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Abstract

Glioblastoma (GBM) is the most malignant and lethal intracranial tumor, with extremely limited treatment options.
Immunotherapy has been widely studied in GBM, but none can significantly prolong the overall survival (OS) of patients
without selection. Considering that GBM cancer stem cells (CSCs) play a non-negligible role in tumorigenesis and
chemoradiotherapy resistance, we proposed a novel stemness-based classification of GBM and screened out certain
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population more responsive to immunotherapy. The one-class logistic regression algorithm was used to calculate the
stemness index (mRNAsi) of 518 GBM patients from The Cancer Genome Atlas (TCGA) database based on transcriptomics of
GBM and pluripotent stem cells. Based on their stemness signature, GBM patients were divided into two subtypes via
consensus clustering, and patients in Stemness Subtype I presented significantly better OS but poorer progression-free
survival than Stemness Subtype II. Genomic variations revealed patients in Stemness Subtype I had higher somatic
mutation loads and copy number alteration burdens. Additionally, two stemness subtypes had distinct tumor immune
microenvironment patterns. Tumor Immune Dysfunction and Exclusion and subclass mapping analysis further
demonstrated patients in Stemness Subtype I were more likely to respond to immunotherapy, especially anti-PD1
treatment. The pRRophetic algorithm also indicated patients in Stemness Subtype I were more resistant to temozolomide
therapy. Finally, multiple machine learning algorithms were used to develop a 7-gene Stemness Subtype Predictor, which
were further validated in two external independent GBM cohorts. This novel stemness-based classification could provide a
promising prognostic predictor for GBM and may guide physicians in selecting potential responders for preferential use of
immunotherapy.

Key words: stemness subgroup; mRNAsi; integrated multiomic analysis; immunotherapy; glioblastoma

Introduction
Glioma is the most common primary intracranial tumor and
among them, glioblastoma (GBM) is the most malignant and
invasive with a high recurrence rate [1]. The median overall
survival (OS) and progression-free survival (PFS) of GBM patients
is only 14–16 months and 6–7 months, separately [2]. The cur-
rent standard treatment regimen for GBM is maximal surgical
resection followed by concurrent chemoradiotherapy, adjuvant
temozolomide (TMZ) chemotherapy and tumor-treating field if
available [3]. Molecular targeted therapy and immunotherapy are
also potential treatment options of GBM, but most of them are in
the stage of clinical trials, and none has been found to prolong
the OS of GBM patients, and only bevacizumab, which targets
vascular endothelial growth factor (VEGF), was found to be able
to extend PFS in GBM patients [4, 5]. Therefore, research on GBM
treatment still has a long way to go.

Stemness refers to the self-renewal and differentiation
potential of cells, which was first used in normal adult stem
cells [6]. It has been found that in tumor tissue, there is a
group of cells that have the stem cell-like features with self-
renewal ability and can differentiate into different malignant
cells with distinct phenotypes, named cancer stem cells (CSCs)
[7]. These undifferentiated malignant cells are more likely to
spread to distant sites than normal tumor cells, leading to
disease progression and poor prognosis [8, 9]. Such cells also
exist in GBM; they play a very important role in the initiation and
treatment resistance of tumor and will also have a substantial
impact on patients’ response to immunotherapy [10].

Immunotherapy, a novel treatment option for malignant
tumors, has been widely studied in recent years, among which
the research results of immune checkpoint inhibitor (ICI)
are particularly satisfactory. Immune checkpoints are a kind
of immunosuppressive molecules that mainly regulate the
immune response of T cells to avoid damage and destruction of
normal tissues. The activation of immune checkpoints is one of
the main causes of immune tolerance during the development
of tumors. ICIs can avoid the inhibition of the human body’s
anti-tumor immune response, and then attack the tumor and
inhibit its growth, among which anti-PD-1/PD-L1 is the most
effective. This drug has already made great achievements in
melanoma, colon cancer and non-small cell lung cancer [11, 12].
And the success in other cancers has also brought this treatment
to the attention of neuro-oncologists. Gliomas, located in the
central nervous system, a relative highly immunosuppressive

microenvironment, are what researchers call ‘cold tumors’.
Although in recent years, a number of researches focused
on immunotherapy in GBM provide the theoretical basis
[13, 14], the results of some large scale phase III clinical trials,
including CHECKMATE 143 for recurrent GBM, CHECKMATE 498
for newly diagnosed O6-methylguanine-DNA-methyltransferase
(MGMT) promoter unmethylated GBM and CHECKMATE 548
for newly diagnosed MGMT promoter methylated GBM suggest
that anti-PD-1/PD-L1 could not extend survival of GBM patients
without selection [15, 16]. In addition to the immunosuppressive
microenvironment, low tumor mutation burden (TMB) of GBM,
especially newly diagnosed GBM, is another important reason
for its failure to immunotherapy [17]. It was found that patients
with high TMB may benefit from PD-1 blockade [18]. Therefore,
how to screen out patients with high TMB more effectively, so
as to identify patients who can benefit from immunotherapy is
an urgent problem to be solved.

In this study, transcriptome analysis was performed on
GBM patients to evaluate their stemness index. Subsequently,
based on distinct stemness features, GBM patients were divided
into two subtypes with distinct survival outcomes, functional
annotations, and clinical features. Then, integrated analysis
was used to analyze the differences of the genomic variations,
tumor microenvironment and immunogenomic patterns of
patients between two stemness subtypes, different benefits of
immunotherapy and TMZ were also identified. Furthermore,
the Stemness Subtype predictor that could quickly distinguish
these two subtypes in GBM patients was constructed by
multiple machine learning algorithms and validated in two
independent GBM cohorts. Which provided possible means
for screening patients who are more likely to have a positive
response to immunotherapy. Our study aimed to facilitate
individualized survival prediction and better treatment options
for both physicians and GBM patients according to the novel
stemness-based molecular classification.

Methods
Patient population and multiomic data acquisition

The gene expression profiles of pluripotent stem cells (PSCs),
including induced PSCs (iPSCs) and embryonic stem cells (ESCs),
were collected by the Progenitor Cell Biology Consortium (PCBC,
https://progenitorcells.org/) and were obtained via the synapser
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package (version 0.6.61) in R software. In addition, the level-
3 gene expression data based on the AffyU133a platform and
corresponding clinical and follow-up information of The Cancer
Genome Atlas (TCGA) GBM patients were downloaded from the
UCSC Xena (https://xenabrowser.net/); and the RNA sequencing
(RNA-Seq) data based on the Illumina HiSeq platform were
also obtained from the Chinese Glioma Genome Atlas (CGGA)
database (http://www.cgga.org.cn). After excluding samples
without complete clinical information, we finally enrolled 518
GBM patients from TCGA and 350 patients from CGGA database.
In order to make the gene expression profiling comparable
between different platforms, the Trans Per Million (TPM) values
of RNA-Seq, robust multichip analysis (RMA)-processed values
of miacroarry, and qRT-PCR data were log2 transformed and
then normalized with the scale method by using the limma
package in R [19, 20]. The demographics and follow-up data
of the 868 GBM patients are displayed in Table 1. Furthermore,
the somatic mutation data (MAF format) of 390 GBM patients
based on the whole exome sequencing platform were also
downloaded from the TCGA database. The mutation types
and frequencies of genes were analyzed and visualized by
using maftools and the GenVisR package in R [21, 22]. TMB, a
potential biomarker for immunotherapy response, was defined
as the total number of nonsynonymous mutations in the
coding region per megabase [23]. Additionally, the copy number
alteration (CNA) data of 518 GBM patients were obtained from
the TCGA dataset, and significant amplifications or deletions
in the whole genome were identified by GISTIC 2.0 [24]. To
better exhibit the gain/loss alterations of chromosomes, CNA
summary plots were visualized by Circos plots using the
RCircos package in R [25]. The CNA burden was defined as
the total number of genes with copy number changes in each
sample [23].

Sample collection of the Peking Union Medical College
Hospital (PUMCH) cohort

From January 2016 to October 2019, a total of 38 freshly frozen
surgically resected GBM specimens with complete clinical and
prognostic information were collected from patients without
preoperative treatment at PUMCH. The diagnoses were con-
firmed by histopathology. The OS and PFS data were obtained
through electronic medical records or telephone follow-up. The
demographic and follow-up data of the 38 GBM patients are
displayed in Table 1.

This study was approved by the Institutional Ethics Com-
mittee of PUMCH (Ethic code: JS-2012) in accordance with the
ethical standards of the Institutional Ethics Committee and with
the 1964 Declaration of Helsinki and its later amendments or
comparable ethical standards. Informed consent forms were
signed and obtained from all participants by the TCGA and CGGA
member institutions and PUMCH.

Calculation of the gene expression-based stemness
index (mRNAsi)

The one-class logistic regression (OCLR) algorithm was used to
calculate the stemness index based on gene expression pro-
files of normal PSCs, including iPSCs and ESCs [6]. We obtained
78 stem cell samples with 8087 protein-coding genes for each
sample, and the expression of mRNAs was mean-centered. The
stemness signature was generated via the OCLR algorithm by
utilizing the gelnet (version 1.2.1) package in R [26]. Then, we

calculated the Spearman correlations between the weight vec-
tors of the stemness signature and mRNA expressions of GBM
samples. Finally, the stemness index was mapped to the range
of 0 to 1 using a linear transformation that subtracted the mini-
mum and divided by the maximum of the Spearman correlation
coefficient [6]. The stemness index generated by gene expression
profiles was defined as mRNAsi.

The tumor immune microenvironment (TIME) patterns
and immunogenomic features of GBM

Estimation of Stromal and Immune cells in Malignant Tumor
tissues using Expression data (ESTIMATE) was employed to
evaluate the tumor microenvironment and predict the tumor
purity and abundances of intratumoral stromal and immune
cells based on the gene expression profiles of GBM samples
[27]. ESTIMATE can generate four types of scores: immune score
(positively reflecting the abundance of immune cells), stromal
score (positively reflecting the abundance of stromal cells),
ESTIMATE score (positively reflecting nontumor composites),
and tumor purity. In addition, CIBERSORT, a deconvolution
algorithm based on linear support vector regression, was further
utilized to quantify the compositions of 22 types of tumor-
infiltrating immune cells (TIICs) based on the gene expression
profiles of GBM samples [28]. He et al. introduced 29 immune
signatures, representing the overall immune activity of tumors,
containing the types, functions and molecular pathways of
TIICs [29]. The enrichment levels of those immune gene sets
were quantified by single-sample gene set enrichment analysis
(ssGSEA) [30]. Then, based on the ssGSEA scores of the 29
immune signatures, unsupervised hierarchical clustering was
performed to classify the GBM patients into different clusters,
termed by immune subtypes [29].

Differential analysis of the high and low mRNAsi
groups

The GBM patients were stratified into high and low mRNAsi
groups based on the median value of the stemness index [31].
Kaplan–Meier (K-M) survival analysis was performed to evaluate
the OS and PFS of patients with high and low mRNAsi, and
the survival differences were evaluated by the two-sided log-
rank test.

The differentially expressed genes (DEGs) between the high
and low mRNAsi groups were screened by using the limma
package in R [20]. Adjusted P-values were applied to correct
the false positive results using the default Benjamini-Hochberg
false discovery rate (FDR) method. FDR < 0.01 and |fold change
(FC)| > 2 were considered the cutoff values for determining DEGs.
Then, functional annotation and pathway enrichment analyses,
including Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway analyses, were performed on the
DEGs by using the WebGestaltR package in R [32–34]. FDR < 0.05
was considered statistically significant.

Identification of the stemness-based molecular
classification of GBM patients

Unsupervised consensus clustering, based on the k-means
machine learning algorithm, was used to explore a novel
molecular classification of GBM patients based on the expres-
sion of DEGs by using the ConsensusClusterPlus package in
R [35]. The clustering procedure, with 1000 iterations, was
performed by sampling 80% of the data in each iteration. The
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optimal number of clusters was comprehensively determined
by the relative change in the area under the cumulative
distribution function (CDF) curves, the proportion of ambiguous
clustering (PAC) algorithm, and the consensus heatmap [36]. We
performed comparisons of the clinicopathological parameters
within different clusters to further explore the associations
between the stemness subtypes and the clinical features of
GBM patients. Then, K-M survival analysis was performed to
evaluate the prognosis of patients in different stemness subtype
groups. Univariate and multivariate Cox regression analyses
were performed to determine whether the performance of the
stemness subtype in predicting prognosis could be independent
of other clinicopathological variables [37].

Gene set variation analysis (GSVA)

GSVA was utilized to evaluate the most significantly enriched
molecular pathways of the stemness subtypes by using the GSVA
package in R [30]. Differential analysis of the enrichment scores
of KEGG pathways between the two stemness subtypes was
performed by the limma package in R [20]. The KEGG pathways
with |log2FC| > 0.1 and FDR < 0.05 were considered the most
differentially enriched molecular pathways between the two
stemness subtypes [38].

Prediction of immunotherapy and TMZ response

TIDE, short for The Tumor Immune Dysfunction and Exclu-
sion (http://tide.dfci.harvard.edu/), was developed on the basis
of two primary mechanisms of tumor immune evasion: the
induction of T cell dysfunction in tumors with high infiltra-
tion of cytotoxic T lymphocytes (CTLs) and the prevention of
T cell infiltration in tumors with low CTL levels [39]. The TIDE
algorithm can determine the signatures of T cell dysfunction
by testing how the expression of each gene in tumors interacts
with the CTL infiltration level to influence patient survival and
response to immunotherapy [39]. Hence, the clinical response to
immunotherapy of GBM patients can be predicted by the TIDE
algorithm using the gene expression profiles of GBM samples.
Then, an unsupervised subclass mapping (https://cloud.genepa
ttern.org/gp/) method was also used to predict the response to
ICI therapy of the different stemness subtypes [40]. FDR < 0.05
was considered the threshold for a significant response or non-
response to anti-PD1 and anti-CTLA4 therapy. Furthermore, we
used the pRRophetic package to predict the chemotherapeutic
response to TMZ, which was determined by the half maximal
inhibitory concentration (IC50) of each GBM sample based on the
Genomics of Drug Sensitivity in Cancer (GDSC) database (https://
www.cancerrxgene.org/) [41, 42]. After integrating the expression
profiles of cell lines (training set) and GBM samples (test set), the
IC50 of TMZ in GBM patients was estimated by ridge regression
analysis, and the prediction accuracy was evaluated by 10-fold
cross-validation.

Connectivity Map (CMap) analysis

The CMap database (https://clue.io/) was used to explore poten-
tial compounds targeting the molecular pathways and genes
associated with the stemness subtypes of GBM patients [43]. It
can not only predict drugs based on gene expression signatures
but also reveal the mode of action (MoA) of compounds targeting
corresponding molecular pathways. The DEGs between the high
and low mRNAsi groups were employed to query the CMap
database, and the most significantly highly expressed genes

of each stemness subtype were considered potential targets of
compounds. The enrichment scores of compounds were calcu-
lated, and compounds with a negative enrichment score and
P < 0.05 were considered potential therapeutic drugs for each
stemness subtype.

Construction and validation of the Stemness Subtype
Predictor by multiple machine learning methods

The 518 GBM patients were randomly classified into training
(N = 376) and testing (N = 142) sets at a ratio of 7:3. First, in
the training set, least absolute shrinkage and selection oper-
ator (LASSO) regression, support vector machine (SVM), Ran-
dom Forest and Boruta (RFB), and extreme gradient boosting
(XGBoost) analyses were performed to select the most important
group-relevant features by calculating the importance score for
each variable via the glmnet, rms, e1071, caret, randomForest,
Boruta, and XGBoost packages in R [44–47]. The expression of
the stemness-associated DEGs was selected as the input variable
(independent variables), and the status of stemness subtypes
was selected as the outcome (binary dependent variables, 0 or
1). The performance of the four machine learning algorithms for
feature selection in the training set was evaluated by receiver
operating characteristic (ROC) curves, and the areas under the
ROC curve (AUCs) were subsequently compared. Afterwards, the
intersecting genes among the LASSO, SVM, RFB and XGBoost
analyses were considered the most critical stemness subtype-
related genes and were visualized by a Venn diagram. Finally,
multivariate logistic regression analysis was performed on the
critical genes for constructing the predictive model, which was
termed by ‘Stemness Subtype Predictor’ [48]. The performance
of the Stemness Subtype Predictor was investigated by the ROC
curve to determine the optimal cutoff values in discriminating
different subtypes, as well as the AUC, sensitivity, specificity,
and accuracy. Finally, the predictive performance of the Stem-
ness Subtype Predictor was also validated in the test set in a
similar way.

Quantitative real-time polymerase chain reaction
(qRT-PCR) analysis of the PUMCH cohort

The primers used for qRT-PCR are summarized in Supplemen-
tary Table 1. Total RNA was extracted from 38 freshly frozen GBM
specimens by SuPerfecTRITM Reagent (Pufei Biotech, Cat. No.
3101–100) and reverse transcribed using the M-MLV RT Reagent
Kit (Promega, Cat. No. M1705) according to the manufacturer’s
protocol. The SYBR Master Mixture Kit (Takara, Cat. No. DRR041B)
was utilized to amplify the resulting cDNA, and qRT-PCR was
performed using the LightCycler 480 II Real-Time PCR Detec-
tion System (Roche, Switzerland) according to the manufactur-
ers’ instructions. Each experiment was conducted at least three
times. The expression of target gene was calculated using the
2-�Ct method relative to the geometric mean of three house-
keeping genes (GAPDH, Beta-Actin, and U1). Then, the expression
levels of genes were normalized by using the scale function in R
[49].

In addition, we investigated the most common biomarkers
of GBM, including tumor protein P53 (TP53), isocitrate dehy-
drogenase 1/2 (IDH1/2), v-raf murine sarcoma viral oncogene
homolog B1 (BRAF), gene of phosphate and tension homology
deleted on chromosome ten (PTEN), epidermal growth factor
receptor (EGFR), telomerase reverse transcriptase (TERT) pro-
moter, alpha-thalassemia chromatin remodeler (ATRX) muta-
tion, 1p19q codeletion status, and MGMT promoter methylation

http://tide.dfci.harvard.edu/
https://cloud.genepattern.org/gp/
https://cloud.genepattern.org/gp/
https://www.cancerrxgene.org/
https://www.cancerrxgene.org/
https://clue.io/
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status. TP53, IDH1/2, BRAF, PTEN, EGFR, TERT promoter, and ATRX
mutation status were measured by direct sequencing [50–52],
1p/19q codeletion status was determined by FISH [53], and MGMT
promoter methylation status was measured by pyrosequencing
as described before [54].

Statistical analysis

The independent Student’s t test for continuous data and the
χ2 test for categorical data were utilized for pairwise com-
parisons between groups. The Mann–Whitney U test was used
to compare categorical variables and non-normally distributed
variables between two groups. The Kruskal–Wallis test was used
to compare multiple groups. Correlations between normally dis-
tributed variables were assessed with Pearson’s correlation test,
while correlations between non-normally distributed variables
were assessed with Spearman’s correlation test. A P-value <0.05
and |correlation coefficient (R)| > 0.3 were considered signifi-
cantly correlated. The statistical analyses in this study were
performed by using SPSS 22.0 (SPSS, Inc., Chicago, Illinois, USA)
and R 3.6.1 software. A two-tailed P-value <0.05 was considered
statistically significant. Odds ratios (ORs), hazard ratios (HRs)
and 95% confidence intervals (CIs) are reported if necessary.

Results
Associations between the stemness index and clinical
features

The overall workflow of the present study is displayed in Sup-
plementary Figure 1. By using the OCLR algorithm, the stem-
ness index based on the gene expression profiles of 518 GBM
patients was calculated and then ranked from low to high to
explore the associations between mRNAsi and clinical features
(Figure 1A and C). As shown in Figure 1B, patients aged <40 years
had significantly higher mRNAsi scores than older patients,
while the stemness index scores of the 40–59, 60–79 and ≥ 80
groups did not differ significantly among the groups. Regarding
the TCGA molecular subtypes, the proneural subtype had the
highest mRNAsi scores, followed by the neural, classical, and
mesenchymal subtypes (all P < 0.05). In addition, patients with
progression (P < 0.001), those with glioma-CpG island methylator
phenotype (G-CIMP) status (P < 0.001), and those with MGMT pro-
moter methylation (P = 0.004) demonstrated significantly higher
mRNAsi scores (Figure 1B). Combined with somatic mutation
data, we found no significant correlation between mRNAsi and
TMB. However, regarding the most common biomarkers of GBM,
the stemness index was significantly lower in PTEN-mutant
samples than in PTEN-wild-type samples (P = 0.037) but signifi-
cantly higher in TP53-mutant (P < 0.001), IDH-mutant (P = 0.004)
and ATRX-mutant (P < 0.001) samples than in wild-type samples
(Figure 1D).

Associations between the stemness index and TIME
patterns

First, the enrichment levels of the 29 immune signatures, repre-
senting the overall immune activity of GBM, were quantified by
ssGSEA, and 518 GBM patients were classified into three immune
subtypes by utilizing unsupervised hierarchical clustering. The
high-immunity group, containing 21 (4.1%) patients, was defined
as having ‘immune hot’ tumors due to having the highest enrich-
ment scores; the low-immunity group, containing 265 (51.2%)
patients, was defined as having ‘immune cold’ tumors due to

having the lowest enrichment scores; and the medium immu-
nity group, containing 232 (44.8%) patients, was defined as hav-
ing ‘immune altered’ tumors, indicating the potential to trans-
form into hot or cold tumors (Figure 2A). Then, the TIME patterns
were evaluated by the ESTIMATE and CIBERSORT algorithms.
The stemness index was significantly negatively correlated with
the immune, stromal, and ESTIMATE scores, indicating that the
infiltration levels of immune and stromal cells decrease with
the elevation of the stemness of GBM (Figure 2B). However, no
significant correlation between mRNAsi and tumor purity was
observed. Additionally, the immune and stromal scores were
both significantly the highest in high-immunity tumors, indicat-
ing high abundances of immune cells and stromal cells, followed
by medium- and low-immunity tumors (Figure 2C). In contrast,
mRNAsi decreased while tumor purity increased from the high-
immunity group to the low-immunity group. Then, the abun-
dances of 22 types of immune cells were quantified by the CIBER-
SORT algorithm (Figure 2D). As shown in Figure 2E, the stem-
ness index was significantly positively correlated with T cell
subsets [including follicular helper (R = 0.63, P < 0.001), naive CD4
(R = 0.38, P = 0.002), and memory activated CD4 (R = 0.32, P = 0.041)
T cells], activated natural killer (NK) cells (R = 0.49, P < 0.001),
memory B cells (R = 0.48, P < 0.001), and plasma cells (R = 0.35,
P < 0.001); meanwhile the stemness index was significantly neg-
atively correlated with M2 macrophages (R = −0.47, P < 0.001) and
monocytes (R = −0.32, P = 0.047).

mRNAsi correlated with contradictory OS and PFS
outcomes of GBM patients

According to the median value of the stemness index, the
518 GBM patients were stratified into high and low mRNAsi
groups. K-M survival analysis indicated that the high mRNAsi
group presented significantly better OS (HR = 0.803, log-rank
P = 2.215 × 10–2) and poorer PFS (HR = 1.284, log-rank P = 9.752 ×
10–3) than the low mRNAsi group (Figure 3A and B). The median
survival time (MST) of the high and low mRNAsi groups was
very close for both OS (1.21 and 1.13 years) and PFS (0.54 and
0.63 years). Subgroup analysis also demonstrated that when
patients were stratified by different clinical variables, high
mRNAsi remained an indicator of favorable OS and unfavorable
PFS (Supplementary Figure 2A and B).

Considering the interesting prognostic difference between
the high and low mRNAsi groups, we further performed
differential expression analysis between the two groups. A total
of 130 DEGs were identified, including 41 upregulated and 89
downregulated genes in the high mRNAsi group (Figure 3C,
Supplementary Table 2). Then, functional enrichment analysis
was performed by WebGestaltR. There were 49 significantly
enriched biological processes (BPs), including chromatid/chro-
mosome segregation, nuclear division, and cell division; 94
significantly enriched cellular components (CC), including
extracellular matrix and chromosome; 44 significantly enriched
molecular functions (MFs), including glycosaminoglycan binding
and peptidase regulator activity; and 37 significantly enriched
KEGG pathways, including the focal adhesion, cell cycle, and p53
signaling pathways (Figure 3D).

Furthermore, a total of 35 out of 130 DEGs (26.9%) had a
mutation frequency > 1%, and most (80.0%, 28/35) were down-
regulated in the high mRNAsi group (Figure 3E). The differential
analysis of copy number variations between the two groups
revealed that compared with the low mRNAsi group, 40 (30.8%)
genes had significant amplifications and 82 (63.1%) genes had
significant deletions in the high mRNAsi group (Figure 3F).
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Figure 1. The clinical and molecular features associated with the stemness index (mRNAsi) in GBM patients. (A) An overview of the association between mRNAsi

and clinicalpathological features of patients. Columns represented samples ranked by mRNAsi from low to high (top row), and rows represent known clinical and

molecular characteristics associated with mRNAsi. (B) Violin plots of mRNAsi in individual samples of GBM patients, stratified by age, OS status, gender, progression,

TCGA subtype, KPS, G-CIMP status and MGMT promoter status. (C) An overview of the association between mRNAsi and somatic mutation status of the most popular

biomarkers of GBM and TMB. (D) Violin plots of mRNAsi in individual samples of GBM patients, stratified by TMB, PTEN, TP53, EGFR, IDH, TERT promoter, BRAF and ATRX

mutation status. ∗ means P < 0.05, ∗∗ means P < 0.01, and ∗∗∗ means P < 0.001.

Identification of two stemness subtypes with distinct
survival outcomes, functional annotations, and clinical
features

Unsupervised consensus clustering was used to explore a
novel molecular classification of GBM patients based on the
expression patterns of 130 stemness-based DEGs. According to
the relative change in the area under the CDF curve, the PAC
algorithm, and the consensus heatmap, the optimal number of
clusters was determined to be two (k value = 2) (Figure 4A–C).
Hence, all GBM patients were categorized into two groups,
which were termed Stemness Subtype I (233 patients, 45.0%)
and Stemness Subtype II (285 patients, 55.0%) (Figure 4D). K-M
survival analysis indicated that GBM patients in the Stemness
Subtype I group presented significantly better OS (HR = 0.606,
log-rank P = 1.987 × 10–3) and poorer PFS (HR = 1.349, log-rank
P = 2.499 × 10–7) than those in the Stemness Subtype II group
(Figure 4E and F). The median OS time of Stemness Subtype I
group patients was longer than that of Stemness Subtype II
group patients (1.21 versus 1.05 years), whereas the median
PFS time of Stemness Subtype I group patients was markedly
shorter than that of Stemness Subtype II group patients (0.48
versus 0.71 years). Subgroup analysis also demonstrated that
when patients were stratified by different clinical variables,
Stemness Subtype I remained an indicator of favorable OS and
unfavorable PFS in GBM patients (Supplementary Figure 2C and
D). In addition, we performed univariate and multivariate Cox
regression analyses to evaluate the prognostic significance of the
stemness subtypes combined with various clinicopathological
variables. In the TCGA cohort, univariate and subsequent

multivariate analyses indicated that the stemness subtype was
significantly associated with OS (Table 2) and PFS (Table 3),
suggesting that the stemness subtype was an independent
prognostic factor for predicting the OS and PFS of GBM patients.

GSVA was performed to explore the molecular pathways and
underlying mechanisms related to the stemness subtypes of
GBM. A total of 36 differentially enriched molecular pathways
were identified, including 4 pathways positively correlated with
Stemness Subtype I and 32 pathways positively correlated with
Stemness Subtype II (Figure 4G). Stemness Subtype I tumors
mainly correlated with the cell cycle, DNA replication, spliceo-
some, and terpenoid backbone biosynthesis, whereas Stemness
Subtype II tumors mainly correlated with molecular pathways
related to tumorigenesis (e.g., apoptosis and focal adhesion),
metabolism (e.g., glycosaminoglycan degradation), and immune
responses (e.g., B cell receptor signaling pathway, antigen pro-
cessing and presentation, and leukocyte migration).

Subsequently, the demographics and clinicopathological
features of GBM patients in the Stemness Subtype I and II groups
were compared (Table 1). As shown in Figure 5A, patients in
the Stemness Subtype I group were significantly younger in
age at diagnosis than those in the Stemness Subtype II group
(55.9 ± 16.4 versus 58.9 ± 12.8 years, P = 0.022). The composition
of the TCGA molecular subtype in the Stemness Subtype I
group [proneural (48.1%), classical (21.0%), neural (20.6%) and
mesenchymal (10.3%)] was significantly different from that in
the Stemness Subtype II group [mesenchymal (44.9%), classical
(33.0%), neural (13.7%) and proneural (8.4%)] (P < 0.001). Moreover,
the proportion of patients with G-CIMP status was significantly
higher in the Stemness Subtype I group than in the Stemness
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Figure 2. The tumor immune microenvironment patterns and immunogenomic features of GBM associated with the mRNAsi. (A) The immune subtypes of GBM patients

were categorized on the basis of the overall immune activity of GBM. Most of the patients were classified as low immunity (‘immune cold’ tumor) group, followed by

medium immunity (‘immune altered’) and high immunity (‘immune hot’) group. (B) Correlation analysis between mRNAsi and the stromal score, immune score,

ESTIMATE score and tumor purity evaluated by ESTIMATE algorithm. (C) Comparisons of mRNAsi, the infiltration level of stromal and immune cells, the ESTIMATE

score and tumor purity in different immune subtypes by boxplots. (D) Comparisons of the abundances of 22 immune cells in three immune subtypes. ‘ns’ means

P > 0.05, ∗ means P < 0.05, ∗∗ means P < 0.01, ∗∗∗ means P < 0.001 and ∗∗∗∗ means P < 0.0001. (E) Correlation analysis between immune cells and mRNAsi. Yellow bars

meant correlation coefficient > 0, and blue bars meant correlation coefficient < 0.
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Figure 3. Survival analysis and differential expression analysis between high and low mRNAsi groups. Kaplan–Meier survival analyses indicated significantly better OS

(A) and poorer PFS (B) in the high mRNAsi groups. (C) The heatmap showed the expression levels of DEGs between two groups. Red represented high expressions, and

blue represented low expressions of genes. (D) The functional enrichment analyses of DEGs, including significantly enriched biological processes, cellular components,

molecular functions and KEGG pathways. (E) Oncoplot of 10 most frequently mutated DEGs, which were altered in 108 GBM samples. (F) The differential analysis of copy

number variations between two groups was visualized by Circos plot, which revealed that compared with the low mRNAsi group, 40 (30.8%) genes were significantly

amplified, and 82 (63.1%) were significantly deleted in the high mRNAsi group. Red dots represented amplifications, blue dots represented deletions and black dots

represented no significant CNAs.

Subtype II group (18.0% versus 1.4%, P < 0.001). However, OS
status, progression status, sex, Karnofsky performance status
(KPS) score, and MGMT promoter methylation status did
not differ between the two subtypes. Finally, the stemness
index of patients with Stemness Subtype I (0.43 ± 0.12) was
significantly higher than that of patients with Stemness Subtype
II (0.27 ± 0.08), with P < 2.0 × 10–16 (Figure 5A). This demonstrated
that patients in the Stemness Subtype I group had higher levels
of neoplastic stemness, which suggested stronger potential for
the self-renewal, differentiation, and proliferation of tumor cells
and might explain their poorer PFS.

Stemness Subtype I possessed a higher CNA burden
and TMB

Previous studies have investigated the potential value of
genomic alterations in regulating tumor immunity and immune
infiltration patterns [55, 56]. Hence, CNA analysis and somatic
mutation analysis were performed to explore the distinct
genomic variations in the different stemness subtypes. As

shown in Figure 5B, patients with Stemness Subtype I tended
to bear a greater burden of copy number amplifications
(P = 1.8 × 10–6) and deletions (P = 0.042) than those with Stemness
Subtype II. Somatic mutation analysis revealed that each
stemness subtype possessed specific top mutated genes
(Figure 5C and D). TP53 (42%) was the most frequently mutated
gene in Stemness Subtype I, whereas PTEN (39%) was the most
frequently mutated gene in Stemness Subtype II. However, ATRX
and IDH1, with mutation frequencies <10%, were not observed in
the top 10 mutated genes of Stemness Subtype II. Regarding the
most common biomarkers of GBM, the proportion of patients
with TP53 mutations in the Stemness Subtype I group (41.6%)
was significantly higher than that in the Stemness Subtype II
group (22.3%, P < 0.001). The same situations were also observed
for IDH and ATRX, indicating that the mutation frequencies of
IDH (I versus II, 15.5 versus 6.7%; P = 0.001) and ATRX (I versus
II, 16.8% versus 2.3%; P < 0.001) in the Stemness Subtype I group
were significantly higher (Figure 5E). No significant difference
was found regarding the mutation frequencies of BRAF, PTEN,
EGFR and TERT between the two subtypes (Figure 5E). In addition,
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Figure 4. Identification of two stemness subtypes with distinct survival outcomes and functional annotations. (A) Consensus clustering matrix for k = 2, which was the

optimal cluster number. (B) CDF curves of the consensus score from k = 2 to 9. (C) The relative change in the area under the CDF curve from k = 2 to 9. (D) The heatmap of

the expression patterns of 130 DEGs, with red indicating high expressions and blue indicating low expressions. The upper columns were consisted of mRNAsi, and four

molecular classification methods of GBM. Kaplan–Meier survival analysis exhibited significantly better OS (E) and poorer PFS (F) in patients with Stemness Subtype I.

(G) Heatmap illustrated the enrichment scores of 36 differentially enriched molecular pathways evaluated by GSVA analysis between Stemness Subtype I and II. Yellow

represented high enrichment scores, and blue represented low enrichment scores.

patients in the Stemness Subtype I group had significantly
higher TMB than those in the Stemness Subtype II group
(P = 4.5 × 10–13). All these findings could suggest underlying
differences in the immunotherapy response of the two stemness
subtypes.

The stemness subtypes had distinct TIME and
immunogenomic patterns
First, the ESTIMATE algorithm was performed to reveal the
compositions of the TIME of the two stemness subtypes.

Compared with that in Stemness Subtype II, the immune,
stromal, and ESTIMATE scores were significantly lower and the
tumor purity score was significantly higher in Stemness Subtype
I (all P < 2.2 × 10–16), demonstrating low abundances of immune
and stromal cells and high tumor purity in Stemness Subtype
I tumors (Figure 6A). Afterwards, CIBERSORT was utilized to
quantify the infiltration abundances of TIICs in GBM. Most CD4+
and CD8+ T cell subsets, NK cells, monocytes, macrophages,
and neutrophils were more abundant in Stemness Subtype
II (Figure 6B). However, only plasma cells, follicular helper
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Figure 5. Comparisons of clinicalpathological and somatic variations between Stemness Subtype I and II. (A) Comparisons of age, mRNAsi, OS status, progression

status, gender, TCGA subtype, KPS, G-CIMP status and MGMT promoter status between two subtypes. (B) Left panel: Circos plots of each stemness subtype revealing the

amplifications and deletions of chromosomes, with red dots representing amplifications, blue dots representing deletions, and black dots representing no significant

CNAs. Right panel: Boxplots inhibited more burdens of copy number amplifications and deletions in Stemness Subtype I. Waterfall plots showed the top 10 mutated

in Stemness Subtype I (C) and II (D). (E) The comparisons of TMB, mutation status of PTEN, TP53, EGFR, IDH, TERT promoter, BRAF and ATRX between Stemness Subtype

I and II. ∗ means P < 0.05, ∗∗ means P < 0.01, and ∗∗∗ means P < 0.001.

T cells, resting dendritic cells, and resting mast cells were
significantly more abundant in Stemness Subtype I (Figure 6B).
Regarding the immune classification of GBM, Stemness Subtype
I consisted of more proportions of high- and medium-immunity
tumors, whereas Stemness Subtype II contained mainly low-
immunity tumors (P < 0.001; Figure 6C). These interesting
findings demonstrated that Stemness Subtype I tumors had
relatively low immune infiltration levels and high tumor purity
but also possessed relatively high immunity.

Stemness Subtype I was more sensitive to
immunotherapy but resistant to TMZ

The expression levels of PD1/PD-L1/PD-L2 and CTLA/CD80/CD86
were exactly reversed in the two stemness subtypes (Figure 6D).
The expression levels of PD1 and its ligands (PD-L1 and PD-L2)
were significantly higher in Stemness Subtype I (all P < 0.001),
and those of CTLA and its ligands (CD80 and CD86) were signifi-
cantly higher in Stemness Subtype II (all P < 0.05). Then, the TIDE
algorithm was used to predict the likelihood of immunotherapy
responses in GBM patients. As shown in Figure 6E, the propor-
tion of responders to immunotherapy in the Stemness Sub-
type I group was more than two times that in the Stemness
Subtype II group (44.6 versus 21.8%, P < 0.001). Regarding the
TCGA molecular subtypes, the response rate of the proneu-
ral subtype was the highest (40.4%), followed by the neural
(34.5%), classical (34.3%), and mesenchymal (21.1%) subtypes
(P = 0.004). In addition, consistent with the findings of previ-
ous studies, the proportion of responders gradually decreased
from high-immunity (81.0%) and medium-immunity (47.8%) to

low-immunity (14.3%) tumors (P < 0.001). The stemness index
was significantly higher in responders to immunotherapy than
in nonresponders (P < 0.001) (Figure 6F). Then, subclass mapping
analysis was used to predict the response to ICI therapy, includ-
ing PD1 and CTLA4 inhibitors, of the two stemness subtypes.
We found that patients in the Stemness Subtype I group were
more sensitive to anti-PD1 therapy (FDR = 0.012), while those in
the Stemness Subtype II group were more likely to respond to
anti-CTLA4 therapy (FDR = 0.005) (Figure 6G).

Because TMZ treatment was the standard chemotherapy for
GBM postoperatively, we evaluated the TMZ response of the two
stemness subtypes by using the pRRophetic algorithm based
on the GDSC database. By applying ridge regression analysis,
we estimated the IC50 of TMZ in each GBM patient. The esti-
mated IC50 values of TMZ were significantly lower in patients
with Stemness Subtype II (P = 4.34 × 10–28; Figure 6H), indicating
that GBM patients with Stemness Subtype I tended to be more
resistant to TMZ therapy than those with Stemness Subtype II.

Identification of potential compounds targeting the two
stemness subtypes

CMap analysis was carried out to explore the potential com-
pounds targeting each stemness subtype of GBM. Forty-one
highly expressed genes in Stemness Subtype I and 89 highly
expressed genes in Stemness Subtype II were considered poten-
tial targets of compounds and were then employed in the CMap
database. MoA analysis revealed 24 molecular pathways targeted
by 34 compounds in Stemness Subtype I and 63 pathways tar-
geted by 76 compounds in Stemness Subtype II (Supplementary
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Figure 6. Distinct TIME and immunogenomic patterns of two stemness subtypes lead to different sensitivity to immunotherapy and TMZ. (A) Comparisons of stromal

score, immune score, ESTIMATE score and tumor purity between Stemness Subtype I and II. (B) Comparisons of the abundances of 22 immune cells in two subtypes.

(C) The different proportions of high, medium and low immunity tumors in two stemness subtypes. (D) The expression levels of PD-1, PD-L1, PD-L2, CTLA-4, CD80 and

CD86 in Stemness Subtype I and II. (E) Comparisons of the proportions of nonresponders and responders to immunotherapy among different classification methods,

including stemness subtypes (left panel), TCGA subtypes (middle panel) and immune subtypes (right panel). (F) Violin plot showed significantly higher stemness index

in responders. (G) Subclass mapping analysis for predicting the likelihood of response to ICI therapy of different stemness subtypes. (H) Boxplot demonstrated the

difference in the IC50 value estimated by pRRophetic algorithm based on GDSC database between Stemness Subtype I and II.

Figure 3). Regarding the most critical MoAs for each subtype,
there were 12 compounds sharing the same MoA as topoiso-
merase inhibitors in Stemness Subtype I and another 12 com-
pounds sharing the same MoA as monoamine oxidase inhibitor
in Stemness Subtype II. Further studies are needed to verify the
therapeutic value of these compounds by inhibiting or reversing
the corresponding MoAs.

Construction and validation of the Stemness Subtype
Predictor

First, in the training set, four machine learning algorithms were
employed to determine the most critical stemness subtype-
relevant features via the expression levels of 130 stemness-
based DEGs. A total of 43, 112, 30 and 71 genes were identified
by LASSO, RFB, SVM, and XGBoost analyses, respectively
(Supplementary Figure 4). ROC curve analysis demonstrated
that the four machine learning algorithms had excellent
performance in feature selection, with AUCs of 1.00 in the
training set and AUCs >0.95 in the testing set (Figure 7A).

The Venn diagram identified seven critical genes that were
shared by the four feature selection algorithms (Figure 7B).
Afterwards, multivariate logistic regression analysis was
performed to construct the diagnostic predictive model (Table 4).
The formula of the Stemness Subtype Predictor was as follows:
Stemness Subtype Predictor = 0.523 + 1.794 × (expression of
LTF) + 1.410 × (expression of TAGLN) + 1.027 × (expression of
C5AR1) - 2.148 × (expression of RAB33A) + 1.581 × (expression
of CFI) + 1.392 × (expression of CH25H) + 1.964 × (expression of
RNASE2). The optimal cutoff value for discrimination was 0.0565,
suggesting that patients with a score < 0.0565 were considered
to have Stemness Subtype I and those with a score > 0.0565
were considered to have Stemness Subtype II. ROC analysis
demonstrated an AUC of 0.9889 for distinguishing Stemness
Subtypes I and II, with a sensitivity of 94.86%, a specificity of
97.51%, and an accuracy of 96.28% in the training set (Figure 7C).
In addition, the Stemness Subtype Predictor also had an
excellent performance in discriminating the stemness subtypes
as evaluated in the test set, with an AUC of 0.9599, a sensitivity
of 91.38%, a specificity of 94.05%, and an accuracy of 92.96%
(Figure 7C).
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Figure 7. Construction and validation of the Stemness Subtype Predictor. (A) The performances of four machine-learning algorithms (LASSO, RFB, SVM and XGBoost)

for feature selection were, respectively, evaluated in the train set and test set. AUCs were generated by ROC analysis. (B) Venn diagram identified seven most critical

stemness subtype specific genes that were shared by four feature selection algorithms. (C) Left panel: confusion matrices of binary results of the Stemness Subtype

Predictor for the train set (upper) and test set (lower). Right panel: ROC curves of the Stemness Subtype Predictor in distinguishing two subtypes in the train set

(Upper) and test set (Lower). The CGGA RNA sequencing data (D) and the PUMCH qRT-PCR data (F) were enrolled to further validated the clinical application value

of the stemness-based classification, which were visualized by heatmaps. Kaplan–Meier survival analysis also suggested that patients’ OS and PFS were significantly

different between Stemness Subtype I and II both in both CGGA (E) and PUMCH cohort (G).

Table 4. Multivariate logistic regression analysis of the seven genes selected by multiple machine learning algorithms

Variables β OR (95%CI) P-value

Stemness subtype predictor
Intercept 0.523 − 3.64e-02
LTF 1.794 6.013

(3.173–12.872)
3.94e-07

TAGLN 1.410 4.095 (2.235–8.25) 1.89e-05
C5AR1 1.027 2.794 (1.263–6.481) 1.26e-02
RAB33A −2.148 0.117 (0.049–0.236) 6.63e-08
CFI 1.581 4.860

(2.488–10.509)
1.41e-05

CH25H 1.392 4.022 (2.159–8.167) 3.39e-05
RNASE2 1.964 7.126

(2.859–21.489)
1.14e-04

Abbreviations: β, regression coefficient; OR, odds ratio; 95%CI, 95% confidence interval.
Bold type of P-value means P < 0.05.
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Clinical applications of the stemness-based
classification in two independent cohorts

We enrolled another two independent GBM cohorts, bulk RNA
sequencing data from patients in the CGGA database and qRT-
PCR data from patients at PUMCH, to explore the clinical applica-
tion value of the novel stemness-based classification in different
patient populations. By applying the Stemness Subtype Predic-
tor, we calculated the score for each patient and then categorized
the patients into two groups based on the cutoff value of the
diagnostic predictor and the expression profiles of seven critical
genes. The CGGA cohort consisted of 58 patients with Stemness
Subtype I (16.6%) and 292 patients with Stemness Subtype II
(83.4%) (Figure 7D), whereas the PUMCH cohort contained 28
patients with Stemness Subtype I (73.7%) and 10 patients with
Stemness Subtype II (26.3%) (Figure 7F). K-M survival analysis
indicated that patients with Stemness Subtype I presented sig-
nificantly better OS and poorer PFS in both the CGGA and PUMCH
GBM cohorts (Figure 7E and G), which was consistent with the
previous results in the TCGA cohort. In addition, univariate and
subsequent multivariate Cox regression analyses revealed sig-
nificant correlations between the stemness subtype and OS/PFS
in both the CGGA and PUMCH cohorts (Tables 2 and 3), indicating
that the stemness subtype was also an independent predictor for
the prognosis of GBM patients.

In addition, the demographic and clinicopathological fea-
tures of GBM patients with Stemness Subtypes I and II in the two
independent GBM cohorts were compared (Table 1). As shown
in Supplementary Figures 5A and 6A, patients in the Stemness
Subtype I group were significantly younger than those in the
Stemness Subtype II group (P < 0.05), and the Stemness Sub-
type I group had more patients with 1p19q codeletion (P < 0.05)
in both cohorts. The proportions of TCGA molecular subtypes
also differed between Stemness Subtypes I and II in the CGGA
cohort (P = 0.013). Regarding the most common biomarkers of
GBM, the Stemness Subtype I group had a higher proportion of
patients with IDH mutations (P < 0.05) in the two cohorts, and
more patients with TP53 mutations were also observed in the
Stemness Subtype I group in the PUMCH cohort (57.1% versus
20.0%, P = 0.043). However, the mutation frequencies of BRAF,
PTEN, EGFR, TERT, and ATRX did not differ significantly between
the two subtypes in the PUMCH cohort. TMB was not compared
due to a lack of whole genome sequencing or whole exome
sequencing data.

TIME patterns were also evaluated in the CGGA cohort. Sim-
ilar to the findings from TCGA, the immune, stromal, and ESTI-
MATE scores were significantly lower and the tumor purity score
was significantly higher in the Stemness Subtype I group (all
P < 0.001), demonstrating low abundances of immune and stro-
mal cells and high tumor purity in Stemness Subtype I tumors
(Supplementary Figure 5B). CIBERSORT further revealed that fol-
licular helper T cells, resting dendritic cells, activated dendritic
cells, and activated mast cells were significantly more abundant
in Stemness Subtype I, whereas most CD4+ and CD8+ T cell
subsets, NK cells, monocytes, macrophages, and neutrophils
were more abundant in Stemness Subtype II (Supplementary
Figure 5C).

Subsequently, the expression levels of immune checkpoint
molecules were investigated in the two cohorts, which also
demonstrated significant reverse expression patterns of PD1/PD-
L1/PD-L2 and CTLA/CD80/CD86 in Stemness Subtypes I and II
(Supplementary Figures 5D and 6C). Then, the TIDE algorithm
was utilized to predict the likelihood of immunotherapy
responses in CGGA GBM patients, which indicated that the

proportion of responders to immunotherapy in the Stemness
Subtype I group (36.2%) was significantly higher than that in
the Stemness Subtype II group (18.2%) in the CGGA cohort
(P < 0.001) (Supplementary Figure 5E). Subclass mapping analysis
also revealed that patients with Stemness Subtype I were more
sensitive to anti-PD1 therapy (FDR = 0.003), and those with
Stemness Subtype II were more likely to respond to anti-CTLA4
therapy (FDR = 0.033) (Supplementary Figure 5F). Finally, we
also found that CGGA patients with Stemness Subtype I were
more sensitive to TMZ therapy due to their relatively lower
estimated IC50 values of TMZ (P = 8.15 × 10–47; Supplementary
Figure 5G). The response to immunotherapy and TMZ therapy
in the PUMCH cohort could not be predicted due to the lack of
transcriptomic data of PUMCH patients. Generally, all the above
findings indicated that this novel stemness-based molecular
classification of GBM patients was robust and reliable and can
be clinically applied in different patient populations.

Discussion
This study conducted an in-depth analysis of the relationship
between the stemness of GBM and the effects of immunotherapy
and chemotherapy, proposed an approach to distinguish sub-
types according to stemness, and verified this approach using
patient samples and clinical data from two different cohorts.
First, we used the OCLR algorithm to calculate the stemness
index, mRNAsi, in 518 GBM patients from the TCGA database.
Then, ESTIMATE was used to evaluate the tumor microenvi-
ronment, tumor purity and the abundance of stromal cells and
immune cells in GBM patients. After analyzing the interaction
between stemness and TIME, CIBERSORT was used to analyze
the composition of TIICs. We divided the GBM patients into
two subtypes based on their stemness index and compared
their clinicopathological parameters to clarify the correlation
between the stemness subtypes and clinical features. In Stem-
ness Subtype I patients with high mRNAsi scores, immunother-
apy, especially anti-PD-1/PD-L1 treatment, can achieve better
therapeutic effects, as predicted by the TIDE algorithm, while
TMZ will have worse therapeutic effects, as predicted by the
pRRophetic package. Moreover, this group of patients have better
OS and poorer PFS. To make the results more practical, we found
potential compounds targeting genes related to the stemness
subtype using CMap analysis, thus laying the foundation for
research on treatment. Moreover, to facilitate the distinction
between these two stemness subtypes in clinical practice, the
seven most critical stemness subtype-related genes were iden-
tified and defined as stemness subtype predictors by using the
LASSO, SVM, RFB and XGBoost machine learning methods. These
7 predictors were verified in the CGGA and PUMCH cohort.

Although the CNS is a relatively immunologically privileged
site, immunotherapy has been widely studied in GBM patients
in recent years, mainly including immune checkpoint inhibitors,
antitumor vaccines and cellular immunotherapy. However, com-
pared to other tumors, the results of these phase III clinical
trials in GBM were not satisfactory [15, 57]. There are many
factors affecting the effect of immunotherapy in GBM. Taking the
PD-1/PD-L1 blockade treatment as an example, the expression
level of PD-L1, TMB, mismatch repair deficiency and tumor-
infiltrating lymphocytes were all able to affect the anti-PD-1/PD-
L1 treatment [17, 58]. However, in the current phase III clinical
trials, GBM patients have not been screened for the above factors,
and such indiscriminate treatment may also be the reason for
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the failure of these trials, which is also an issue that needs to be
paid attention to in future researches.

Based on the above problems in immunotherapy, our study
proposed a new GBM classification based on tumor stemness.
We found that patients with Stemness Subtype I with a high
mRNAsi score would have a better response to immunotherapy,
which provided a new idea for screening patients. At present, the
interaction between CSCs and the immune system has not been
well studied because most of the animal models used in studies
on CSCs lack major immune cell components, but there is still
some evidence that CSCs may have a regulatory effect on the
immune system in GBM patients [59]. In coculture studies, CSCs
can induce the production of regulatory T (Treg) cells through
PD-1 and induce the apoptosis of cytotoxic T cells to inhibit
their tumor killing effect [60]. CSCs may also induce the produc-
tion of a more immunosuppressive phenotype (M2) of tumor-
associated macrophages by secreting interleukin 10 (IL-10) and
tumor necrosis factor β (TNF-β) [61]. In addition, antitumor vac-
cines are related to CSCs, as the lysed products of CSCs are more
effective as antigens of antitumor vaccines than differentiated
tumor cells [62, 63]. All the above studies have indicated the
correlation between CSCs and immunotherapy. Therefore, anti-
CSC therapy combined with immunotherapy may be able to
achieve a better therapeutic effect in GBM patients.

Potential anti-CSC compounds were analyzed from CMap in
this study. In the case of Stemness Subtype I, amitriptyline was
identified as one of the potential targeted drugs. Amitriptyline
is a tricyclic antidepressant approved by FDA for the treatment
of depression by blocking serotonin and norepinephrine and the
reuptake of them. Recently, amitriptyline is also proposed to
be used as an anti-tumor drug by affecting the neurotrophin
receptor, Fas death receptor and c-Jun pathway to promote cell
apoptosis [64–66]. Besides, it can affect the production of reactive
oxygen species by affecting the synthesis of coenzyme Q10. This
result has been verified in lung cancer cell lines [67]. Other
tricyclic antidepressants were confirmed to induce autophagic
cell death by affecting PI3K/AKT/mTOR signaling pathway in
GBM cell line U-87MG [68]. In another GBM cell line T98G, the
tricyclic antidepressant was proved to transform GBM stem cells
into non-stem cells, thereby reducing the malignancy of GBM
[69]. Although there is still a lack of research on this drug and
immunotherapy at present, the above researches demonstrate
the effectiveness of drug screening in our study and the feasi-
bility of drug application in the treatment of GBM. In addition to
amitriptyline, this study screened a variety of targeted drugs for
the two stemness subtypes, which may provide a basis for future
studies on combination therapy.

Our study also found that although immunotherapy had a
significantly better effect on patients with Stemness Subtype I,
the therapeutic effect of TMZ on this group of patients was not
satisfactory, suggesting that CSCs in GBM were also related to
TMZ and that TMZ may have some regulatory relationship with
the immune system. An important reason for the current failure
of TMZ treatment for GBM lies in its high heterogeneity, while the
strong differentiation potential of CSCs is undoubtedly the great-
est factor causing tumor heterogeneity [70]. In addition, studies
on the causes of CSCs and radiotherapy resistance suggest that
CSCs may enhance the ability of DNA damage repair to cause
radiotherapy resistance [71], and this effect is also likely to play
an important role in TMZ resistance. Many molecules, such as
Notch, nuclear factor kappa B (NF-κB), enhancer of zeste homolog
2 (EZH2), and poly (ADP-ribose) polymerase (PARP) [72–75], may
also be involved in the effect of CSCs on cytotoxic agents,
suggesting that the combination of targeted therapy,

immunotherapy, and anti-CSC therapy may provide survival
benefits for GBM patients in the future. Aida Karachi et al.
summarized the immunomodulatory effect of TMZ in GBM,
clarifying its effect on cytotoxic T cells and antigen-presenting
cells [76]. Meanwhile, the existence of lymphocytosis and
increasing proportion of Treg cells caused by TMZ also promoted
the formation of an immunosuppressant environment in GBM.

There are also some limitations of this research. First,
when validating the results of this study, we only included
38 patients with complete clinical and pathological data from
PUMCH, which was a relatively small sample size. Although
there were enough CGGA samples as the validation set to
support the conclusions of this research, we need to further
expand the sample size from our own center in the future.
Second, as patients receiving immunotherapy are currently
very limited and the conclusions of this study were based on
the analysis of transcriptomic data from public databases, the
relationship between stemness subtypes and immunotherapy
responsiveness needs to be validated in an immunotherapy
cohort in the future.

In conclusion, immunotherapy still has great potential in
GBM, and screening patients who are likely to benefit from
immunotherapy is one of the important tasks at present. In
this study, the patients were divided into two different subtype
groups based on the stemness of GBM, and the response
of patients with different subtypes to immunotherapy was
predicted, providing a potential approach for the screening
of patients for immunotherapy in the future. The stemness
subtype predictors were also identified in this study, which made
subgrouping based on stemness clinically feasible.

Key Points
• GBM is the most malignant and lethal primary

intracranial tumor with extremely limited treatment
options.

• Stemness plays a critical role in the initiation and
treatment resistance of GBM and also exhibits a sub-
stantial impact on patients’ response to immunother-
apy.

• Integrated multiomic analysis revealed that based on
distinct stemness features, GBM patients could be
divided into two subtypes with reverse survival out-
comes and tumor microenvironment, as well as dif-
ferent response to immunotherapy and temozolomide
therapy.

• The novel stemness-based classification could pro-
vide promising prognostic predictors for GBM and may
guide physicians in selecting potential immunother-
apy responders for preferential use of immune check-
point inhibitors.
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