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Abstract

Both climatic and edaphic conditions determine plant distribution, however many species distribution models do not
include edaphic variables especially over large geographical extent. Using an exceptional database of vegetation plots
(n = 4839) covering an extent of ,55000 km2, we tested whether the inclusion of fine scale edaphic variables would
improve model predictions of plant distribution compared to models using only climate predictors. We also tested how well
these edaphic variables could predict distribution on their own, to evaluate the assumption that at large extents,
distribution is governed largely by climate. We also hypothesized that the relative contribution of edaphic and climatic data
would vary among species depending on their growth forms and biogeographical attributes within the study area. We
modelled 128 native plant species from diverse taxa using four statistical model types and three sets of abiotic predictors:
climate, edaphic, and edaphic-climate. Model predictive accuracy and variable importance were compared among these
models and for species’ characteristics describing growth form, range boundaries within the study area, and prevalence. For
many species both the climate-only and edaphic-only models performed well, however the edaphic-climate models
generally performed best. The three sets of predictors differed in the spatial information provided about habitat suitability,
with climate models able to distinguish range edges, but edaphic models able to better distinguish within-range variation.
Model predictive accuracy was generally lower for species without a range boundary within the study area and for common
species, but these effects were buffered by including both edaphic and climatic predictors. The relative importance of
edaphic and climatic variables varied with growth forms, with trees being more related to climate whereas lower growth
forms were more related to edaphic conditions. Our study identifies the potential for non-climate aspects of the
environment to pose a constraint to range expansion under climate change.
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Introduction

Climate is a strong predictor of plant species distribution at

regional and continental scales, and therefore climate change is

expected to lead to range shifts [1]. Models that predict the impact

of climate change on plant distribution, however, often ignore the

relative contribution of other potentially important environmental

predictors that could limit plant species’ ability to establish in areas

newly within their climatic niches. When abiotic predictors other

than climate are included in species distribution models, they are

often those that can be interpreted across large expanses/grain

sizes, such as the ones derived from digital elevation models,

generalized geological characteristics, or satellite imagery [2]–[4].

Edaphic variables that are typically measured at point locations in

the field and that vary at fine spatial scales, such as pH or humus

characteristics, are rarely considered in regional or continental

assessments, and so their contribution to distribution models

relative to that of climate variables remains largely untested.

Commonly, the climatic signal when measured over broad

climatic gradients is expected to override the influence of edaphic

variables in distribution models [5], with only marginal gain to

model fit obtained from adding edaphic data [6]. However, recent

studies have also shown that including edaphic variables, along

with climate variables, can greatly influence predicted species

distribution even at large regional extents, with important

consequences for predictions of range expansion or contraction

under climate change [7]–[11]. As these studies have focused on a

few woody species and grasses, it is recognized that this work needs

to be extended to a larger suite of species, growth-forms, and

regions since it cannot be assumed that all species would respond

to climatic or edaphic gradients uniformly [10], [12], [13].

A common limitation in incorporating edaphic variables in

distribution models is the availability of data over large spatial

extents. Several edaphic variables are categorical in nature (e.g.,

drainage class or soil type) and cannot meaningfully be averaged

within the large grid cells commonly used in distribution models.

Ideally, species presence or absence must be recorded at the

location where the edaphic variables are measured, which is often

not the case when species are recorded in grid cells. As well,

species occurrence records are often obtained from compiled

sources such as the Global Biodiversity Information Facility (www.

gbif.org) or herbaria which do not provide edaphic information.
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Consequently, even if the choice of variables in predicting species

distribution should ideally be based on the known ecological

requirements of species [6], [7], [10], [14], [15], so that projections

are more robust for new areas or time frames [16], [17], few

modelling frameworks have incorporated potentially ecologically

relevant sets of predictors beyond climate variables. Regions for

which information about species occurrence patterns precisely

matches the location of edaphic data therefore provide invaluable

model systems to assess the relative contribution of climatic and

edaphic conditions to plant species distribution and can improve

our knowledge of factors limiting species’ ranges in a climate

change context. Transitional areas between major ecosystems such

as that between the northern temperate forest and the boreal forest

are ideally suited to test this, since they show important gradients

in both climatic and edaphic conditions.

We used an ecological dataset of global significance (one of the

20 largest datasets listed in the Global index of vegetation plot

databases, www.givd.info [18]) to test a series of hypotheses about

the relative importance of climatic and edaphic conditions on the

distribution of plant species. Here we consider edaphic variables

broadly to be those describing the nature of the site’s substrate,

including the topographic position. This forest database covers a

large geographic area in eastern North America with a diverse

climate, yet with a grain size appropriate to capture the variability

of edaphic features. First, we asked whether climate-only species

distribution models (cSDM) have better predictive accuracy than

edaphic-only models (eSDM); we also tested whether combined

edaphic-climatic models (ecSDM) had improved predictions over

models with only climate predictors. Second, since growth-forms

are associated and adapted to climate regimes [19], we considered

whether the value of including climate vs. edaphic variables varied

with growth-forms (trees, shrubs and sub-shrubs, seed bearing

herbaceous plants, non-seed bearing plants and lichens). The buds

of trees and shrubs are exposed to harsh climatic conditions,

whereas low-lying species may benefit from more sheltered

conditions and micro-climates, or their perennating buds may

escape unfavourable climatic conditions underground. Finally, we

verified commonly-held assumptions about the relationship

between biogeographic attributes of a species within the study

area and model outcomes [20], [21]. We expected prevalent

species in the study area to have models with lower predictive

accuracy than less prevalent species because the latter would be

restricted to more specific abiotic conditions. As well, since climate

has a strong latitudinal gradient in the study area, we expected it to

be a better predictor for species with a range boundary in the study

area than for species without a range boundary.

This study shows the potential for fine scale edaphic variables to

improve species distribution models even over a large regional

extent and climate gradient, while also confirming the greater

importance of climate at this scale in controlling distribution. It

also highlights previously unrecognized relationships between

climatic and edaphic predictors and growth-forms.

Materials and Methods

Study area
The study was carried out in southern Quebec, Canada (south

of 52u N, Figure 1). The study area covers more than 55 million

hectares. Two major vegetation zones are present: the northern

temperate zone in the south, and the boreal zone in the north,

with a gradient in importance of broadleaved trees in the south to

evergreen trees in the north [22], [23]. Temperature follows a

north/south gradient with average annual temperatures ranging

from 6.5uC in the south to 24.5uC in the north. The precipitation

pattern is more longitudinal, with the western side of the province

having lower annual precipitation than the east; total annual

precipitation ranges from 730 mm to 1500 mm [24]. Edaphic

characteristics are also diverse. The main soil types are glacial tills,

clay and sandy soils from lacustrine and fluvial origins, and peat

bogs and marshland with organic soils. There are several

mountain ranges in the study area, which have different geologic

histories and add to the diversity of soil conditions. The Canadian

Shield underlies much of the study area, thus many sites have

acidic bedrock. The Appalachian Mountains contain pockets of

carbonate rocks (calcareous rocks, dolomites, and marbles). In the

Saint Lawrence Lowlands, there are rich lacustrine deposits [22].

Data sources
Species and edaphic data were obtained from the Quebec

Ministry of Natural Resources (Ministère des Ressources naturelles du

Québec) Vegetation Database of Quebec, the original name for this

database is the Point d’Observation Écologique (POE) [25]. This dataset

is available through the Ministry upon their approval of its

intended use. At 4,839 uninhabited locations within the study

area, 400 m2 circular quadrats were sampled for the presence of a

set list of 314 plant species along with detailed edaphic

characteristics. Some variables were obtained via photo-interpre-

tation. The sampling was made between 1987 and 2000. A

detailed description of the methods used for data collection can be

found in Saucier et al. [26] and are briefly outlined below. Edaphic

variables that we used for modelling and their units or categories

are given in Tables 1 and 2. They were measured as follows:

elevation (taken from a 1:20 000 topographic map), relative height

(height of the site relative to the surrounding areas taken from a

1:250 000 topographic map, or from a 1:15 000 or 1:40 000 aerial

photo if available, or in the field), slope position (assessed in the

field), slope angle (measured with a clinometer at the centre of the

plot), microtopography (assessed visually in the field with a

pictogram key), drainage (assessed in the field based on natural

drainage class keys following the Canadian system of soil

classification), speckling (indicative of soil saturation, assessed

visually within the soil profile), parent material (assessed visually in

the field with keys), texture of the B horizon (using tactile tests in

the field to match textural classes from the Canadian system of soil

classification), humus type (assessed in the field using keys), humus

depth (assessed in the field visually and by touch, up to a depth of

1 m), and soil profile depth (assessed in the field visually to the

depth of the start of the BC horizon, or the C horizon if present).

pH was measured in the field using a Hellige-Truog test kit for

several horizon depths; we grouped and averaged these into: pH of

surface horizons (all humus layers and A horizons for which pH

was measured, except for the eluviated A horizon, which was not

consistently taken), pH of B horizons (all B horizons measured

above transitional BC horizons), and the pH of the BC or C

horizon (the pH taken at the deepest level). Some potentially

relevant variables in the database (e.g., depth of the water table,

exposure) were not included because of a lack in consistency in

their measurements or because the measure included combina-

tions of continuous and categorical values.

All the species modelled are native to the study area and include

bryophytes and lichens. Out of the 314 surveyed species, 128 met

our requirements of having at least 100 occurrences, and so were

retained for modelling (Table S1). This minimum sample size level

was chosen because species distribution model accuracy has been

shown to decrease with less than 100 occurrences [27], [28].

Thirteen climate variables (Table S2) for the period 1961–1990

were obtained from the USDA Forest Service Rocky Mountain

Research station website (http://forest.moscowfsl.wsu.edu). They
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Figure 1. Map of study area showing sampling point locations.
doi:10.1371/journal.pone.0092642.g001

Table 1. Continuous variables used in modelling.

Variable name Form Mean SD

Humus depth (cm) Edaphic 9.9 6.9

Soil depth (cm) Edaphic 32 15.7

pH surface horizons Edaphic 4.4 0.7

pH B horizons Edaphic 5.8 0.8

pH BC or C horizon Edaphic 6.7 0.7

Elevation (m) Edaphic 338 151

Slope angle (%) Edaphic 11 11.2

Degree days (accumulated first to last frost, 5uC base) Climatic 1341 254

Minimum temperature (uC) Climatic 221 3.6

Precipitation (accumulated April to September, mm) Climatic 560 58

doi:10.1371/journal.pone.0092642.t001
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were produced using Hutchinson’s ANUSPLIN software, which

uses a digital elevation model and creates thin-plate spline

interpolations of weather station data [29]. These surfaces were

produced for North America from data from 11,757 weather

stations, 471 of these were within our study area. Full details on

the methods used for creation of these surfaces are available in

Rehfeldt [30]. Climate data have a resolution of 0.0083 decimal

degrees (<1 km). The sampling points of the POE data were

matched to this grid, and the climate data was joined to the other

environmental variables for each data point.

Data preparation
Preliminary analysis revealed that climate variables relating to

temperature were highly correlated with each other, as were

indices derived from precipitation and moisture (such as precip-

itation-potential evapotranspiration). A pre-selection of climate

variables was made to reduce this multicollinearity using the

VARCLUS procedure [31] with SAS 9.2 software (SAS Institute

Inc., 2008). VARCLUS is an algorithm that produces clusters of

variables that have similar patterns of variation. It is an iterative

process that works by splitting variables into groups based on

which of the first two principal components within a group has the

highest correlation, as well as by iteratively reassigning cluster

membership to test the effect on this classification. We entered the

13 climatic variables (Table S2) into the clustering analysis, and

selected for further analysis one variable from each cluster based

on their having a high R2 with their own cluster, a low R2 with the

other clusters, and on their biological and physiological signifi-

cance for plants. Climate variables retained were growing degree

days (base of 5uC), growing season precipitation (total from April

to September), and minimum temperature of the coldest month.

Tests for multicollinearity were further done between all the

selected variables (edaphic and climatic). Pearson correlation

coefficients and R2 statistics were calculated between all of the

continuous variables. For ordinal and categorical variables,

contingency tables were made and the significance of a chi square

test was used to assess multicollinearity. One-way ANOVAs were

performed between each categorical or ordinal variable and each

continuous variable. For all tests, although there were several

significant relationships at a P,0.05 threshold, none had a R2

higher than 0.3, and so no further variables were removed. These

analyses were made in Statistica 10.0 (Statsoft, Inc., 2010).

Modelling
Model construction. Models were constructed for each

species using either climate variables, edaphic variables, or both

sets of variables. We chose our modelling approach to be

comparable to commonly used SDM techniques, including both

model-driven and data-driven approaches to model fitting [15].

Because the choice of a statistical model can influence the result,

we tested four statistical model types: generalized additive model

(GAM), generalized boosted model (GBM), generalized linear

model (GLMs), and Random Forest model (RF) within the

BIOMOD platform [32] implemented in R 2.12.1 (R Develop-

ment Core Team, 2010). For all models a version of a step-wise or

iterative approach to model fitting was used, so that the final

model may not have included all provided variables. For GLM

and GAM, both forward and backward selections were made.

GBM and RF both work by producing many models; these are

weighted, such that some variables will have greater importance in

predicting the outcome than others. We used Akaike’s Information

Criteria to compare competing model types within this fitting

process. For the GLMs, quadratic terms were allowed, but

interactions between model terms were not, since this would have

created many possible predictors, especially since there were

already many categorical variables in the analysis. For GAMs,

interaction terms were also not included and degrees of freedom

for smoothing were set at three, which is comparable to a

quadratic response [15]. GBM and RF include interaction terms

between variables because of their tree structure. Ten iterations for

each species were made with 70% of the species occurrence data

used to fit the models, and 30% to test the models (referred to from

now on as cross-validation models); also a full data model was

made with 100% of the available data.

Model predictive accuracy. Model predictive accuracy was

assessed with the true skills statistic (TSS) and area under the

receiver operating characteristic curve (AUC). We calculated these

for both the test data for the cross-validation models and for the

full data model. The TSS is similar to the Kappa statistic,

however, unlike Kappa, the TSS is not as sensitive to prevalence.

TSS is calculated as the sensitivity plus the specificity minus one

[33], [34]. The threshold chosen for ranking a point as present or

absent in order to calculate the specificity and sensitivity was based

on the value that would maximise the TSS score. We consider

values of TSS greater than 0.6 to be good, 0.4 to 0.6 moderate,

and less than 0.4 poor ([35] adapted from [36]). The AUC is taken

from the receiver operating characteristic curve which is the curve

Table 2. Categorical variables used in modelling.

Variable name{ Categories (count)

Relative height Higher (1000), level (1940), lower (1898)

Humus type Peat (310), mull (184), moder (1180), mor (3164)

Slope position Flat (892), depression (364), plateau (848), mid-slope (2075), crest (122), upper slope (457), lower slope (80)

Microtopography Even (1590), uneven (2140), very uneven (895)

Speckling Colouration from good aeration (2148), colouration from continuous saturation (2148), colouration from alternating flooded and dry
conditions (691)

Texture B horizon Sand (328), sandy loam (733), loam (1325), loamy sand (1062), clay (154), clay loam (263), loamy clay (890), loamy sandy clay (83)

Parent material origin Glacial (3015), glacio-fluvial (458), fluvial (55), marine (259), estuarine (42), laucustrine (528), colluvial (262), bed rock close to the
surface (102)

Drainage Excessively drained or somewhat excessively drained (62), well drained (1362), moderately well drained (2254), somewhat poorly
drained (939), poorly drained or very poorly drained (221)

{All are edaphic variables
doi:10.1371/journal.pone.0092642.t002
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of sensitivity versus 1 minus the specificity for a range of

probability threshold values for ranking points as present or

absent. The area under the curve (or AUC) is then used as a

measure of model predictive accuracy [34]. We consider AUC

values greater than 0.8 to be good, between 0.6 and 0.8 to be

moderate, and less than 0.6 to be poor ([37] adapted from [38]).

To compare eSDMs, cSDMs and ecSDMs we made a t-test of the

ten cross-validation scores of the TSS and AUC of the competing

model types for each species. We also made linear regressions

between the average cross-validation scores for each predictor set.

An investigation of the spatial distribution of this prediction

success was also made by mapping the values from the confusion

matrix [34] for the different SDMs.

Variable importance estimation. To evaluate the impor-

tance of variables with the ecSDMs, the full data models for all

statistical model types were used and a measure of variable

importance was calculated as one minus the correlation between

the model output and the model output with the variable of

interest permutated [32]. This metric was chosen because it is

comparable across all the statistical model types. High values

indicate greater importance.

Species characteristics
We compared species based on their characteristics to test if

there were general patterns in model predictive accuracy and

variable importance. The characteristics considered were: (1) the

presence of a range boundary within the study zone; species

ubiquitous in the study area were given a status of no range

boundary. Species with no observations in the north, south, east or

west of the study site (or combinations) were given the status of

having a range boundary. In order to determine this, histograms of

species presence with latitude and longitude were made to identify

clear breaks in species prevalence, so that species that had no

observations within regions of the study zone could be identified

and distinguished from species that were merely rare on the

landscape. In case any species had a more complex distribution

that was not a north-south or east-west split, maps of each species

were also examined. All of the categorisation was done prior to

analysis/modelling (results not shown); (2) species prevalence in

the sampled sites (a count of occurrences), and (3) plant growth

forms of trees, shrubs and sub-shrubs, herbaceous seed bearing

plants, or herbaceous non-seed bearing plants and lichens. The

significance of these characteristics on model predictive accuracy

and variable importance were tested with either one-way

ANOVAs, t-tests (Welch’s), or Pearson’s correlations where

appropriate, as well as counts of the number of species in each

group with at least one important edaphic predictor.

Results

Predictive accuracies across models
When comparing all models, many had TSS and AUC values in

the good range (Table 3). The ecSDM had consistently better

predictive accuracy than the cSDM or eSDM for the majority of

species regardless of the statistical models used. Considering both

the full models and the cross-validation scores, the different

statistical model types performed similarly. Of note, RF was the

most sensitive to data input/over-fitting, producing full models

with perfect classification of presence and absence points but

having cross-validation scores that were much lower than these full

model scores. Despite this, the RF models can be considered as

robust as the other statistical model types, since their cross-

validation scores were comparable. There was a large difference

when using the TSS or AUC as an assessment of model accuracy,

although the two were highly correlated. Based on the threshold

levels chosen, the TSS metric produced a more conservative

estimate of the number of good models than the AUC metric.

Because there was no great difference between statistical models,

the rest of the results are presented for the average of the four

models.

Table 3. Summary statistics of predictive accuracy for the different models.

Full model Cross validation models

Climate SDM AUC TSS AUC TSS

GAM 0.7960.09 (50%) 0.4860.17 (27%) 0.7860.10 (50%) 0.4860.18 (23%)

GBM 0.8560.07 (75%) 0.5660.15 (41%) 0.8060.09 (55%) 0.5060.16 (27%)

GLM 0.7960.10 (49%) 0.4860.12 (23%) 0.7860.10 (50%) 0.4560.12 (24%)

RF 160 (100%) 0.9760.02 (100%) 0.7860.09 (50%) 0.4660.17 (22%)

Edaphic SDM

GAM 0.8160.07 (56%) 0.4960.12 (22%) 0.7860.07 (43%) 0.4560.12 (13%)

GBM 0.8160.06 (62%) 0.4960.11 (18%) 0.7760.07 (34%) 0.4360.12 (8%)

GLM 0.8160.07 (56%) 0.4860.12 (23%) 0.7860.07 (42%) 0.4560.12 (12%)

RF 160 (100%) 160 (100%) 0.7860.07 (43%) 0.4460.12 (12%)

Edaphic-climate SDM

GAM 0.8560.07 (79%) 0.5760.15 (43%) 0.8360.08 (62%) 0.5460.15 (37%)

GBM 0.8660.07 (83%) 0.5960.13 (44%) 0.8360.07 (63%) 0.5360.14 (34%)

GLM 0.8560.07 (76%) 0.5760.15 (41%) 0.8260.08 (63%) 0.5360.15 (36%)

RF 160 (100%) 160 (100%) 0.8460.07 (71%) 0.5560.14 (38%)

TSS-true skill statistic and AUC-the area under the receiver operating characteristic curve; climate SDM-species-distribution model using only climate variables; edaphic
SDM-species distribution model using only edaphic predictors; edaphic-climate SDM-species distribution model using both edaphic and climate predictors. Reported are
means for all species for each statistical model type, 6 one standard deviation, and percentage of species with a AUC greater than 0.80 or a TSS greater than 0.60; for
cross validation models, the mean of each species was first calculated
doi:10.1371/journal.pone.0092642.t003

Beyond a Climate-Centric View of Distribution

PLOS ONE | www.plosone.org 5 March 2014 | Volume 9 | Issue 3 | e92642



The improvement to model predictive accuracy obtained by

including the other set of abiotic predictors (Table 3, Figure 2) was

greater for the eSDMs, and more species had models with higher

predictive accuracy if only including climate variables than if only

including edaphic variables. The pattern of improvement to model

predictive accuracy is illustrated in Figure 2 for the AUC metric,

the TSS metric showed similar patterns (but with lower values

which are characteristic of the TSS metric).

Model predictive accuracy was generally higher for species with

a range boundary within the study zone, but was not significant for

the ecSDM (Table S3). As well, less prevalent species had cSDM

and eSDM with higher predictive accuracy, reflected in the

significant negative correlation between model predictive accuracy

and prevalence, but there was no effect on the full ecSDMs (Table

S3). There was a clear difference, however, in the general spatial

patterns of omission and commission errors for species with a

range boundary. The spatial distribution of the predictive success

based on the confusion matrix is illustrated in Figures S1–S19 for

those species with a north-south range boundary in the study area

and an average AUC for all three sets of environmental predictor

models of at least 0.90 (N = 19). The cSDMs predicted most sites

as positive within the area where a species was prevalent, but few

sites outside this area as positive. In contrast, the eSDM predicted

sites as positive both within and outside the areas where the species

was most prevalent.

We also considered the effect of plant growth form on the

predictive accuracy within each set of abiotic predictors. For the

ecSDM, ANOVAs of plant growth form and model predictive

accuracy had significant differences (P,0.05) for both the TSS

and AUC metrics, with trees having a higher mean (TSS = 0.69,

AUC = 0.89), than shrubs (TSS = 0.62, AUC = 0.86), herbaceous

seed bearing species (TSS = 0.59, AUC = 0.84) and non-seed

bearing species and lichens (TSS = 0.58, AUC = 0.84). Tukey’s

honest significant difference test identified the ecSDM for trees as

having a significantly higher predictive accuracy than those for

herbaceous seed bearing species. Growth form did not have

significant differences on cSDM and eSDM predictive accuracy

based on ANOVAs.

To highlight species which had the greatest improvement by

adding the edaphic data, we considered those species which had

an improvement in model predictive accuracy (AUC scores) in the

90th percentile when comparing the cSDM to the ecSDM

(Table 4). There was no discernible pattern to the characteristics

of these species. They came from all the plant growth form types;

they included species with and without range boundaries, and

varied in terms of their prevalence in the study area. Of note is

that three of the four Sphagnum species were in this group.

Variable importance within ecSDM
If considering the mean importance of predictor variables in the

full models of the ecSDM, degree days and minimum temperature

were by far the most important variables (Table 5). There were a

few species which had high importance of specific edaphic

variables (or precipitation). To estimate objectively the number

of times a variable had a ‘‘high’’ importance, we considered the

Figure 2. Comparisons of predictive accuracy of different
abiotic model types through scatterplots and regressions.
Average area under the curve of the receiver operator characteristic
(AUC) for each species (mean of the 10 x cross-validation models of
each statistical model type); solid lines have a slope of one with no
intercept; dashed lines are the linear regression produced from either A)
the AUC of the climate species distribution models (SDM) vs. AUC of the

edaphic SDM; B) the AUC of the edaphic-climate SDM vs. the AUC of the
climate SDM; or C) the AUC of the edaphic-climate SDM vs. the AUC of
the edaphic SDM. Panel A: there is a small improvement to model fit if
models are constructed from climate vs. edaphic predictors; panel B:
improvement is greatest for models with lower predictive accuracy;
panel C: improvement is consistent across strong and weak models, and
is greater than that from adding edaphic predictors to climate models.
doi:10.1371/journal.pone.0092642.g002
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distribution of variable importance across all species and all

variables, and we found it to fit closely a negative exponential

distribution, with 85% of variable importance values being below

0.1, and 95% of variable importance values being below 0.3.

Based on the criteria of mean importance, count of importance

between 0.1 and 0.3, count of variable importance greater than

0.3 and count of times a variable was one of the top two most

predictive variables within the model, a clear pattern emerges

(Table 5). Degree days is most important, with minimum

temperature a close second and precipitation often important

but less so than the temperature variables. Drainage, texture,

humus type, humus depth, and surface pH are important for

several species. Soil depth, pH of B horizons, pH of BC or C

horizon, slope angle, relative height, micropotography, parent

material origin and elevation are important for a few species. Slope

position and speckling are never important.

When considering species growth form effect on variable

importance, out of the 18 variables, only soil texture, soil depth

and degree days had significant differences based on ANOVAs

(with P,0.05, see Table S4). Trees had a marked greater

importance of degree days compared to the other groups.

Although it was not usually a variable with high importance, soil

depth importance was significantly higher for herbaceous plants

than trees or shrubs. In least significance difference tests, but not in

Tukey’s honest significant difference test, soil texture was

significantly more important for herbaceous plants and shrubs

than for trees.

Out of the 128 species, 125 had models with at least one climate

variable which had a high importance (based on a variable

importance of 0.1 or greater); whereas 82 species had models with

at least one edaphic variable of high importance. Considering

growth form, trees had the fewest species with at least one edaphic

predictor with a high importance (12 out of 30 species) and

herbaceous seed bearing plants had the most (27 out of 33 species).

Shrubs and seedless plants and lichens had about two thirds of

species with at least one edaphic predictor having a high variable

importance (21 out of 33 and 22 out of 32, respectively).

Variable importance based on t-tests (with P,0.05) was not

different between the group of species with a range boundary and

those without, except for degree days, which was a more important

variable for species with a range boundary (means of 0.34 and

0.26, respectively), and humus depth, which was less important

(means of 0.04 and 0.08, respectively). Prevalence, if significant

(based on a Pearson correlation with P,0.05) was generally

negatively correlated with variable importance, except for humus

depth, which had a significant positive correlation (R = 0.19, P,

0.05).

Discussion

For the majority of species, temperature variables are most

predictive of distribution over large geographic extents, even when

grain size is suitable to capture the variation in edaphic variables.

However, for some species, edaphic variables can be important

predictors as well, even more so than climate predictors.

Surprisingly, models made with only edaphic predictors performed

almost as well as those with only climate predictors, which

underlines the potential for edaphic variables to provide useful

information about species distribution, even over large extents.

Whereas cSDMs are definitely valuable on their own when

projecting species distribution in future climate, eSDMs, or even

better ecSDMs, provide useful information to help reduce the level

of uncertainty of cSDMs projected into areas outside of the normal

range of edaphic conditions used to train the model.

Table 4. Species with the greatest improvement to model predictive accuracy (top 90th percentile) when adding edaphic
predictors to climate only models.

Scientific name Edge Count cSDM AUC ecSDM AUC

Actaea rubra (Aiton) Willd. + 1194 0.74 0.82

Alnus incana (L.) Moench. ssp. rugosa (Du Roi) Clausen - 905 0.71 0.82

Athyrium filix-femina (L.) Roth + 784 0.69 0.77

Coptis trifolia (L.) Salisb. - 1804 0.61 0.71

Epigaea repens L. + 213 0.70 0.79

Ilex mucronata (L.) Powell, Savolainen & Andrews - 983 0.71 0.79

Larix laricina (Du Roi) Koch - 222 0.62 0.77

Lycopodium obscurum L. + 1565 0.67 0.76

Maianthemum trifolium (L.) Sloboda + 222 0.81 0.91

Mitella nuda L. + 198 0.79 0.88

Populus grandidentata Michx. + 170 0.75 0.83

Prunus pensylvanica L. + 1347 0.78 0.86

Rubus pubescens Ruf. + 1248 0.69 0.78

Sphagnum girgensohnii Russow + 580 0.70 0.80

Sphagnum magellanicum Brid. + 221 0.69 0.85

Sphagnum squarrosum Crome + 123 0.58 0.74

Thalictrum pubescens Pursh + 116 0.66 0.75

Edge-whether or not there was a range edge within the study area; Count-The number of occurrence points within the dataset; cSDM AUC-The area under the curve of
the receiver operator characteristic for the climate species distribution model; ecSDM AUC- The area under the curve of the receiver operator characteristic for the
edaphic-climate species distribution model
doi:10.1371/journal.pone.0092642.t004
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Ignoring edaphic characteristics could lead to significant

overestimates of suitable conditions within a given climate or

when projecting over new geographic areas (e.g., from temperate

forest to boreal forest) where edaphic conditions are not equivalent

to those found within the species current range. This is illustrated

by the spatial distribution of errors which, despite similar

predictive accuracies, was very different for the eSDMs and

cSDMs (Figures S1–S19). We interpret the error pattern of the

cSDM as the model being able to pick up the climatic constraints

on distribution, but making many false positive predictions within

the climatically suitable area. Projecting beyond the current range

would lead to the same overestimate of suitable conditions. The

eSDMs were able to estimate locations with suitable edaphic

conditions; these fell both inside and outside the range boundaries,

although with more frequency within the range boundaries. This

meant that within the range boundaries, where the climate was

also suitable, the model was able to accurately assign presence or

absence. Outside the range boundaries, the eSDM also predicted

species presences where there were suitable edaphic conditions

outside of the current range/climate niche. The information

garnered from the false positive locations of eSDMs could be

useful to identify edaphic homologs to southern areas beyond the

current range, for instance to assist migration of southern species

in climate change adaptation strategies in conservation or forestry

[38]. Overall, the ecSDMs were most accurate in their predictions,

with many models fitting the observed distribution closely,

underscoring that both edaphic and climatic aspects of the

environment are important at this scale in determining species

distribution.

Although all growth forms had some species with high

importance of edaphic variables, distinct patterns, which are

rarely emphasized, also emerged from our analysis. The distribu-

tion of trees is more constrained by climate than the distribution of

other low growth forms; the latter is more related to edaphic

conditions. At the landscape scale (approximately 600 ha in this

case), herbaceous and shrub species were also found to be more

constrained by edaphic conditions than trees [39]. Whether this

means that low growth forms can escape changing climate

conditions better than trees is uncertain, but their range expansion

in response to climate change is expected to be more restricted by

the availability of suitable edaphic conditions. On the other hand,

trees, assuming they have longer life cycles than those of lower

growth forms, may be more restricted in their capacity to adapt in

terms of range expansion as climate warms [40]. The interactions

between life history, dispersal strategy, and edaphic requirements,

especially at the establishment phase, warrant further investigation

in the context of climate change.

Species in the genus Sphagnum stood out as being better

modelled if edaphic characteristics were included, drainage having

a particularly high variable importance score. However, humus

characteristics were also important, which brings up the issue of

cause and effect between plants and their substrate. Sphagnum are

bog species, and so are found in areas with poor drainage and

thick humus layers, however, they are also the main producers of

peat in the bogs in which they grow. In other words, the physical

characteristics of humus may limit or promote species presence,

and/or the species presence may alter humus characteristics.

These complex feedback relationships may not be a problem when

relating humus type or depth to the contemporary distribution of

Table 5. Variable importance across all species for the full edaphic-climatic model.

Importance Count .0.3 Count 0.1–0.3 Count top two variables

(mean ± SD)

Degree days 0.3260.25 60 35 89

Minimum temperature 0.2160.15 28 67 71

Precipitation 0.0760.07 3 21 17

Humus type 0.0660.07 2 20 16

pH surface 0.0560.09 4 16 15

Humus depth 0.0560.07 2 16 13

Drainage 0.0460.07 2 17 7

Texture 0.0460.05 0 14 9

Elevation 0.0460.05 0 14 4

Parent material origins 0.0460.05 1 8 5

Slope angle 0.0360.04 0 7 0

Microtopography 0.0260.05 1 6 3

Relative height 0.0260.03 0 2 3

pH BC or C horizons 0.0260.03 1 0 2

pH B horizons 0.0260.03 0 2 1

Soil depth 0.0160.02 0 2 1

Slope position 0.0160.01 0 0 0

Speckling 0.0160.01 0 0 0

Importance-variable importance calculated as one minus the correlation between the model output and the model output with the variable of interest randomized, for
the means of the final climate-edaphic model for each statistical model; Count- the count of the number of species with a variable importance value greater than 0.3,
which relates to the top 95% of variables importance values, or with a variable importance value between 0.1 and 0.3, which relates to the 85% to 95% margin of
variable importance values; Count top two variables-count of the number of species with the variable among the top two most important in the model.
doi:10.1371/journal.pone.0092642.t005
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Sphagnum, but they would need to be carefully considered when

projecting future distribution of suitable conditions in time and

space. There are many other examples of the interconnected

nature of vegetation and substrates. For example in our study

region, tree species which grow on nutrient rich soils tend to have

leaves which decompose easily, thus enhancing nutrient cycling

and nutrient richness [41]. These feed-back loops are numerous

and complex in ecosystems, and also not fully understood. The

difficulty in pulling these relationships apart adds to the

uncertainty of using SDMs to make predictions about range shifts

under novel climates or geographic areas. As well, climate has an

influence on soil biota and chemistry [42]. It may be best to think

of these model outputs as being able to highlight areas where

environmental conditions would be most favourable to a species

given what is known of the current edaphic state of the landscape,

but that this state will be dynamic as well, at least for some edaphic

variables.

Edaphic conditions may be indicative of other physical or

historical processes at the stand level [39]. Within the edaphic

variables, the characteristics of the humus layer were the most

predictive. The humus could be an indirect measure of several

other site conditions; humus characteristics are very indicative of a

site’s geochemistry and the organisms it supports [43], [44]. The

depth of the humus layer, for instance, is often related to

disturbance regime or stand age and is expected to be greater for

sites that have not been burned recently. It can also be a proxy for

nutrient availability, as would humus type. Slow nutrient cycling

will result in humus accumulation and these conditions could limit

which species would occupy a site, thereby reducing competition.

In our study, humus depth was an important variable mostly for

common understory species in the boreal forest, which could

explain why it was also positively correlated with prevalence.

A potential bias in favour of edaphic variables exists in our study

design since we compared fifteen edaphic variables to only three

climate variables, thereby increasing the chances that one of the

edaphic variables would be picked up in the eSDM and ecSDMs.

Whereas many climate variables are available, they are generally

all derived from temperature and precipitation and therefore likely

to be correlated to each other. There was, however, no

justification to exclude a priori edaphic variables based on our

preliminary analysis for collinearity. Each was fairly unique in the

type of information it provided about the site, and all were

plausible explanatory variables. Even with the possibility for bias

towards edaphic variables, our results support climate variables as

being universally important, whereas which edaphic variable

relates most to species distribution tended to vary with species. We

were nevertheless able to identify a few edaphic variables with

consistently low contribution in this region (e.g., slope position,

speckling) and future modelling could benefit from this knowledge.

We have used ‘edaphic’ variables in a broad sense to encompass

all aspects of a site’s physical nature, i.e. those variables relating to

topography and the soil substrate and which are most often

considered in ecological studies. We could have divided our

predictors into further categories, for instance based on their direct

or indirect effects, although these may be hard to evaluate in

absolute term. Slope angle, for instance, will determine the

amount of insolation, windiness, or erosion patterns and therefore

probably also integrates a range of climatic and non-climatic

conditions. We have not measured microclimatic conditions in this

study given the grain size we used for climatic data and so some of

these conditions are probably captured in some of the edaphic

variables. Another possibly relevant classification could have been

to distinguish between permanent site conditions (e.g., parent

material, elevation) vs. dynamic ones (e.g., surface pH, humus

type), assuming the latter will change with species and climate, and

therefore could be less relevant when projecting in a future

climate. Our results, however, suggest that both types of variables

determine species distribution. More importantly, given the rapid

rate of climate change, species will have to migrate and establish

under current edaphic conditions.

Many SDMs are built within specific geo-political boundaries,

often with no consideration for species’ range boundaries [45],

[46]. Our results support that model predictive accuracy is usually

reduced if range boundaries are not included [20] (or if the species

is common), but we observed that these effects were buffered if

edaphic as well as climate variables were included when model

predictive accuracy was assessed with the TSS, but not the AUC

metric. As well, the importance of variables could be underesti-

mated if an inadequate study zone is used, such as the lower

importance of degree days for species without a range boundary

observed in this study.

Conclusion

In this study, we have shown that for a large suite of species

native to this area, climate variables are most important in

predicting distribution at regional scale, particularly for trees.

Despite this, eSDMs produced models almost equal to cSDMs in

predictive performance, indicating that edaphic variables also pose

important constraints on distribution patterns. The inclusion of

edaphic variables in SDMs significantly improved model accuracy

for the majority of species, whereas the relative importance of

edaphic and climatic variables varied with growth forms. In

northern ecosystems such as this one, many species reach their

northern edge of distribution and northern range expansion under

a future warmer climate is expected [47], [48]. Our study identifies

the potential for non-climate aspects of the environment,

particularly variables relating to characteristics of the humus

layer, to pose a constraint to this expansion. Although some

edaphic characteristics are also dynamic and both species and

climate are expected to modify the substrate over time, these

changes are expected to happen at a slower rate than those

predicted by climate models [42] and species will have to migrate

under current edaphic conditions. This could result in a

decoupling between edaphic and climate conditions. Edaphic

SDMs could be valuable tools to locate sites edaphically-analogous

to a species’ current habitat in areas that are expected to become

suitable under rapid climate change. This could aid in the

identification of suitable refuges for conservation and manage-

ment, especially for edaphically sensitive species.

Supporting Information

Figure S1 Acer saccharum Marsh. mapped distribu-
tions. Comparison of omission and commission errors in the

different forms of species distribution models (SDM). The

statistical model used in these maps is the full data generalized

linear model.

(PDF)

Figure S2 Betula populifolia Marsh. mapped distribu-
tions. Comparison of omission and commission errors in the

different forms of species distribution models (SDM). The

statistical model used in these maps is the full data generalized

linear model.

(PDF)

Figure S3 Chimaphila umbellata (L.) Bartram ssp.
umbellata mapped distributions. Comparison of omission

and commission errors in the different forms of species distribution
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models (SDM). The statistical model used in these maps is the full

data generalized linear model.

(PDF)

Figure S4 Fagus grandifolia Ehrh. mapped distribu-
tions. Comparison of omission and commission errors in the

different forms of species distribution models (SDM). The

statistical model used in these maps is the full data generalized

linear model.

(PDF)

Figure S5 Fraxinus americana L. mapped distributions.
Comparison of omission and commission errors in the different

forms of species distribution models (SDM). The statistical model

used in these maps is the full data generalized linear model.

(PDF)

Figure S6 Mitchella repens L. mapped distributions.
Comparison of omission and commission errors in the different

forms of species distribution models (SDM). The statistical model

used in these maps is the full data generalized linear model.

(PDF)

Figure S7 Onoclea sensibilis L. mapped distributions.
Comparison of omission and commission errors in the different

forms of species distribution models (SDM). The statistical model

used in these maps is the full data generalized linear model.

(PDF)

Figure S8 Ostrya virginiana (Mill.) Koch mapped
distributions. Comparison of omission and commission errors

in the different forms of species distribution models (SDM). The

statistical model used in these maps is the full data generalized

linear model.

(PDF)

Figure S9 Polypodium virginianum L. mapped distri-
butions. Comparison of omission and commission errors in the

different forms of species distribution models (SDM). The

statistical model used in these maps is the full data generalized

linear model.

(PDF)

Figure S10 Populus balsamifera L. mapped distribu-
tions. Comparison of omission and commission errors in the

different forms of species distribution models (SDM). The

statistical model used in these maps is the full data generalized

linear model.

(PDF)

Figure S11 Prunus serotina Ehrh. mapped distribu-
tions. Comparison of omission and commission errors in the

different forms of species distribution models (SDM). The

statistical model used in these maps is the full data generalized

linear model.

(PDF)

Figure S12 Quercus rubra L. var. ambigua (Gray)
Fernald mapped distributions. Comparison of omission

and commission errors in the different forms of species distribution

models (SDM). The statistical model used in these maps is the full

data generalized linear model.

(PDF)

Figure S13 Solidago rugosa Mill. mapped distributions.
Comparison of omission and commission errors in the different

forms of species distribution models (SDM). The statistical model

used in these maps is the full data generalized linear model.

(PDF)

Figure S14 Spiraea alba du Roi mapped distributions.
Comparison of omission and commission errors in the different

forms of species distribution models (SDM). The statistical model

used in these maps is the full data generalized linear model.

(PDF)

Figure S15 Tiarella cordifolia L. mapped distribution.
Comparison of omission and commission errors in the different

forms of species distribution models (SDM). The statistical model

used in these maps is the full data generalized linear model.

(PDF)

Figure S16 Tilia americana L. mapped distributions.
Comparison of omission and commission errors in the different

forms of species distribution models (SDM). The statistical model

used in these maps is the full data generalized linear model.

(PDF)

Figure S17 Tsuga canadensis (L.) Carriere mapped
distributions. Comparison of omission and commission errors

in the different forms of species distribution models (SDM). The

statistical model used in these maps is the full data generalized

linear model.

(PDF)

Figure S18 Ulmus americana L. mapped distributions.
Comparison of omission and commission errors in the different

forms of species distribution models (SDM). The statistical model

used in these maps is the full data generalized linear model.

(PDF)

Figure S19 Viburnum lantanoides Michx. mapped dis-
tributions. Comparison of omission and commission errors in

the different forms of species distribution models (SDM). The

statistical model used in these maps is the full data generalized

linear model.

(PDF)

Table S1 List of modelled species, their characteristics
and model predictive accuracy. Cross-validation scores-are the

means of four different statistical model types: generalized boosted

models, generalized linear regression models, generalized additive

models, and random forest models, each with ten iterations of

data-splitting for model building and evaluation.; SDM- species

distribution model; AUC-the area under the curve of the receiver

operating characteristic; TSS-true skill statistic; Edge- indicates if

the species had an observable range boundary within the study

points; Count-the count of the number of occurrences.

(PDF)

Table S2 List of climate variables included in the
VARCLUS analysis.
(PDF)

Table S3 Model predictive accuracy and the influence
of species biogeographic characteristics on these met-
rics. AUC-the area under the curve of the receiver operating

characteristic; TSS-true skill statistic; SDM-species distribution

model. Reported are the means of the final climate-edaphic model

for each statistical model type; comparisons of the presence of a

range boundary in the study area (t-test) and the effect of number

of occurrences (Pearson correlation) significant results are in bold,

*P,0.1; **P,0.05.

(PDF)

Table S4 Differing importance of variables between
plant growth form groups. Reported are significant ANOVA

results of variable importance (calculated as one minus the

correlation between the model output and the model output with
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the variable of interest randomized) for the means of the final

climate-edaphic model for each statistical model type between the

plant form groups: tree, shrub, herbaceous seed bearing, and

seedless plants (including lichens).

(PDF)
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help of Catherine Périé and Travis Logan; Nicolas Casajus and Marie-

Claude Lambert for statistical assistance; and Chantal Gagnon in the

developmental stages of the project. The fruitful exchanges we had within

the CC-BIO (climate change and biodiversity in Quebec) project also

helped shape this work. The comments of four reviewers have greatly

contributed to improve the original manuscript.

Author Contributions

Conceived and designed the experiments: FB SdB. Performed the

experiments: FB SdB. Analyzed the data: FB. Wrote the paper: FB SdB.

References

1. Thuiller W, Lavorel S, Araujo MB, Sykes MT, Prentice IC (2005) Climate

change threats to plant diversity in Europe. Proc Natl Acad Sci USA 102: 8245–
8250.

2. Young N, Stohlgren T, Evangelista P, Kumar S, Graham J, et al. (2012)
Regional data refine local predictions: modeling the distribution of plant species

abundance on a portion of the central plains. Environ Monit Assess 184: 5439–

5451.
3. Rupprecht F, Oldeland J, Finckh M (2011) Modelling potential distribution of

the threatened tree species Juniperus oxycedrus: How to evaluate the predictions of
different modelling approaches? J Veg Sci 22: 647–659.

4. Aranda SC, Lobo JM (2011) How well does presence-only-based species

distribution modelling predict assemblage diversity? A case study of the Tenerife
flora. Ecography 34: 31–38.
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Dengler J, Oldeland J, Jansen F, Chytrý M, Ewald J, et al., editors. Vegetation

databases for the 21st century. Biodivers Ecol 4: 432–432.

26. Saucier JP, Berger JP, D’Avignon H, Racine P, Robitaille A, et al. (1994) Le point

d’observation ecologique. Quebec City: Ministère des Ressources naturelles du Québec. 124
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