PTP

activity within the macrophage and specifically induces cleavage

and activation of host PTPs, specifically SHP-1 and PTP-1B

(Figure 5C).

TS-induced L. mexicana exoproteome modulates
translocation of transcription factors to the nucleus

Previous reports that examined the early events in the host

following Leishmania infection pointed to alteration in the

translocation of transcription factors such as AP-1 and NF-kB in

response to agonists [4,24]. To investigate whether the exopro-

teome had a similar effect on these transcription factors,

macrophages were treated with the exoproteome for 16 h followed

by 1 h stimulation with LPS. Electromobility shift assays (EMSAs)

were performed with macrophage nuclear proteins and oligonu-

cleotides corresponding to the AP-1 and NF-kB binding site. L.

mexicana infection results in induction of a noncanonical form of

NF-kB as previously reported [4] as well as complete disappear-

ance of AP-1 (Figure 6). Furthermore, Figure 6A shows that

incubation with the exoproteome as well leads to strong inhibition

of AP-1 translocation in response to LPS. As shown in Figure 6B,

exoproteome was found to cause reduction of translocation of the

canonical NF-kB; interestingly, the noncanonical form of NF-kB

previously found to be involved in induction of chemokines but not

inflammatory cytokines by Leishmania [4], was observed to be

induced.

TS-induced L. mexicana exoproteome partially inhibits
LPS-induced NO production

Survival of Leishmania parasites within the macrophage relies on

their ability to inhibit NO production. In Figure 7 we show that

both infection with L. mexicana or incubation with the exoproteome

failed to induce NO production by the macrophage. Of interest,

was the finding that LPS-induced NO production was, however,

further inhibited following infection or incubation with the

exoproteome. As AP-1 and NF-kB are the transcription factors

inducing transcription of inducible nitric oxide synthase (iNOS),

this result is in line with our observation that the exoproteome of

L. mexicana inhibits translocation of the latter transcription factors

in response to LPS. Overall, our results strongly suggest that

proteins secreted by L. mexicana during the initial hours of infection

are capable of modulating macrophage signalling and function

promoting intracellular parasite survival.

Discussion

The exoproteomes of trypanosomatids have attracted significant

attention and multiple studies have resulted in long lists of proteins

that are secreted from multiple species [8,9,10,11,12]. However

the context by which these proteins are secreted, in nature as well

as their potential effect on the host has been neglected. The

present study aimed to shed light on the mechanisms by which

proteins secreted by Leishmania modulate signalling and function of

the macrophage.

Here we show that protein release by L. mexicana is rapidly

augmented in 2 to 4 h after TS. Increase in protein release was

Figure 2. GO analyses of the TS-induced exoproteome of L.
mexicana. Pie chart representation of distribution of GO terms in the
proteins identified to be secreted after 4 h of TS. (Molecular function,
level 2).
doi:10.1371/journal.pone.0018724.g002
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attributed to an elevated level of exovesicle budding, detected in

SEM of L. mexicana promastigotes. TS mimics one of the key

signals informing the parasite of its new environment. Thus, one

can suppose that similar increases in protein and exovesicle release

are anticipated to occur in vivo. We speculate that this

phenomenon could be a strategy utilized by L. mexicana to paralyze

the resident and recruited macrophages even before parasite

contact and phagocytosis would occur. Both SHP-1 and PTP-1B,

which are important regulators of inflammation [25,26], are

rapidly cleaved and activated upon infection or contact with the

exoproteome. Furthermore, our results are indicative of modula-

tion of other PTPs following exoproteome treatment. Activated

PTPs can in turn switch-off many key kinases such as JAK2,

IRAK-1 and MAP kinases hindering macrophage activation

[3,27,28]. In addition, similar to infected macrophages, exopro-

teome-treated macrophages were also unresponsive to external

stimuli such as LPS [29]. These stimuli could have otherwise

activated AP-1 and NF-kB for production of inflammatory

cytokines such as TNF. This is in line with our observation on

inhibition of NO production, a crucial antimicrobial product of

the macrophage. Therefore an important outcome of exopro-

teome release could be taming down the inflammation following

infection and paralyzing the macrophage, actions that facilitate the

establishment of Leishmania infection.

The mechanism by which Leishmania secreted proteins access the

host cytoplasm and nucleus has been a matter of debate. Several

mechanisms have been proposed and our group has proposed that

surface-shed GPI-anchored gp63 can enter the host cytosol through

lipid raft microdomains, where it cleaves a number of host

phosphatases [5]. More recently we proposed that gp63 is granted

access to the nucleus probably via a nuclear localization signal

(NLS)-like motif where it can cleave the AP-1 components Jun D, c-

Fos, Fra-1 and Fra-2 [24]. Silverman et al have also extensively

studied exosome production by L. donovani and proposed that

exosomes fuse with the plasma membrane and their content is

released into the cytoplasm of the macrophage [11]. Their findings

showed induction of IL-8, but not TNF, by L. donovani exosomes;

however a mechanism of action by which these effects were induced

in macrophage was not advanced. Since L. mexicana exosomes bud

from the plasma membrane and their surface contains GPI-

anchored gp63, interaction of the exosomes with the macrophage

plasma membrane and its fusion could be another route for entrance

of gp63 into the host macrophage. In addition to gp63, we observed

that other Leishmania virulence factors are also released from L.

mexicana. We are currently performing more in depth studying of the

role of gp63 and CPB in modulation of the macrophage by exosomes

using various knocked-out strains of Leishmania.

A recent study by Silverman et al [30] has shown evidence for

the interaction of L. donovani exosomes with macrophages and

dendritic cells both in vitro and in vivo by examining cytokine

production profiles. However, it is important to emphasize that in

these studies, exosomes were collected from L. donovani parasites

culture for 24 h. However, having observed the dramatic and

rapid increase in protein release from L. mexicana, we intentionally

looked at very earlier times and studied the impact of the rapidly

released proteins on macrophage signalling. From our point of

view and with regard to relatively fast internalization and

differentiation of Leishmania parasites, studying exosome/exopro-

teome release in longer time points should be done on amastigotes

rather than promastigotes.

Figure 3. Effect of TS on secretion of selected proteins. (A) Western blot analyses of the L. mexicana exoproteome show that secretion of
gp63, LACK, peroxiredoxin, CPB, HSP70 and HSP83 is augmented in response to TS. However, release of the glycosomal proteins hexokinase and
HGPRT remains unchanged. MW denotes molecular weight. (B) Phosphatase activity of the exoproteome increases following TS was measured by
phosphate analog pNPP assay (p-value = 0.0005).
doi:10.1371/journal.pone.0018724.g003
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Observing similar patterns of proteins in our silver staining

results, we are not surprised that most of the proteins identified

in our mass spectrometry analysis have been previously

reported to be secreted by Leishmania. Indeed, this might

indicate that the mechanism underlying augmentation of

protein and exovesicle release is a general stress response to

TS. Nevertheless, 11 proteins (15%) had not been reported

before to be secreted from Leishmania within short times of 4 to

6 h. These proteins include nuclear proteins, cytosolic enzymes

and also a number of hypothetical proteins. It is possible that

low amount of secretion at 25uC has kept these proteins below

the detection limit and the TS-induced augmentation has made

them detectable. One third of the identified proteins were

characterized by SecretomeP to be secreted nonconventionally

(Suppl. Table S1). Although SecretomeP has been trained by

databases of mammalian proteins [31], its coverage of

nonconventionally secreted proteins of Leishmania is impressive.

Indeed, this high level of coverage could suggest to what extent

the patterns and mechanisms of nonconventional protein

secretion have remained conserved among eukaryotes through

evolution.

Overall, we have shown that protein secretion from L. mexicana

is increased within 4 h in response to TS. This augmentation

seems to be at least partially mediated by an increase in budding

of surface vesicles. TS-induced early released proteins and

exovesicles of L. mexicana modulate various signalling molecules

of the macrophage such as PTPs and transcription factors and

they can inhibit production of NO. These modulations result in

deactivation of the macrophage and its unresponsiveness to

external stimuli such as LPS allowing the parasite in establish-

ment of infection. Our results highlight the importance of early

hours of infection and the effects of secreted proteins of L.

mexicana on the alteration of the macrophage in the parasite’s

benefit.

Figure 4. Scanning electron microscopy of L. mexicana parasites during TS. Following TS, parasites rapidly shrink in size and exhibit an
increased number of exovesicles on the surface. (A) shows a parasite at 25uC. Increased numbers of exovesicles start to appear on the surface, after
1 h and 4 h of TS repectively (B and C). (D) Close-up of a parasite after 4 h of TS (E) Exovesicles released by L. mexicana after 4 h of TS collected by
ultracentrifugation are within the size range of exosomes (40–100 nm).
doi:10.1371/journal.pone.0018724.g004
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Materials and Methods

Cell and Parasite culture
Immortalized B10R bone-marrow derived macrophages derived

from B10A.Bcgr mice were obtained from the laboratory of Dr.

Danuta Radzioch (McGill University, Canada) and were cultured as

described previously [32]. Briefly, cells were cultured in Dulbecco’s

modified Eagle’s medium (DMEM) (Gibco-BRL) supplemented with

10% heat-inactivated fetal bovine serum (FBS), streptomycin

(100 mg/ml), penicillin (100 U/ml), and 2 mM L-glutamine at

37uC and 5% CO2. L. mexicana (MNYC/BZ/62/M379) parasites

were cultured by bi-weekly passages at 26uC in Schneider’s

Drosophila Medium supplemented with 10% FBS.

Flow cytometry
Measurement of cell viability was performed according to

standard protocols [33]. Briefly, parasites were stained with

propidium iodide (PI) and analyzed with FACS Calibur (BD

Biosciences). Acquired data was analyzed by FlowJo.

Exoproteome preparation and proteomic analysis
Stationary L. mexicana promastigotes were washed 3 times in

phosphate buffer saline (PBS) and resuspended at ,108 parasites/

ml in serum free DMEM or phenol red-free RPMI media and

incubated for 2–4 h. Culture supernatants were isolated by

centrifugation twice at 4000 rpm for 10 min. Proteins in the

supernatant were dosed using Quick start Bradford reagent

(Biorad), precipitated with 15% trichloroacetic acid (TCA)/

acetone or concentrated ,25-fold using 10KD-cut off centrifugal

column (Amicon Ultra).

Tryptic digestion Gel extraction
Proteins from gel bands (5 to 7 gel pieces per band/well) were

subjected to reduction, cysteine-alkylation, and in-gel tryptic

digestion by using an automated MassPrep workstation (Micro-

mass), as previously described [34]. In solution digestion of TCA/

acetone precipitated samples was performed by the addition of

trypsin (Promega) at a ratio of 1:25 (w/w) protease:protein. After

an overnight incubation at 37uC, the reaction was quenched by

the addition of formic acid to a final concentration of 1%. Samples

were then cleaned using Zip Tip C18 before mass spectrometry

analysis.

Liquid chromatography-mass spectrometry (LC/MS/MS)
Extracted peptides were injected onto a Zorbax C18 (Agilent)

desalting column and subsequently chromatographically separated

Figure 5. Exoproteome of L. mexicana induces modulation of macrophage PTPs, specifically SHP-1 and PTP1B. B10R macrophages
were untreated (Nil), infected with L. mexicana parasites or incubated with exoproteome for 3 h. (A) Cleavage and activation of SHP-1 and PTP-1B as
observed by western blot. (B) In-gel assay shows modulation of PTPs. Multiple active PTP bands appear following infection or exoproteome treatment
(C) Augmentation of PTP activity following infection or exoproteome treatment can be further observed by phosphate analog pNPP assay (p-
value,0.0001). C. f. denotes cleavage fragment. MW denotes molecular weight.
doi:10.1371/journal.pone.0018724.g005
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on a Biobasic C18 Integrafrit (New Objective) capillary column,

using a Nano high-performance liquid chromatography system

(1100 series unit; Agilent). Eluted peptides from the in solution

digestion were electrosprayed as they exited the column and were

analyzed on a QTRAP 4000 linear ion trap mass spectrometer

(SCIEX/ABI) whereas peptides from the in gel digestion were

analyzed on a QTof micro (Waters Micromass) mass spectrometer.

Protein database searching
Individual sample tandem mass spectrometry spectra were peak

listed using Distiller version 2.1.0.0 (http://www.matrixscience.

com/distiller.html) software with peak picking parameters set at 1

as for Signal Noise Ratio (SNR) and at 0.3 for Correlation

Threshold (CT) for QTRAP 4000 data and at 5 SRN and 0.4 CT

for micro QToF data. The peak-listed data was then searched

against a copy of the NCBI GenBank database by using Mascot

(Matrix Science, London, UK; version 2.1.4.04). Mascot was set

up to search the Leishmania (Taxonomy ID: 5658) database (release

10th October 2008; 25,140 sequences protein entries) assuming the

digestion enzyme trypsin, with a fragment ion mass tolerance of

0.80 Da and a parent ion tolerance of 1.5 Da. Iodoacetamide

derivative of cysteine was specified in both search engines as a

fixed modification. Oxidation of methionine residues was specified

in Mascot as a variable modification.

Scaffold (version Scaffold_2_05_02, Proteome Software Inc)

was used to validate MS/MS based peptide and protein

identifications. Peptide identifications were accepted if they could

be established at greater than 95.0% probability as specified by the

Peptide Prophet algorithm [35]. Protein identifications were

accepted if they could be established at greater than 90.0%

probability and contained at least 1 identified peptide. Protein

probabilities were assigned by the Protein Prophet algorithm [35].

Proteins that contained similar peptides and could not be

differentiated based on MS/MS analysis alone were grouped to

satisfy the principles of parsimony.

Bioinformatic analyses
Gene ontology (GO) annotations were attributed using

Blast2GO [36]. The initial Blastp step was performed against

NCBI nonredundant database with E-value of 161023 and high

scoring segment pair cut off 33. 50 top blast hits were retrieved

and used for annotation. Blast2GO default parameters were used

for the annotation step; the pre-eValue-Hit-Filter was 161026,

annotation cut-off was 55 and GO Weight was 5. Annotation was

augmented by using the Annotation Expander (ANNEX) and

further by addition of the GO terms associated with functional

domains derived from scanning the InterPro database [37,38].

Signal peptide prediction was performed using SignalP 3.0 [39].

Figure 6. Modulation of translocation of transcription factors AP-1 and NF-kB following exoproteome incubation. B10R macrophages
were untreated (Nil), infected with L. mexicana or incubated with exoproteome for 16 h and stimulated with 100 ng/ml of LPS for 1 hour the
following day. (A) AP-1 is degraded after infection and exoproteome incubation. No increase in translocation in response to LPS can be seen. (B). A
noncanonical form of NF-kB translocates to the nucleus following LPS-stimulation of infected macrophages (p35/p50). Induction of this form of NF-
kB can also be seen after stimulation of the exoproteome-treated macrophages. Furthermore, induction of the normal p65/p50 in response to LPS is
greatly reduced compared to Nil. S, specific competition (100-fold excess of specific nonradioactive oligonucleotide incubated with nuclear proteins
of Nil+LPS); NS, nonspecific competition (100-fold excess of nonspecific, nonradioactive SP-1 oligonucleotide incubated with nuclear proteins of
Nil+LPS).
doi:10.1371/journal.pone.0018724.g006
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Prediction of nonconventionally secreted proteins was performed

using SecretomeP 2.0 server [31].

Scanning Electron Microscopy
Parasites were fixed in 2.5% glutaraldehyde fixative solution

overnight. The following day, samples were put on poly-L-lysine

coated slides and dehydrated in ethanol, amyl acetate and

supercritical CO2 sequentially. Dehydrated samples were coated

for 3 min with Au-Pd and visualized using a Hitachi S-4700 Cold

Field Emission Gun Scanning Electron Microscope (FEGSEM).

Ultracentrifugation
Ultracentrifugation for sedimentation of exovesicles from the

exoproteome was done according to standard methods [22].

Briefly, exovesicles were prepared by centrifugation of the

exoproteome at 10,0006g for 35 min, to clear possible cell debris

followed by 1 h centrifugation at 100,0006 g. Pellet was

resuspended in PBS and stored at 280uC or fixed immediately

with glutaraldehyde 2.5% for visualization by SEM.

In vitro infection
B10R macrophages were infected with stationary L. mexicana

parasites at 1:20 ratio for 3 or 16 h. Macrophages were similarly

incubated with ,25-fold concentrated and 0.22 mm filter-

sterilized exoproteome for 3 or 16 h. Following incubation or

infection, cells were washed with PBS and lysed.

In gel PTP assay
In gel PTP assay were performed as described previously [40].

Briefly, poly (Glu-Tyr) substrate was radiophosphorylated with FER

protein kinase and 150 mCi of [c-32P] deoxyadenosine 59-triphos-

phate. Substrate was precipitated by TCA and then incorporated in

an SDS-polyacrylamide gel at a concentration of 26105 cpm/ml.

Cell lysates were run on SDS-PAGE and then gels were incubated for

20 h in 50 mM Tris-HCl (pH 8.0) and 20% isopropanol and washed

twice in 50 mM Tris-HCl (pH 8.0), 0.3% b-mercaptoethanol (b-

ME). Gels were put in 6 M guanidine hydrochloride and 1 mM

EDTA denaturation solution for 3 h, and then washed twice in

50 mM Tris-HCl (pH 8.0), 1 mM EDTA, 0.3% b-ME and 0.04%

Tween 20, renaturation buffer. Final renaturation was done

overnight and the gels were dried and autoradiography performed

using Kodak film. Clear bands were indicative of active PTPs.

pNPP assay
pNPP assay was performed as described previously [3]. Protein

concentration of cell lysates was measured by Bradford assay and

equal amounts of protein (10–15 mg) were incubated in a

phosphatase reaction mix containing 50 mM HEPES (pH 7.5),

0.1% b-ME and 10 mM pNPP (Fluka) for several minutes at

37uC. pNPP hydrolysis was quantified spectropscopically at

405 nm. pNPP assay of exoproteome was performed similarly by

incubating equal volumes of acquired exoproteome from indicated

conditions with the reaction mix.

Western blot
Western blot analysis of cell lysates and precipitated exopro-

teome was performed according to standard methods. Proteins

were electrotransfered to Hy-bond nylon membrane (GE Health)

and were detected with primary antibodies against peroxiredoxin

(Lashitew Gedamu, University of Calgary, Canada), HSP70 (José

Requena, University Autonoma de Madrid, Spain), HSP83 (Greg

Matlashewski, McGill University, Canada), CPB (Jeremy Mot-

tram, University of Glascow, UK), gp63 (Robert McMaster,

University of British Columbia, Canada), LACK (Jean-Claude

Antoine, Institut Pasteur, France), SHP-1 (Chemicon, CA), and

PTP-1B (Upstate), HGPRT and hexokinase (generated in our

laboratories). Anti-mouse or anti-rabbit antibodies conjugated to

horse-radish peroxidise (HRP) (GE Health) were used as

secondary antibodies. Membranes were developed with the ECL

Western blot detection system (GE Health).

Electromobility shift assay (EMSA)
EMSA was performed as described previously [3]. Briefly,

nuclear proteins were extracted using an isotonic and then a

hypotonic buffer. Extracted nuclear proteins were incubated with

radiolabelled consensus sequences of NF-kB (59-AGTTGAGGG-

GACTTTCCCAGGC-39), AP-1(59-AGCTCGCGTGACTCAG-

CTG-39) and SP-1 (59-ATTCGATCGGGGCGGGGCGAGC-

39) (Santa Cruz) as non-specific control. Samples were run on a

native 4% acrylamide gel. Following electrophoresis, gels were

dried and autoradiography was performed.

Nitric oxide assay
Nitric oxide (NO) assay was performed as described previously

[3]. Briefly, B10R macrophages were infected or incubated with

exoproteome for 16 h. The following day, parasites and

supernatant were washed out and cells were incubated for 24 h

with 10 or 100 ng/ml of LPS in phenol red-free RPMI.

Concentration of nitrite was measured using Greiss reaction.

Image analyses
Densitometry and particle size measurements were done using

ImageJ 1.42I software from National Institutes of Health.

Statistical analyses
Statistical analyses were performed by Graphpad Prism 5.0

using an unpaired t-test.

All results are representatives of at least 3 independent

experiments.

Figure 7. Inhibition of LPS-induced NO production in exopro-
teome-treated macrophages. B10R macrophages were untreated
(Nil), infected with L. mexicana or incubated with exoproteome for 16 h
and stimulated with 10 or 100 ng/ml of LPS for 20–24 h the following
day. Neither L. mexicana infection nor exoproteome induce noticeable
amounts of NO. Furthermore, L. mexicana infection hampers NO
production by 70 and 80% after 10 and 100 ng/ml of LPS stimulation
respectively. Exoproteome incubation hampers NO production by 50
and 30% after 10 and 100 ng/ml of LPS stimulation respectively (p-
value,0.0001).
doi:10.1371/journal.pone.0018724.g007
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Ethical oversight
Bone-marrow derived macrophages used in this study were

previously derived from B10A.Bcgr mice [32]. Experiments done

on the animals used in that study [32] adhered to the McGill

University’s guidelines for animal husbandry and was approved by

the institutional research ethics committee. The current study did

not require any ethical approval from the review board since it did

not involve any animal work or human-derived cells.

Supporting Information

Figure S1 Flowcytometry analysis of cell damage during
temperature shift. Stationary L. mexicana parasites were stained

with PI to measure the percentage of damaged cells after 4 h of

Temperature shift (TS). Percentage of PI-positive cells remains

negligible following 4 h of TS. However, addition of hydrogen

peroxide together with TS induces cell damage. Nil represents

stationary parasites before washing with PBS (refer to materials

and methods). Blue: Non-stained cells, Red: stained cells.

(TIF)

Table S1 Full list of identified proteins that are secreted
within 4 hours of temperature shift. Proteins that are being

reported for the first time are marked with an asterisk. Accession

numbers belong to Protein Databank of NCBI.

(XLS)

Alternative Language Abstract S1 Farsi (Persian) trans-
lation provided by Kasra Hassani.

(PDF)

Alternative Language Abstract S2 French translation
provided by Amandine Isnard.

(PDF)

Alternative Language Abstract S3 Spanish translation
provided by Cecilia Quiroga.

(PDF)

Alternative Language Abstract S4 German translation
provided by Felix Hugentobler.
(PDF)

Alternative Language Abstract S5 Portuguese translation
provided by Marina T. Shio.
(PDF)

Alternative Language Abstract S6 Amharic (Ethiopian)
translation provided by Fikregabrail Aberra Kassa.
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Alternative Language Abstract S7 Arabic translation
provided by Issa Abu-Dayyeh.
(PDF)

File S1 Spectrum, Spectrum/Model error and Frag-
mentation table of proteins identified by a single
peptide.
(PDF)

Acknowledgments

Proteomic analyses were performed on the Proteomics Platform of the

McGill University and Genome Québec Innovation Centre, Montréal,
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