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Abundant clinical, epidemiological, imaging, genetic, molecular, and pathophysi-
ological data together indicate that there occur an unusual inflammatory reaction 
and a disruption of the innate-immune signaling system in Alzheimer’s disease (AD) 
brain. Despite many years of intense study, the origin and molecular mechanics of 
these AD-relevant pathogenic signals are still not well understood. Here, we provide 
evidence that an intensely pro-inflammatory bacterial lipopolysaccharide (LPS), part 
of a complex mixture of pro-inflammatory neurotoxins arising from abundant Gram-
negative bacilli of the human gastrointestinal (GI) tract, are abundant in AD-affected 
brain neocortex and hippocampus. For the first time, we provide evidence that LPS 
immunohistochemical signals appear to aggregate in clumps in the parenchyma 
in control brains, and in AD, about 75% of anti-LPS signals were clustered around 
the periphery of DAPI-stained nuclei. As LPS is an abundant secretory product of 
Gram-negative bacilli resident in the human GI-tract, these observations suggest 
(i) that a major source of pro-inflammatory signals in AD brain may originate from 
internally derived noxious exudates of the GI-tract microbiome; (ii) that due to aging, 
vascular deficits or degenerative disease these neurotoxic molecules may “leak” into 
the systemic circulation, cerebral vasculature, and on into the brain; and (iii) that this 
internal source of microbiome-derived neurotoxins may play a particularly strong role 
in shaping the human immune system and contributing to neural degeneration, par-
ticularly in the aging CNS. This “Perspectives” paper will further highlight some very 
recent developments that implicate GI-tract microbiome-derived LPS as an important 
contributor to inflammatory-neurodegeneration in the AD brain.

Keywords: Alzheimer’s disease, inflammatory degeneration, lipopolysaccharide, microbiome, microrNA, small 
non-coding rNAs
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iNtrODuctiON—iNFLAMMAtOrY 
sigNALiNg iN tHe ALZHeiMer’s 
DiseAse (AD) BrAiN

Multiple aspects of increased inflammatory signaling and an 
altered innate-immune system are consistent features of AD 
neuropathology; however, it is not well understood where these 
pathogenic signals originate or how they progressively contribute 
to the AD process (1–5). AD is characterized by the appearance 
of complex networks of many different kinds of chemokines and 
cytokines including, prominently, interleukin 1β (IL-1β) and 
tumor necrosis factor (TNFα), 40 and 42 amino acid amyloid 
beta (Aβ40, Aβ42) peptides, and adhesion molecules, in addition 
to the progressive deposition of these Aβ peptide containing 
amyloid plaques and neurofibrillary tangles (NFT) in the paren-
chyma of AD brain (6, 7). Activated microglia, astrocytes, or 
neurons appear to mediate the release of these pro-inflammatory 
molecules and cellular immune components (6, 8–12). Indeed, 
chemokines, cytokines, the insoluble Aβ42-enriched peptide 
deposits, NFTs, apoptotic, damaged and vanishing neurons, and 
activated microglia, and other related pro-inflammatory signals 
are potent neuropathological stimulants that appear to maintain 
the AD brain in a “chronic state of self-reinforcing inflammation”  
(2, 7, 10–13). Very recent studies that evaluated the pro-inflam-
matory potential of several different chemokines, cytokines, 
Aβ peptides, and lipopolysaccharides (LPS), either alone or in 
combination, have indicated that when compared, bacterial LPSs 
exhibit the strongest induction of pro-inflammatory signaling in 
human neuronal–glial cells in primary coculture of any single 
inducer, and different LPS extracts from different gastrointestinal 
(GI)-tract resident Gram-negative bacteria appeared to have 
different pro-inflammatory potential (12, 14–16). For example, 
exposure of LPS from the Gram-negative GI-tract abundant 
Bacteroides fragilis to primary human neuronal–glial cells in 
coculture was found to be an exceptionally powerful inducer of 
the NF-κB p50/p65 dimer, a known pro-inflammatory transcrip-
tion factor complex that triggers the expression of pathogenic 
pathways involved in neurodegenerative inflammation (15, 16). 
In both neocortex and hippocampus, LPS has been detected to 
range from a ~7- to ~21-fold increase abundance in AD brain 
(Figures  1A–D). Along with an avalanche of very recent work 
from independent laboratories, these observations prompted us 
to further examine the presence and anatomical location of LPS in 
AD brains versus age- and gender-matched controls (12, 17, 18).

iNterNALLY DeriveD NOXiOus 
eXuDAtes OF tHe gi-trAct 
MicrOBiOMe

Major Gram-negative bacilli of the human GI-tract, such 
as the abundant B. fragilis and Escherichia coli (E. coli), are 
capable of discharging a remarkably complex assortment of 
pro-inflammatory neurotoxins. These consist of four major 
components: (i) bacterial amyloids (10, 21); (ii) endotoxins and 
exotoxins (5, 12); (iii) LPS (12, 18); and (iv) small non-coding 
RNAs (sncRNAs) [(22–25), unpublished observations]. Either 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


Figure 1 | Continued  
(A–D) Western and (e–F) immunohistochemical analysis of 
lipopolysaccharide (LPS) (~37 kDa) signals in human brain temporal lobe 
neocortex [N = 4 control and 4 sporadic Alzheimer’s disease (AD) cases; 
quantified in (B)]; and (c) hippocampus [N = 3 control and N = 3 sporadic 
AD cases; quantified in (D)] were compared against β-actin (~42 kDa) 
abundance in the same sample (using anti-Escherichia coli LPS; cat# 
ab35654 from Abcam, Cambridge UK and anti-β-actin cat# 3700, Cell 
Signaling, Danvers, MA, USA). All Western methodologies have been 
previously described in detail (12, 19). Densitometric readings of immune-
reactive bands were obtained using ImageQuantTL [GE Healthcare  
(12, 19, 20)]; all control and AD tissues were age- and gender-matched; there 
were no significant differences between the age (control 82.5 ± 8.1 years, AD 
81.3 ± 8.8 years), gender (all female), postmortem interval (PMI) (all tissues 
3.8 h or less), RNA quality, or RNA yield between each of the two groups; in 
these samples, LPS abundance was found to be on average greater than 
sevenfold as abundant in AD when compared to control neocortex; LPS was 
found to be on average >21-fold as abundant in AD when compared to 
control hippocampus; in (B,D) a dashed horizontal line at 100 is included for 
ease of comparison; *p < 0.01 (ANOVA); (e,F) for immunohisto-chemistry 
control and AD neocortex and/or hippocampal brain tissues were embedded, 
sectioned (10 µm), fixed, and incubated with primary antibodies (1:1,000; 1× 
PBS with 2% BSA, 2% goat or donkey serum, and 0.1% TX-100) overnight 
at 4°C, washed with PBS, and then incubated with Alexa Fluor-conjugated 
species-specific secondary antibodies (LPS; red fluorescence 
λmax ~ 650 nm); sections were next counter-stained with DAPI (blue 
fluorescence; λmax ~ 470 nm) for nuclei (e), and/or Aβ peptide (green 
fluorescence; λmax ~ 510 nm) (F) and imaged with Zeiss LSM 700 Confocal 
Laser microscope system (Richmond, VA, USA); note perinuclear staining of 
LPS in AD; while there appears to be random association of LPS with Aβ 
deposits in controls, >75% of all LPS signals were found to be associated 
with brain cell nuclei in AD; the significance of this is not currently known; the 
association of LPS with the major cellular repository for genetic material 
suggests that the significance of this association may be genetic; white 
arrows highlight LPS-nuclear envelope association; a total of 26 control and 
AD brains (PMI 3.8 h or less) were examined and yielded highly similar 
results; (e,F) magnification 50×.
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alone or in various combinations, these neurotoxins are intensely 
pro-inflammatory toward primary human brain cells (12, 15, 16). 
As integral components of the outer leaflet of the outer membrane 
of Gram-negative bacteria, LPS shed into the local environment 
have historically been thought to play some host–pathogen 
immune-evasion strategy useful to bacterial survival while elicit-
ing strong immune and inflammatory responses within the host. 
Interestingly, secreted LPS along with proteolytic endotoxins and 
amyloid monomers are generally soluble as monomers. However, 
over time, they aggregate into highly insoluble fibrous lipoprotein 
lesions that associate with the progressive degenerative neuropa-
thology of several common, age-related disorders of the human 
systemic circulation, and CNS including systemic inflammatory 
response syndrome, multiple sclerosis, prion disease, and AD (12, 
20, 26). LPS, the major molecular component of the outer mem-
brane of Gram-negative bacteria normally serves as a physical 
barrier providing the bacteria protection from its surroundings. 
LPS is also recognized by the immune system as a marker for 
the detection of bacterial pathogen invasion and responsible for 
the development of inflammatory response is perhaps the most 
potent stimulator and trigger of inflammation known (27). LPS 
activates toll-like receptors (TLRs), membrane-spanning protein 
receptors expressed in microglial cells of the innate-immune sys-
tem, which recognize common damage- or pathogen-associated 

molecular-patterns [DAMPS, PAMPs (2, 28)]. Interestingly, 
of the 13 currently characterized TLRs, the microglial TLR2 
and TLR4 are activated by amyloid, LPS, lipoglycans, and/
or other microbial triggers that subsequently induce cytokine 
production, inflammation, phagocytosis, and innate-immune 
defense responses that directly induce the development of CNS 
pathology. In addition to the TLR2 and TLR4 receptors, at least 
one additional microglial transmembrane LPS receptor—CD14 
mediates phagocytosis of both bacterial components and Aβ42 
peptides, hence expanding roles for microglia and microglial LPS 
receptors in AD pathophysiology (12, 29).

To cite other recent examples, a secreted, highly pro-
inflammatory zinc metalloprotease metalloproteinase B. fragilis 
endotoxin called fragilysin (BFT) derived from enterotoxigenic 
strains of B. fragilis have been recently shown to contribute to: 
(i) anaerobic bacteremia, sepsis and systemic inflammatory 
distress, diarrheal disease; (ii) systemic inflammation, GI-tract, 
and colorectal cancers; (iii) inflammatory neurodegeneration 
in part via the disruption of epithelial cell-based GI-tract 
barriers via cleavage of the synaptic adhesion zonula adherens 
protein E-cadherin; and (iv) enterotoxigenic microbes spe-
cifically impact microglial-mediated innate-immune responses, 
detoxifying and phagocytic mechanisms, and amyloidogenesis 
characteristic of inflammatory aspects of neurodegeneration 
(12, 15, 16, 30–34). Prokaryotic sncRNAs play essential roles 
in the regulation of many bacteriological processes including 
the expression of exotoxins and endotoxins and the regula-
tion of bacterial virulence (22). In eukaryotes, microRNAs 
(miRNAs) also function as key regulators in many biological 
processes through posttranscriptional suppression of mRNAs 
and the downregulation of gene expression. Typical trans-acting 
microRNA-size sncRNAs are abundant in all prokaryotic cells 
including bacteria and fungi, but their production, release, and 
leakage from the confines of a healthy GI-tract into systemic 
and cerebral circulation and downstream effects along the gut 
microbiome–brain axis are a highly novel and largely unexplored 
research area (12, 22, 25). There is considerable speculation that, 
as for other bacterial exudates, such RNA-based neurotoxins 
may be pathogenic and highly detrimental to the homeostatic 
function of the neuronal, glial, endothelial, and other brain cells 
that comprise the CNS (23, 24).

LeAKAge OF NeurOtOXic MOLecuLes 
iNtO tHe sYsteMic circuLAtiON AND 
tHe cNs

Gram-negative bacterial exudates of the human GI-tract are 
not only the primary source of a remarkable array of neuro-
toxic pro-inflammatory amyloids, endo- and exotoxins, LPSs, 
and sncRNAs but also serve as potent sources of membrane-
disrupting agents (12, 15, 16, 35, 36). As aforementioned, BFT 
can alone induce the disruption of epithelial cell-based GI-tract 
membrane barriers via presenilin 1-dependent cleavage of the 
zonula adherens protein E-cadherin, thus leading to progressive 
functional decline in membrane integrity (12, 15, 16, 30–34). 
Other recent reports suggest that intestinal dysbiosis and “leaky 
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Figure 2 | The human gastrointestinal (GI)-tract microbiome as a source of 
strong pro-inflammatory exudates—highly schematicized depiction of 
anaerobic, Gram-negative bacilli (such as Escherichia coli and Bacteroides 
fragilis) of the human GI-tract microbiome and their potentially pathogenic, 
immunogenic, and pro-inflammatory neurotoxins [amyloids, endotoxins and 
exotoxins, lipopolysaccharide (LPS), and small non-coding RNAs (sncRNAs)] 
that may contribute to systemic and CNS inflammation and neuro-immune 
disruption; two major sources of these complex mixtures are E. coli and  
B. fragilis; major anaerobic Gram-negative bacilli of the human middle and 
lower GI-tract, respectively; the B. fragilis toxin (BFT) fragilysin is one of the 
most potent pro-inflammatory molecules known (12, 15, 16, 30, 37, 38); 
these intensely pro-inflammatory LPS species may be able to “leak” through 
at least two major biophysiological barriers—the GI-tract barrier and the 
blood–brain barrier—to access brain compartments [see Ref. (2, 12, 28, 30, 
31, 34)]. Neurotoxic mixtures secreted by multiple GI-tract microbes or other 
microbial species may have considerable potential to support inflammatory 
signaling within the CNS (2, 12, 21, 28, 30, 31, 34); B. fragilis proliferation 
and (BFT) fragilysin levels may be kept in check by increased intake of soluble 
and insoluble dietary fiber (34, 38, 46); interestingly, BFT-derived fragilysin 
may exert neurotoxic activities via multiple mechanisms: (i) by increasing the 
permeability or “leakiness” of the intestinal epithelium via the dissolution of 
tight junctions in epithelial cells (28, 30); and (ii) by promoting amyloid peptide 
aggregation and progressive amyloidogenesis (15, 16, 18, 37, 38); Figure 2 
modified and updated from Lukiw (15, 16).
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gut syndrome” constitutes a key pathophysiological link for 
transport of microbiome-derived toxins across GI-tract and 
blood–brain biological barriers that result in a progression from 
systemic to CNS inflammation (12, 21). The progressive failure 
of major physiological barriers is reminiscent of the activation of 
the thanatomicrobiome (the “death”-associated microbiome) and 
the deactivation of protective biological barriers that occurs at 
the time of death when normal endothelial cell structures and 
signaling: (i) becomes increasingly inoperative and “leaky” (1, 12, 
37); and (ii) progressively unable to support normal homeostatic 
brain functions that are accompanied by a progressive and insidi-
ous functional decline (12, 28, 37). These recent findings indicate 
that AD-affected brains have remarkably large loads of bacterial-
derived toxins compared to controls. The transfer of noxious, 
pro-inflammatory molecules from the GI-tract microbiome to 
the CNS may be increasingly important during the course of 
aging when both the GI-tract and blood–brain barriers become 
significantly more permeable (12, 28, 38).

PeriNucLeAr LOcALiZAtiON  
OF LPs iN AD BrAiNs

While other recent studies have reported an LPS-mediated stimu-
lation of chronic inflammation, beta-amyloid accumulation, and 
episodic memory decline in murine models of AD (39, 40) and a 
biophysical association of LPS with amyloid deposits and blood 
vessels in human AD patients (18), here, we provide the first 
evidence of a perinuclear association of LPS with AD brain cell 
nuclei (Figures  1E,F). Strong adherence of LPS to the nuclear 
periphery has recently been shown to inhibit nuclear maturation 
and function that may impair or block export of mRNA signals 
from brain cell nuclei, a highly active organelle with extremely 
high rates of transcription, mRNA processing, and export into the 
cytoplasm [(41–43), unpublished observations]. This may in part 
be responsible for the widely observed, generalized downregula-
tion of global gene expression in AD, independently reported 
by several AD gene expression research laboratories, through 
the biophysical blockage of mRNA trafficking through nuclear 
pores (41, 42, 44, 45). LPS may be further injurious to the nuclear 
membrane just as LPS contributes to cerebrovascular endothelial 
cell membrane injury (12, 18, 40). Lastly, evidence is accumu-
lating that neurotoxic exudates from other GI-tract microbiota 
may contribute to dysfunction in additional, ultimately fatal 
neuropsychiatric illnesses that involve progressive inflammatory 
neurodegeneration (8, 12). New opportunities to modulate exist-
ing gut microbiota and their exudates using probiotics and/or 
modifications through soluble or insoluble dietary fiber intake 
could provide novel targets for more effective clinical intervention 
[Figure 2 (18, 46, 47); unpublished observations]. Interestingly, 
the high intake of dietary fiber is a strong inhibitor of B. fragilis 
abundance and proliferation in the intact human GI-tract and 
as such is a potent inhibitor of the neurotoxic B. fragilis-derived 
amyloids, LPS, enterotoxins, and sncRNAs. Hence, dietary fiber-
mediated suppression of B. fragilis abundance may turn out to 
be beneficial for both the human GI-tract microbiome and CNS 
health (34, 38, 46).

cONcLuDiNg reMArKs

It is not generally appreciated that, in the human body, microbial 
genes outnumber human genes by about 100 to 1, and the impact 
of bacterial genetics on human health and disease may have 
been vastly underestimated (8, 12, 15–17, 48). The assumption 
of the privileged immunological status of the CNS has also been 
recently questioned in multiple investigations, particularly in 
terms of inflammatory neurodegenerative diseases such as AD, 
as both microbial-derived nucleic acid sequences and/or noxious 
exudates representative of GI-tract Gram-negative bacteria are 
showing up within CNS compartments, including, prominently, 
anatomical regions of the CNS involved in inflammatory and 
pathological signaling and neuro-immune disruptions that 
characterize the AD process (9, 12, 15, 16, 18, 49). For example, 
LPS has been recently localized to the same anatomical regions 
involved in AD-type neuropathology to levels of greater than sev-
enfold over control in the temporal lobe neocortex and >21-fold 
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over control in the hippocampus. This suggests that GI-tract 
microbiome-derived LPS may be an important initiator and/or 
significant contributor to inflammatory degeneration in the AD 
CNS (Figures  1 and 2). An alternative, yet, highly speculative 
view is that the human CNS may have its own microbiome, 
which could also explain the presence of Gram-negative bacterial 
secretory components in the brain as well as multiple forms of 
microbial-derived nucleic acid sequences (12, 49).
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