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A B S T R A C T   

There is a growing interest in using models to predict foodborne pathogen inactivation as a way to 
validate or verify preventive controls. Unlike liquid foods, solid, low water activity foods (LWAF) 
are heterogenous in composition and structure and do not transfer heat uniformly. Using models 
constructed from one food to predict pathogen inactivation on another LWAF is complex and may 
not always be possible, even if the foods have similar composition. Using models constructed from 
inactivation kinetics of three foodborne pathogens and a surrogate from vacuum-steam- 
pasteurized (72 and 82 ◦C) whole macadamia nuts and dried apricot halves, 3-log reductions 
were predicted for the same pathogens and foods of reduced size. Model fits (First-order, Weibull, 
and Gompertz) were significantly impacted by the food type regardless of particle size. Despite 
the foods being identical in composition with particle size as the only altered characteristic, best- 
fit models accurately predicted the 3-log reductions only 50% of the time, but the surrogate 
inactivation models provided conservative predictions for pathogen reductions, highlighting that 
a surrogate’s model may be a suitable tool for predicting pathogen reduction on LWAFs.   

1. Introduction 

Low-water activity foods (LWAF) are responsible for hundreds of recalls in the United States and Europe each year, as well as 
dozens of outbreaks of associated foodborne illnesses ([1,2–9]; [10]; [11,12,13,14]). While Salmonella enterica subsp. enterica is 
responsible for many of these recalls and outbreaks, Shiga toxin-producing Escherichia coli (STEC) and Listeria monocytogenes are also 
associated with numerous recalls. While LWAF are not typically considered high-risk foods due to the lack of available water for 
microbial growth, the ability of pathogens to persist for months to years on LWAF requires additional investigation of associated risks 
[15–18]. 

The Risk-Based Preventive Controls for Human Food rule of the Food Safety Modernization Act (FSMA) requires implementation of 
preventive controls to address pathogen contamination [19]. In-plant validation that utilizes in situ processing conditions is the best 
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method for evaluation of preventive controls. However, these studies are costly and require specific expertise. It has been proposed that 
predictive microbiology modeling may inform or, in specific cases, serve as a substitution for in-plant validations. However, limitations 
of models must be recognized and understood for proper use of these empirical kinetic models [20,21]. Thermal interventions used on 
LWAF may be limited, since they are heterogenous in composition and do not transfer heat as efficiently as liquid foods. 

Primary models should only be applied under the same circumstances under which it was originally developed to describe bacterial 
inactivation. For example, applying model predictions to a different food, pathogen, or treatment could render predictions irrelevant 
and unreliable. The objective of this study was to explore the application of primary kinetic models for thermal inactivation of Sal-
monella, Shiga toxin-producing Escherichia coli (STEC), and Listeria monocytogenes, as well as a surrogate microorganism (Pediococcus 
acidilactici) on vacuum-steam-pasteurized whole macadamia nuts and dried apricot halves at different treatment temperatures (72 or 
82 ◦C). Predictions of 3-log reductions were made from these inactivation models and compared against observed 3-log reductions of 
the same microorganisms on smaller particles (pieces) of the same vacuum-steamed foods, limiting the experimental variabilities’ 
impacts on the model applications. Additional consideration was given to determine if the model predictions of the surrogate’s 
inactivation (Pediococcus acidilactici) could yield similar or more conservative predictions for times necessary to reduce pathogens from 
low-water activity foods treated with vacuum-steam processing. 

2. Materials & methods 

In two sets of experiments (replicated at least three times), large pieces (whole macadamia nuts [n = 15], dried apricot halves [n =
17]) and smaller pieces (macadamia nut pieces [n = 17], dried apricot pieces [n = 17]) were inoculated with microorganisms and 
treated with low-temperature vacuum-assisted steam, and inactivation rates were determined. 

Macadamia nut pieces (5–10 mm) and dried apricot halves (Nuts.com, Cranford, NJ) were inoculated with a cocktail of the 
following: E. coli O121:H19 (FNW19M81, wheat flour isolate from 2016 outbreak [FDA]) and O157:H7 F4546 (alfalfa sprout isolate 
from outbreak); L. monocytogenes 1/2a FSL R2-499 (sliced turkey isolate), 1/2b FSL R2-502 (chocolate milk isolate), and 4b (ScottA, 
milk isolate from 1985 outbreak); Salmonella enterica serotype Montevideo (1449, black pepper isolate from 2010 outbreak), Newport 
(2010 allspice isolate), and Tennessee (K4643, peanut butter clinical isolate from 2007 outbreak); and the nonpathogenic bacterium, 
Pediococcus acidilactici (ATCC 8042). Overnight cultures were prepared in Tryptic Soy Broth (TSB; BD, Sparks, MD) or Lactobacillus 
MRS broth (Pediococcus; BD), streaked onto Tryptic Soy Agar as lawns (TSA; BD), harvested with 0.1% peptone (BD Difco), mixed, and 
misted onto the whole macadamia nuts and dried apricot halves so that final concentration on the food products was ca. 7–8 log CFU/g 
after drying. For apricot pieces, the halves were inoculated, dried, and then cut into pieces (8–10 mm) to avoid inoculum internali-
zation through freshly cut surfaces. Additional details for this method were described by Acuff et al. [22]. 

A laboratory-scale, low-temperature, vacuum-assisted steam delivery system was engineered in a Biosafety Level-2 pilot plant. 
Newkirk et al. [23] reported the general design and use of the system, which included a canner cooker (25-QT canner cooker; All 
American®, 25 QT. #925, Manitowoc, WI) with a customized, valve-controlled steam inlet. Amendments were made to connect the 
system to a medium-pressure steam line and a manually regulated reducing station that lowered steam to <69 kPa [22]. 

Foods were steam treated (30 g) in modified silicone baking cups (Wilton, Stock 415–9424, Naperville, IL). Pieces of nuts and dried 
fruits were treated at 72 ◦C for 0, 0.5, 1, 2, 5, 8, 14, and 20 min and 82 ◦C for 0, 0.5, 1, 1.5, 2, 2.5, 3.5, and 5 min. Previously, apricot 
halves were steam treated for the same times and temperatures, but whole macadamia nuts were treated for up to 38 min at 72 ◦C, and 
up to 12 min at 82 ◦C to achieve significant log reductions [22]. Following the steam treatments, the 30-g samples were placed in 
chilled 0.1% peptone, serially diluted, and plated onto Bile Esculin Agar (BEA; Criterion, Hardy Diagnostics, Santa Maria, CA) for the 
enumeration of Pediococcus acidilactici and on two plates of TSA that were overlayed with a layer of selective agar after 4 h of incu-
bation to recover injured pathogen cells (Xylose Lysine Tergitol-4, Criterion, Hardy Diagnostics, Santa Maria, CA) for Salmonella and 
STEC enumeration, and Modified Oxford agar (Acumedia, Neogen, Lansing, MI) with supplement (Dalynn Biologicals, Calgary, AB) for 
L. monocytogenes enumeration. Overlayed TSA plates and BEA plates were incubated at 35 ◦C for 24 and 48 h, respectively. 

Log reductions were calculated from initial and final bacterial concentrations (log CFU/g) of each treatment and transformed to 
convey survival, relative to starting populations. Datasets of survivability for each of the pathogens treated with both temperatures on 
the whole macadamia nuts and apricot halves were used to evaluate the fit of three models that have been used to describe bacterial 
inactivation on foods: first-order, Weibull, and Gompertz. Replicates of each treatment were pooled and the nlstools and nlsMicrobio 
packages in R (Version 3.6.1) and RStudio, Inc. (Version 1.1.456, Boston, MA) were used for model construction. 

The first-order model parameters were estimated from the compiled data [24]: 

log Nt − log N0 = − kt (1)  

where Nt is the surviving bacterial population at time, t; N0 is the initial bacterial population; and k is the inactivation rate (log CFU/g 
min− 1). 

The Weibull model was used as an alternative to identify inactivation trends that were not linear [24]: 

log Nt − log N0 = − k • tβ (2)  

where k = kʹ/loge10 and is a rate parameter for the reduction, and β indicates whether the shape is a concave upward (<1), downward 
(>1), or linear (=1) inactivation curve. 

The Gompertz model describes inactivation trends that present as a sigmoidal curve with the following modified equation [25]: 
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Table 1 
First-order (k [log CFU/g min− 1]), Weibull (k (log CFU/g min− 1) and β) and Gompertz (A, μM [log CFU/g min− 1], λ [min]) model parameter coefficients and statistical results (RMSE [log CFU/g], AIC) for 
STEC, Salmonella, L. monocytogenes, and Pediococcus acidilactici on steamed dried apricot halves and pieces and whole macadamia nuts and pieces treated (72 and 82 ◦C).  

Food Temp Bacteria First-Order Weibull Gompertz 

k D-val RMSE AIC k β RMSE AIC A μM λ RMSE AIC 

Apricot Halves 72 E. coli − 0.41 2.43 1.00 70.96 − 0.96 0.69 0.79 60.85 − 7.22 − 0.62 0.54 0.78 60.78 
L. mono − 0.40 2.53 1.32 84.46 − 1.24 0.58 0.98 70.89 − 6.41 − 0.70 0.23 0.92 68.66 
Ped. − 0.21 4.70 0.80 60.21 − 0.71 0.55 0.64 50.62 − 3.67 − 0.27 − 1.00 0.71 56.64 
Sal. − 0.44 2.29 1.45 89.01 − 1.39 0.57 1.04 73.99 − 7.13 − 0.79 0.36 0.88 66.91 

82 E. coli − 1.57 0.64 1.35 85.66 − 2.15 0.75 1.28 83.75 − 6.45 − 4.33 0.99 0.96 71.04 
L. mono − 1.51 0.66 1.22 80.51 − 2.19 0.70 1.09 75.95 − 6.07 − 3.18 0.63 0.89 67.23 
Ped. − 1.16 0.86 0.82 61.68 − 1.60 0.74 0.75 58.18 − 5.38 − 1.50 0.15 0.73 57.65 
Sal. − 1.57 0.64 1.43 88.24 − 2.37 0.67 1.27 83.58 − 5.94 − 11.07 1.34 0.80 62.03 

Whole Macada-mia Nuts 72 E. coli − 0.18 5.44 0.85 60.96 − 0.69 0.60 0.64 48.43 − 6.68 − 0.21 − 1.19 0.78 58.66 
L. mono − 0.14 7.29 0.67 49.60 − 0.69 0.51 0.40 26.99 − 4.81 − 0.15 − 2.26 0.55 42.61 
Ped. − 0.10 10.32 0.69 51.30 − 0.46 0.53 0.61 46.36 − 3.66 − 0.10 − 2.69 0.67 51.70 
Sal. − 0.13 7.54 0.68 50.51 − 0.59 0.55 0.48 35.89 − 4.59 − 0.16 − 1.53 0.60 46.31 

82 E. coli − 0.54 1.85 1.14 83.72 − 1.23 0.63 0.98 76.49 − 5.20 − 1.00 0.49 0.96 76.62 
L. mono − 0.52 1.94 0.99 73.57 − 1.21 0.61 0.78 62.54 − 5.01 − 0.94 0.43 0.76 62.04 
Ped. − 0.37 2.73 0.76 62.49 − 0.73 0.68 0.69 58.63 − 3.71 − 0.57 0.34 0.72 61.81 
Sal. − 0.44 2.27 0.95 73.95 − 0.86 0.70 0.88 71.03 − 4.48 − 0.68 0.35 0.92 74.13 

Apricot Pieces 72 E. coli − 0.39 2.54 0.92 88.73 − 0.77 0.75 0.83 82.70 − 7.88 − 0.49 0.33 0.87 86.83 
L. mono − 0.38 2.65 1.03 95.42 − 1.00 0.64 0.77 77.86 − 6.33 − 0.60 0.30 0.75 77.45 
Ped. − 0.21 4.81 0.59 59.74 − 0.31 0.86 0.58 60.41 − 5.26 − 0.23 0.70 0.61 64.24 
Sal. − 0.39 2.59 0.94 86.98 − 0.95 0.67 0.71 71.09 − 6.92 − 0.54 0.17 0.74 73.74 

82 E. coli − 1.60 0.62 1.26 105.49 − 1.89 0.87 1.26 106.14 − 6.78 − 4.04 0.99 0.92 87.50 
L. mono − 1.56 0.64 1.45 113.86 − 2.14 0.75 1.37 111.38 − 6.00 − 10.62 1.37 0.62 63.47 
Ped. − 1.11 0.90 0.84 77.75 − 1.16 0.97 0.85 79.66 − 4.75 − 2.39 0.91 0.71 69.78 
Sal. − 1.60 0.62 1.38 110.75 − 2.13 0.77 1.31 108.63 − 6.28 − 7.74 1.29 0.70 70.31 

Macada-mia Nut Pieces 72 E. coli − 0.33 3.01 0.85 73.51 − 0.89 0.64 0.68 61.85 − 11.12 − 0.31 − 0.82 0.79 71.13 
L. mono − 0.24 4.11 0.93 78.49 − 1.15 0.43 0.50 44.29 − 3.87 − 0.39 − 1.28 0.64 58.92 
Ped. − 0.24 4.23 1.04 84.86 − 1.11 0.43 0.72 64.63 − 3.80 − 0.37 − 1.28 0.82 72.93 
Sal. − 0.27 3.69 0.89 75.78 − 1.08 0.49 0.57 51.55 − 6.00 − 0.25 − 2.87 0.70 64.66 

82 E. coli − 1.30 0.77 0.99 79.30 − 2.15 0.61 0.77 66.39 − 5.44 − 1.85 0.01 0.81 70.07 
L. mono − 1.41 0.71 1.20 92.86 − 2.42 0.57 0.94 79.65 − 5.75 − 2.03 − 0.01 0.96 82.12 
Ped. − 0.80 1.25 0.84 72.69 − 1.50 0.50 0.64 58.32 − 3.03 − 1.55 0.18 0.59 54.35 
Sal. − 1.03 0.97 1.07 86.32 − 1.91 0.51 0.86 74.71 − 4.02 − 1.55 − 0.07 0.89 77.78 

Best fit values are bolded. 
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log Nt − log N0 =A • exp
{
− exp

[μM • e
A

(λ − t)+ 1
]}

(3)  

where μM (log CFU/g min− 1) is the maximal value of inactivation, λ is the lag time (min), and A is the asymptote. 
Akaike’s Information Criteria (AIC) and root mean squared error (RMSE) were used to evaluate model fit of all datasets, with lower 

values indicating better fit. 
The objective of this study was to determine if inactivation models from whole food particles (macadamia nuts and apricot halves) 

could predict inactivation times for smaller pieces of the same foods, so times necessary for 3-log reductions were predicted from 
inactivation data of larger pieces [22]. These “predicted” times were compared against the actual “observed” times for 3-log reductions 
of bacteria on pieces (predicted vs. observed). Raw error (min) was calculated as the difference between the predicted and observed 
times, while relative error was the ratio of the raw error to the predicted times of 3-log reductions on smaller pieces of the same food 
[26]:  

RE = (observed – predicted)/predicted                                                                                                                                                

The relative error determined accuracy of model predictions: acceptable (− 0.30-0.15), fail-safe (− 1.0 to − 0.31), fail-dangerous 
(>0.15). These ranges were based on previously used intervals for model evaluation [26]. While fail-safe predictions between − 1.0 
and − 0.30 were not considered accurate, they were considered excessively safe for predicted times necessary for 3-log reductions. 

Heat maps of the relative error between each combination of model predictions of 3-log reduction times were constructed to 
visualize trends between predictive and observed times (R [Version 3.6.1, library[pheatmap]). The maps indicated with color gra-
dients the accuracy model predictions by comparing predicted (vertical axis) and observed (horizontal axis) values in the context of the 
fail-safe (green) and fail-dangerous (red) intervals. 

3. Results 

Vacuum-steam processing treatments (72 and 82 ◦C) of macadamia nuts (whole and pieces) and dried apricots (halves and pieces) 
successfully inactivated 3–5 log CFU/g of STEC, L. monocytogenes, and Salmonella spp. Log-linear, first-order models were used to 
calculate D-values of each microorganism on each food for the two treatment temperatures (Table 1). Pathogen D72◦C-values were 

Fig. 1. Predicted and observed times from first-order models of microbial inactivation for macadamia nuts and pieces and apricot halves and pieces. 
Comparisons of predicted vs. observed times for 3-log reductions were made by first-order models of Salmonella, Pediococcus, L. monocytogenes, and 
E. coli on whole macadamia nuts (predicted) vs. macadamia nut pieces (observed) and apricot halves (predicted) vs. apricot pieces (observed) 
vacuum-steamed at 72 and 82 ◦C. * indicates relative error values within the acceptable range (− 0.30-0.15). 
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between 2.3 and 2.6 min (apricots halves and pieces) and 3.0–7.5 min (macadamia nut pieces and whole nuts), and D82◦C-values for 
apricot and macadamia nut samples were 0.6 min (apricot) and 0.7–2.7 min, respectively. The D-values of Pediococcus acidilactici were 
larger than those of the pathogens for all treatments on each food type and size, highlighting its suitability as a surrogate for these 
processing conditions. Nonlinear primary inactivation models of vacuum-steam-treated macadamia nuts and dried apricots (whole and 
pieces) were constructed (Table 1). For both dried apricot halves and pieces, the Gompertz model, in general, best described the 
bacterial inactivation for each bacterium based on RMSE and AIC. Alternatively, bacterial inactivation models for whole macadamia 
nuts and pieces were best fit by a Weibull model with upward concavity. The fits of first-order models for both food types were not 
vastly different from those of the Weibull and Gompertz, but they were not ranked as best fit in any case. 

Models from the larger food particles (whole macadamia nuts, dried apricot halves) were used to predict times for 3-log bacterial 
reductions, which were compared against the observed times required for 3-log bacterial reductions on the corresponding smaller food 
particles (macadamia nut pieces, dried apricot pieces) (Figs. 1–3). Raw and relative errors were determined (Figs. 1–3 and Supple-
mental Tables 2–4). Inactivation models for apricot halves had greater prediction accuracy than those of macadamia nuts overall. First- 
order models of dried apricot halves were accurate predictors of 3-log reductions of respective bacteria on apricot pieces 100% of the 
time (Fig. 1, Supplemental Table 2), Weibull models accurately predicted reductions on apricot pieces 63% of the time (Fig. 2, 
Supplemental Table 3), and Gompertz models accurately predicted times for 3-log reductions only 50% of the time (Fig. 3, Supple-
mental Table 4). All 3-log reduction predictions from macadamia nut pieces were in the fail-safe interval for reductions on macadamia 
nut pieces (<-0.30; Figs. 1–3, Supplemental Tables 2–4). 

Heat maps displayed the relative error calculated from each model combination to visually highlight comparisons in the predicted 
and observed values (Figs. 4–6), showing fail-safe (green) to fail-dangerous (red) relative error values regardless of model fit. At both 
72 and 82 ◦C, first-order model predictions between apricot halves, apricot pieces, and macadamia nut pieces were relatively similar 
and showed that times required to reduce bacteria by 3-log were close to one another, yielding small relative error (evident by green- 
white colors, Fig. 4). Red-orange colors were primarily associated with whole macadamia nut models and Pediococcus models, both of 
which required longer steam treatments for 3-log reductions and subsequently had high relative error. Heat maps of predicted values 
from Weibull and Gompertz models (Figs. 5 and 6) had similar trends and groupings, though with slightly less accuracy than what was 
observed from the first-order models. 

Fig. 2. Predicted and observed times from Weibull models of microbial inactivation for macadamia nuts and pieces and apricot halves and pieces. 
Comparisons of predicted vs. observed times for 3-log reductions were made by Weibull models of Salmonella, Pediococcus, L. monocytogenes, and 
E. coli on whole macadamia nuts (predicted) vs. macadamia nut pieces (observed) and apricot halves (predicted) vs. apricot pieces (observed) 
vacuum-steamed at 72 and 82 ◦C. * indicates relative error values within the acceptable range (− 0.30-0.15). 

J.C. Acuff et al.                                                                                                                                                                                                        



Heliyon 9 (2023) e17893

6

Fig. 3. Predicted and observed times from Gompertz models of microbial inactivation for macadamia nuts and pieces and apricot halves and pieces. 
Comparisons of predicted vs. observed times for 3-log reductions were made by Gompertz models of Salmonella, Pediococcus, L. monocytogenes, and 
E. coli on whole macadamia nuts (predicted) vs. macadamia nut pieces (observed) and apricot halves (predicted) vs. apricot pieces (observed) 
vacuum-steamed at 72 and 82 ◦C. * indicates relative error values within the acceptable range (− 0.30-0.15). 

Fig. 4. Heat maps of relative error between predicted and observed times from first-order models of microbial inactivation. Predicted (vertical) and 
observed (horizontal) times were those required for 3-log reductions of microorganisms based on first-order model parameters 72 and 82 ◦C 
treatments. The acceptable relative error ranged from − 0.30 (fail-safe; green) to 0.15 (fail-dangerous; red). Nomenclature of each line dictates 
predicted or observed, type of food, and microorganism (e.g., P:MacaPieSal is predicted time for 3-log reduction of Salmonella on macadamia nut 
pieces.). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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4. Discussion 

The heterogeneity of the low-water activity food category thwarts goals of a “one-size-fits-all” model for foods with even minimal 
differences. For example, wheat flour has been extensively used as the food matrix in bacterial inactivation studies due to recent 
outbreaks, but model fits for inactivation data vary greatly across studies [18,27,28]. These variances may be due to slight differences 
in the food matrices used in the study, strain type, water activity level, heating method or other experimental methods. The present 
study controlled for many of these factors by using the same bacterial strains, foods, and treatment conditions, with only the size of the 

Fig. 5. Heat maps of relative error between predicted and observed times from Weibull models of microbial inactivation. Predicted (vertical) and 
observed (horizontal) times were those required for 3-log reductions of microorganisms based on Weibull model parameters 72 and 82 ◦C treat-
ments. The acceptable relative error ranged from − 0.30 (fail-safe; green) to 0.15 (fail-dangerous; red). Nomenclature of each line dictates predicted 
or observed, type of food, and microorganism (e.g., O:MacaNutLmo is observed time for 3-log reduction of L. monocytogenes on whole macadamia 
nuts.). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 6. Heat maps of relative error between predicted and observed times from Gompertz models of microbial inactivation. Predicted (vertical) and 
observed (horizontal) times were those required for 3-log reductions of microorganisms based on Gompertz model parameters 72 and 82 ◦C 
treatments. The acceptable relative error ranged from − 0.30 (fail-safe; green) to 0.15 (fail-dangerous; red). Nomenclature of each line dictates 
predicted or observed, type of food, and microorganism (e.g., O:ApriPieEco is observed time for 3-log reduction of E. coli on apricot pieces.). (For 
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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particle varying between predicted and observed values. The relative error provided insight into the application of models from large 
food particles to evaluate if they could be used beyond their original design, which showed that the predictive power of the models was 
not consistent. 

Results indicated that models were conservative and predicted many fail-safe times, but were limited in accuracy in these instances. 
Table 1 highlights the best fit model with bolded values, which were different for the fruits and nuts. Distinct trends of model fit were 
observed on the basis of macadamia nut vs. apricot, but trends were not observed based on particle size, microorganism type, or 
treatment temperature. The heatmaps provided visualization of certain trends. Predicted and observed values were grouped on 
heatmaps based on microorganism (“Eco, Lmo, Ped, Sal”), which highlighted the success of Pediococcus models in predicting con-
servative times for 3-log reductions for all pathogens (numerous green-white squares, emphasized with black outlines). For example, 
the Gompertz Pediococcus inactivation models for apricot halves predicted fail-safe times of 72 and 82 ◦C steam treatments for 3-log 
reductions of every pathogen on apricot halves, apricot pieces, and macadamia nut pieces (Figs. 3 and 6). 

Dried apricot halves models, particularly first-order, had significant success in providing accurate or fail-safe estimates for 3-log 
bacterial reductions on apricot pieces. Whole macadamia nut models were less accurate, but were far more conservative, providing 
overestimated times (fail-safe) necessary for 3-log reductions on macadamia nut pieces, potentially resulting in a safer but over- 
processed product. The reason for excessively longer treatments is not fully understood since the whole macadamia nuts and pieces 
had comparable composition with size being the only difference (confirmed by analyses). However, the inoculation of the macadamia 
nut pieces was slightly altered. Whereas the apricot halves were inoculated and then cut into smaller pieces, the macadamia nut pieces 
were purchased as smaller particles and inoculated without further fabrication for logistical purposes. 

Models typically describe single pathogen population inactivation, but LWAF have been recalled for contamination of a variety of 
pathogens, given their agricultural origin and processing environments. Ergo, it would be advantageous for models to predict inac-
tivation of a surrogate for multiple pathogens. The presented work demonstrated that while the reductions of pathogens were not 
usually significantly different from one another, the surrogate models could conservatively predict fail-safe times necessary for re-
ductions of all tested pathogens. Models describing pathogen inactivation on low-water activity foods (LWAF) have the additional 
difficulty characterizing the degree of increased thermal resistance induced by desiccation [29–33]. Additionally, LWAF are a broad 
category with a variety of compositions, which can reduce thermal treatment efficacy [34–37], Therefore, thermal inactivation 
processes should target multiple pathogens or a surrogate for broader application. 

Criticisms of using predictions from primary models highlight limited application, as inactivation estimates could be inaccurate if 
variabilities (such as changes to pH, temperature, water activity, heterogenous contamination) are not considered [38,39]. Primary 
models constructed of whole macadamia nuts and dried apricot halves were generally accurate or excessively conservative in pre-
dicting times necessary for 3-log bacterial reductions on their smaller particle counterparts. Moreover, food size and composition 
impacted inactivation trends and predictions. The information presented in the current study can guide researchers in building sec-
ondary models, which are more robust with extensive data collection to describe the effects of processing conditions and intrinsic 
factors (pH, water activity, particle size, composition) on the model parameters [20,40]. In conclusion, using models that predict a 
validated surrogate’s inactivation would be a prudent approach for LWAF processors designing thermal inactivation treatments. 

5. Conclusions 

Low-temperature vacuum-assisted steam processing is effective in reducing pathogens from macadamia nuts, dried apricot halves, 
and their respective pieces. Model fits were largely impacted by the food composition, and possibly particle size in the case of mac-
adamia nuts. Furthermore, comparing predictions and observations of 3-log bacterial reductions from each model emphasized the 
utility of a surrogate. If the surrogate is validated properly, its model may offer increased applicability for designing processes that 
inactivate multiple target pathogens. 
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