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ABSTRACT

Drug combinations have demonstrated high efficacy
and low adverse side effects compared to single
drug administration in cancer therapies and thus
have drawn intensive attention from researchers
and pharmaceutical enterprises. Due to the rapid
development of high-throughput screening (HTS),
the number of drug combination datasets available
has increased tremendously in recent years. There-
fore, there is an urgent need for a comprehensive
database that is crucial to both experimental and
computational screening of synergistic drug com-
binations. In this paper, we present DrugCombDB,
a comprehensive database devoted to the curation
of drug combinations from various data sources: (i)
HTS assays of drug combinations; (ii) manual cura-
tions from the literature; and (iii) FDA Orange Book
and external databases. Specifically, DrugCombDB
includes 448 555 drug combinations derived from
HTS assays, covering 2887 unique drugs and 124
human cancer cell lines. In particular, DrugCombDB
has more than 6000 000 quantitative dose responses
from which we computed multiple synergy scores
to determine the overall synergistic or antagonis-
tic effects of drug combinations. In addition to the
combinations extracted from existing databases, we
manually curated 457 drug combinations from thou-
sands of PubMed publications. To benefit the further
experimental validation and development of compu-
tational models, multiple datasets that are ready to
train prediction models for classification and regres-
sion analysis were constructed and other significant
related data were gathered. A website with a user-
friendly graphical visualization has been developed
for users to access the wealth of data and down-

load prebuilt datasets. Our database is available at
http://drugcombdb.denglab.org/.

INTRODUCTION

Although ‘targeted’ drugs have made remarkable advances
in the treatment of cancer patients, their clinical benefits are
greatly limited due to natural and acquired drug resistance
of cancer cells (1). The endogenous mechanism of drug re-
sistance lies in compensatory signal transduction and cross-
talk among pathways resulting from long-term evolution
(2,3). ‘One-target’ drug treatments often lead to the acti-
vation of the compensatory signaling pathway that main-
tains the growth and survival of tumor cells (4). In con-
trast, drug combinations have demonstrated great advan-
tages in overcoming drug resistance and improving thera-
peutic efficacy in cancer therapy and have thus drawn in-
creasing attention from researchers and pharmaceutical en-
terprises (5,6). There is an emerging trend shifting from
single-target to multitarget and combination paradigms in
drug discovery (7). However, despite the increasing number
of successful drug combinations, most of them are discov-
ered by clinical experience or chance (6,7). Therefore, there
is an urgent demand for a rational and systematic method-
ology to screen cancer-specific and sensitive combinatorial
drugs for cancer therapy (8–10). With insight into the en-
dogenous mechanism and pathway interdependencies criti-
cal for cancer cell proliferation and survival, we are able to
design multiple agents to synergistically inhibit pathogenic
pathways (11,12). However, wet-lab experiments for dissect-
ing the cellular mechanism of cascading signal transduc-
tion and signaling networks are cost-intensive and time-
consuming (13).

Due to the rapid development of high-throughput screen-
ing (HTS), it is possible to simultaneously evaluate the sen-
sitivities of drug combinations to hundreds of cancer cell
lines (14). As a result, the number of experimental screen-
ing datasets available has increased tremendously in recent
years, especially the number of dual-agent combinations in-
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volving many FDA-approved drugs (15). These large-scale
datasets of drug combinations could greatly benefit both the
academic and industrial communities. However, the exist-
ing database DCDB (16), which has not been updated since
2014, covers a relatively small number of drug combina-
tion annotations extracted from FDA Orange Books and
records of clinical trials. The web server DrugComb (re-
leased during the preparation of our database) focuses on
the computation and visualization of the synergy score of
drug combinations (17). Therefore, there is an urgent need
for a comprehensive database to collect and integrate the in-
creasing numbers of datasets, which is beneficial to both the
experimental and computational screening of drug combi-
nations.

In this paper, we present DrugCombDB, a comprehen-
sive database dedicated to collecting drug combinations
from various data sources. Concretely, our combination
database covers (i) HTS assays, (ii) manual curations from
the PubMed literature, (iii) FDA-approved and investiga-
tional combinatorial therapies and (iv) failed drug com-
binations. The current release of DrugCombDB includes
6055 926 quantitative dose responses from which we com-
puted multiple synergy scores to determine the overall syn-
ergistic or antagonistic effects of drug combinations. These
synergy scores, determined based on different models such
as the Bliss and Loewe independence models, allow us to
build quantitative training sets. Particularly, we merely fo-
cused on the overall probability of synergistic or antagonis-
tic effect that combinations have, such that the validation
of specific dosage with the optimal effect is encouraged in
further research. There are also 457 drug combinations that
have been manually curated from more than 6000 PubMed
publications. In total, DrugCombDB includes 448 555 drug
combinations covering 2887 unique drugs and 124 hu-
man cancer cell lines. To facilitate the downstream usage
of our data resource, we have prepared multiple datasets
that are ready for building prediction models for classifica-
tion and regression analysis. A website with user-friendly
graphical visualization has been developed for users to ac-
cess the wealth of data. Users can input a drug of interest
to retrieve associated drug combinations, as well as dose–
response landscapes, supporting evidence, drug targets and
other useful information.

To the best of our knowledge, DrugCombDB is the first
comprehensive database with the largest number of drug
combinations to date. We believe that it would greatly facil-
itate and promote the discovery of novel synergistic drugs
for the therapy of complex diseases and cancers. In fact, our
database has received extensive attention since our bioRxiv
preprint was released in December 2018. We have worked
continuously to add more data to DrugCombDB, and the
number of experimental dose responses has increased more
than 10-fold since the release of the first version of the
database.

DATA SOURCES

HTS assays

HTS techniques have been widely used to measure the
quantitative dose responses of cancer cells to various drug

combinations at different concentrations; therefore, dose–
response landscapes were constructed and used to evaluate
the combinatorial efficacy (synergy, additivity and antago-
nism) of drug combinations. For convenience, we introduce
the definition of ‘combination test’, which is actually the
dose response level (often represented by the IC50 value) of
cancer cells to a certain drug combination at a given con-
centration, to represent the volume of the datasets in the
following context. DrugCombDB includes dozens of large-
scale wet-lab experimental datasets collected from publica-
tions and public resources. Most datasets come from drug
combination screening projects funded by the National In-
stitutes of Health (NIH), while others are collected from
publications that focus on the discovery of combinatorial
therapies.

A major part of the experimental data comes from the
data portals run by the NIH. Thanks to the effort of
the NCI-ALMANAC project (A Large Matrix of Anti-
Neoplastic Agent Combinations) (18), we downloaded the
large-scale drug combination dataset available on the Na-
tional Cancer Institute (NCI) data portal. This dataset in-
cludes a 3 × 3 dose–response matrix for each of 311 604
dual-agent combinations on 60 well-characterized human
tumor cell lines. In total, there are 2873 514 experimen-
tal data points integrated into DrugCombDB. Additionally,
the NCATS Matrix run by the NIH has deposited more
than 10 drug combination screening datasets, some of which
have been published. For example, the My-T-BCR super-
complex project carried out experiments to seek synergis-
tic agents of ibrutinib (BTK inhibitor) from 30 mTOR in-
hibitors to treat diffuse large B-cell lymphoma (DLBCL).
Their experiments output a 10 × 10 dose–response matrix
for each drug combination on the TMDB cell line at two
time points, resulting in 6000 combination tests. Addition-
ally, the rhabdomyosarcoma project employed screening ex-
periments to find small-molecule agents used in combina-
tion with trametinib to decrease rhabdomyosarcoma cell vi-
ability and slow tumor growth (19). They designed a 10 ×
10 dose–response block for each candidate of 96 combina-
tions on three cell lines, thereby generating 28 800 combi-
nation tests. In addition, quite a few datasets that have not
been published but have been submitted to the NCATS data
portal are also integrated into DrugCombDB.

Experimental datasets collected from publications have
also contributed substantially to our database. One large-
scale dataset comes from an unbiased oncology compound
screening experiment that was designed to identify combi-
nation strategies (20). This HTS was performed on a fully
automated GNF PolyTarget robotic platform, where cancer
cells were treated with a 4 × 4 matrix of drug concentration
combinations. Based on the cell viability measured using
CellTiter-Glo cell viability reagent (Promega), the highest
single agent (HSA) and Bliss independence models were ap-
plied to determine the combinatorial efficacy. In total, this
assay yielded 1475 328 combination tests of 92 208 dual-
drug combinations over 39 diverse cancer cell lines. Another
HTS platform was adopted to uncover therapeutic combi-
nations for the activated B-cell-like subtype (ABC) of DL-
BCL (21). This assay aimed to seek partner agents in collab-
oration with ibrutinib, a Bruton’s tyrosine kinase inhibitor,
to treat ABC DLBCL. In total, 466 different agents were
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evaluated in combination with ibrutinib using 6 × 6 dose–
response blocks, which outputs a total of 16 776 combina-
tion tests. Some relatively small datasets are also integrated
into DrugCombDB. For example, Mohammad et al. ex-
plored the adaptive resistance of melanoma cells to RAF
inhibitor (22) covering 25 different agents (5 × 4 dose–
response block).

AstraZeneca–Sanger drug combination dataset

The well-known pharmaceutical enterprise AstraZeneca
partnered with the European Bioinformatics Institute, the
Sanger Institute, Sage Bionetworks and the distributed
DREAM community to launch the AstraZeneca–Sanger
Drug Combination Prediction Challenge in 2015, to learn a
set of general patterns or rules that could be used to predict
synergistic behaviors in new compounds or disease contexts
(23). As the data provider of the challenge, AstraZeneca
released 11 576 experimentally tested drug combinations
measuring cell viability over 118 drugs and 85 cancer cell
lines. To extend the coverage of our database, we consulted
with the data provider and obtained permission to integrate
this large-scale dataset into DrugCombDB.

In summary, DrugCombDB contains 6055 926 dose
combination tests covering 448 555 dual-drug combina-
tions, 2887 unique drugs and 124 cancer cell lines. Detailed
data statistics are outlined in Table 1.

Manual literature curations

Many drug combinations under clinical and preclinical tri-
als have been reported in the PubMed literature, and a large
number of research papers have also investigated drug com-
binations with potential clinical effects evaluated by low-
throughput biochemical assays, such as in vitro models and
flow cytometry. To extend the coverage of our database,
we work hard to manually review thousands of articles
from PubMed to extract literature-supported drug com-
binations. Specifically, using ‘drug combination(s)’, ‘com-
bination drug(s)’, ‘combinatorial drug(s)’ and ‘synergis-
tic drug(s)’ as query keywords, we searched the PubMed
database and obtained 8123 distinct publications that
included at least one of these keywords in their titles
or abstracts. Subsequently, we adopted PubTator (24), a
web-based tool for facilitating manual literature curation
through powerful text-mining techniques, to annotate the
abstracts of these publications. Taking the PubMed ID
list of the filtered publications as the input, PubTator
marks discriminative conceptual keywords such as ‘gene’,
‘chemical’, ‘disease’, ‘species’ and ‘mutations’ in differ-
ent colors. Subsequently, we manually reviewed the high-
lighted concepts and deeply investigated the context to iden-
tify therapeutically efficient drug combinations reported in
these publications. Table 2 shows the number of retrieved
PubMed publications corresponding to different keywords,
as well as the number of final curated drug combinations,
involved single agents and diseases. It is worth noting that
these manually curated drug combinations from publica-
tions will be highly promising for developing combinato-
rial therapies for cancer treatment following approval for
clinical use and therefore greatly enrich the value of our
database.

External databases

Several existing databases contain additional numbers of
drug combinations, such as DCDB (16), DrugCentral (25),
TTD (26), ASDCD (27) and DrugBank (28). DCDB 2.0
also collects 1363 drug combinations extracted from the
FDA Orange Book (330 approved and 1033 investigational,
including 237 unsuccessful usages), involving 904 individual
drugs and 805 targets. DrugCentral latest version also in-
cludes 7621 combination sets covering 970 unique active in-
gredients with pharmaceutical formulations extracted from
FDA Orange Book. The latest version of the TTD includes
72 pharmacodynamic synergistic combinations. ASDCD
is a database of antifungal synergistic drug combinations,
from which we collected 548 pairwise validated combina-
tions. DrugBank also provides a dataset containing 13 397
clinically reported adverse drug combinations categorized
as antagonistic. We removed duplicates among these exter-
nal databases, and provided download links in our website.

Multiple-agent combinations

Due to the limitations of HTS platforms and the combina-
torial explosion of three or more component agents, most
experiments consider only dual-agent combinations. How-
ever, complicated drug combinations mean more targets,
which potentially improve efficacy and overcome resistance
in the treatment of complex diseases and tumors (29). Dur-
ing the process of data collection, we also collected a few
combinations composed of multiple agents reported by bio-
chemical experiments or clinical trials. To expand the di-
mension of DrugCombDB, we also integrated these data
into our database for potential usage.

DATA PROCESSING AND INTEGRATION

Identifier conversion

Because drug combinations are collected from various re-
sources, the identifiers of drugs and cell lines vary across the
different sources. For example, some experimental datasets
use canonical drug names, while others use custom chemical
identifiers. Therefore, the drug identifiers must be made uni-
form so that we can integrate these datasets. We choose the
PubChem compound identifiers (CIDs) as uniform identi-
fiers because they are widely used and easily linked to ex-
ternal public resources. Specifically, CIDs enable us to fetch
detailed information, such as chemical structures, SMILES
and pharmacological actions, from STITCH (30), Pub-
Chem (31) and DrugBank (28). We transferred the drug
names to CIDs using the PubChem identifier exchange ser-
vice. If one drug name corresponded to multiple CIDs,
we chose the canonical name, i.e. the shortest CID code.
Finally, for those names that could not be converted by
the identifier exchange service, we manually retrieved them
through search engines and other databases to ensure that
these drugs were correctly converted to PubChem CIDs.

Similarly, the cell line identifiers are also inconsistent
among different datasets. We mapped each cell line to COS-
MIC ID using COSMIC supplementary files (32), as well as
Cellosaurus ID run by the ExPASy resource portal (33), so
that we can associate cancer cell lines with external public
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Table 1. Statistics of drug combinations collected from HTS assays

Dataset name Landscape Combination test Cell line Agent Block size PMID

Adult T-cell leukemia/lymphoma 466 16 776 1 464 6 × 6/10 × 10
DLBCL 96 9600 1 17 10 × 10
Diffuse intrinsic pontine gliomas 8703 450 908 2 2441 6 × 6/10 × 10
Ebola 236 8496 2 17 6 × 6 29939303
Ewing’s sarcoma 5952 219 904 2 1910 6 × 6/10 × 10
GBM oncospheres 482 20 360 1 31 6 × 6/10 × 10
Hodgkin’s lymphoma 2648 110 688 4 1910 6 × 6/10 × 10
MDR-CS 68 6800 2 19 10 × 10
Malaria 13 325 669 716 3 224 6 × 6/10 × 10
Rhabdomyosarcoma 288 28 800 3 27 10 × 10 29973406
CEPT 412 41 200 1 30 6 × 6/10 × 10
ALMANAC (NCI) 311 604 2873 514 60 105 3 × 3/3 × 5 28446463
O’Neil 92 208 1475 328 39 38 4 × 4 26983881
Mathews 466 16 776 1 464 6 × 6 24469833
Mohammad 25 500 5 6 5 × 4 28069687
AstraZeneca DREAM challenge 11 576 106 560 85 118 6 × 6 31209238

Table 2. Statistics of drug combinations manually curated from the PubMed literature

Search keyword Retrieved publication Drug combination Agent Disease

Drug combination(s) 6531 179 688 242
Synergistic drug(s) 364 154
Combinatorial drug(s) 166 43
Combination drug(s) 1537 81

resources. COSMIC ID allows users to obtain drug sensi-
tivity profiles of cancer cell lines from the GDSC (34), while
Cellosaurus IDs are linked to their corresponding diseases
via ExPASy.

Computation of synergy scores

It is well known that the efficacy of drug combinations may
be synergistic or antagonistic, depending on whether cancer
cells are inhibited or promoted to proliferation compared
to the additive effect of independent treatments with single
agents. If the percentage of inhibited or killed cancer cells is
greater than expected, the drug combinations are classified
as synergistic. On the other hand, antagonism is determined
if more adverse effects are observed than expected. Mathe-
matically, the combinatorial effect can be determined by the
deviation of the dose–response curves from the expectation
effect calculated based on a reference model. The Loewe
additivity and Bliss independence models are the most fre-
quently used of these reference models. Based on the raw
dose–response landscape, we calculated multiple quantita-
tive synergy scores based on different models, including the
HSA, Loewe additivity, Bliss independence and zero inter-
action potency (ZIP).

For dual-drug combinations, the HSA model reflects the
extent to which the resulting effect of a drug combination
(EAB) is greater than the maximum effect produced by in-
dividual component drugs A (EA) and B (EB) (35), and its
combinatorial index corresponding to one combination test
can be calculated as follows:

EHSA = EAB

max(EA, EB)
. (1)

Note that Equation (1) actually computes the combinato-
rial index corresponding to one combination test of a sin-
gle dose–response landscape. The final HSA synergy score

is defined as the mean combination index over all combi-
natorial dose responses except for those treated by a single
agent.

The Bliss independence model (36) assumes that drugs
act independently so that neither interferes with each other
but each contributes to the final effect. The combination in-
dex of the Bliss model is expressed as the ratio of the ob-
served combination effect to the expected additive effect:

EBliss = EA + EB − EA × EB

EAB
. (2)

The Loewe additivity model also assumes that the effects
of two drugs are independent. However, it also relies on
both the dose-equivalence principle and the mimic combi-
nation principle (the individual drug dose responses must be
monotonic). Furthermore, the Loewe additivity also allows
us to complement the algebraic analysis with an intuitive,
flexible and widely accepted graphical approach known as
isobologram analysis (37). The Loewe combination index is
defined as follows:

ELoewe = Emin + Emax[(dA + dB)/m]λ

1 + [(dA + dB/m)]λ
, (3)

where dA and xB are the doses of drug A and drug B, respec-
tively, Emin and Emax are the minimal and maximal effects of
the drug combination (0 ≤ Emin < Emax ≤ 1), respectively,
m is the dose that produces the midpoint effect of Emin +
Emax, i.e. the relative EC50 or IC50, and � (� > 0) is the slope
of the curve.

In addition to the three classical reference models men-
tioned earlier, we also adopted a novel reference model
named ZIP to compute another synergy score. The ZIP
model has been demonstrated to capture the drug interac-
tion relationships by comparing the changes in the potency
of the dose–response curves between individual drugs and
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their combinations (38). ZIP is a response surface model
that combines the advantages of the Loewe and the Bliss
models, which proposes a delta score to characterize the
synergy landscape over the full dose–response matrix. The
ZIP model assumes that two noninteracting drugs are ex-
pected to incur minimal changes in their dose–response
curves. A delta score is computed to quantify the deviation
from the expectation of ZIP for a given dose pair and uti-
lizes the average delta score over a dose–response matrix as
a summary interaction score for a particular drug combina-
tion. As a result, the ZIP model is perfectly compatible with
high-throughput drug combination screening data. The ZIP
combination index is defined as follows:

EZIP = (dA/mA)λA

1 + (dA/mA)λA
+ (dB/mB)λB

1 + (dB/mB)λB

− (dA/mA)λA

1 + (dA/mA)λA
× (dB/mB)λB

1 + (dB/mB)λB
,

(4)

where dA and dB are the doses of drug A and drug B, respec-
tively, mA and mB, respectively, are the doses that produce
the midpoint effect when using drug A at dA or drug B at
dB individually, and �A and �B are the slopes of the curves
induced by the individual drugs, respectively.

Note that the combination index computed by each ref-
erence model accounts for only one combination test. The
final synergy score is actually the mean combination index
over all dose responses except for the single-agent treatment
ones. In our implementation, we applied the R package Syn-
ergyFinder (39) to calculate the quantitative synergy scores
of the four reference models.

Normalization of dose responses

Due to the heterogeneity of the different platforms on which
the HTS assays were performed, the magnitudes of the dose
response levels vary across the different experimental proto-
cols and techniques. To facilitate downstream usage of our
database, we normalized the dose response levels to provide
coincident and comparable therapeutic efficacy over differ-
ent datasets. Considering that cell viability and apoptosis
rate upon treatment are the most commonly used measures
in drug sensitivity assays, we computed the inhibition rate
(Rinhibit) of cancer cells to drug treatments as a uniform mea-
sure using the min–max normalization method:

Rinhibit = max(viability) − viability
max(viability) − min(viability)

, (5)

Rinhibit = apoptosis − min(apoptosis)
max(apoptosis) − min(apoptosis)

. (6)

Min–max normalization was applied to each separate
dataset before integration. As a result, 1 represents the high-
est sensitivity and 0 represents the lowest sensitivity. Be-
cause the normalized inhibition rates range from 0 to 1, this
is very favorable for downstream usage. In fact, the normal-
ized inhibition rates over different datasets greatly expand
the volume of data for modeling techniques such as regres-
sion analysis, especially taking different drug concentration
combinations into account.

Classification of synergism and antagonism

Theoretically, drug combinations can be roughly classified
as synergistic and antagonistic according to the aforemen-
tioned synergy scores, i.e. the combination of drugs is more
or less effective in killing cancer cells than addition of ef-
ficacy induced by independent administration of individual
drugs. Synergism and antagonism can be easily decided with
a cutoff of zero. The higher the scores, the more synergistic
the combination, and vice versa. However, as shown in Fig-
ure 1, the synergy scores derived from the four synergy scor-
ing models follow nearly normal distributions, with most
samples located close to zero, indicating that a zero cutoff
cannot clearly discriminate the combinatorial effect. Fur-
thermore, the synergy scoring models are not sufficiently ro-
bust to the noise in HTS experiments; therefore, drug com-
binations with synergy scores located near zero are difficult
to classify. To tackle this dilemma, the z-score is often com-
puted, and then relatively strict thresholds are used to ex-
clude low-confidence samples. Here, we adopted the quar-
tile as the threshold; namely, approximately one-quarter of
the combinations with higher scores and one-quarter of the
combinations with lower scores were classified as synergistic
and antagonistic. For the Loewe synergy scores, we notice
that its distribution is significantly biased to the negative
side. To balance the number of synergistic and antagonistic
samples, we adjust its threshold for antagonism to a rela-
tively lower level. The thresholds used in classifying each
type synergy score are highlighted by blue vertical bars, as
shown in Figure 1.

Furthermore, we took into account all four synergy
scores together and classified the drug combinations based
on a majority voting strategy. For a particular drug combi-
nation, if and only if each of the four synergy scores indi-
cated synergism (antagonism), it was labeled as synergistic
(antagonistic). As a result, 85 154 synergistic and 155 824
antagonistic drug combinations were filtered out. We hope
that these prebuilt datasets will facilitate bioinformaticians
to develop innovative in silico methods for the prediction
of drug combinations. Note that the prebuilt datasets men-
tioned earlier are available on the download page of our
website.

Integration of drug combination replicates

There are a number of replicates of drug combinations
within one dataset and among different datasets. It is nec-
essary to check the reproducibility of replicates before the
integration of these replicates of drug combinations. Specif-
ically, we introduced drug combination sensitivity score
(CSS) (40), which is designed to integrate the sensitivity and
dose–response synergy of combination tests, to evaluate the
reproducibility between the replicates within a dataset. Let
us take the O’Neil and NCI-ALMANAC for example, as
they are the top 2 largest datasets among the experimental
data sources. The standard deviation (SD) probability den-
sity curves of CSS scores of the replicates within O’Neil and
ALMANAC and between these two datasets are shown in
Figure 2. Note that the average SD for O’Neil (22 737 com-
binations are replicated for one or more times) is 3.44, which
is significantly lower than other two SD values, suggest-
ing a satisfactory reproducibility for the replicates within
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Figure 1. Distribution of the synergy scores computed using four reference models. Parts (A)–(D) correspond to HSA, Bliss, Loewe and ZIP, respectively.
The blue vertical bars are the quartile thresholds for the classifications used for each type of synergy score.

the O’Neil dataset. In addition, we find that all the repli-
cates were assayed under same dosages within the O’Neil
dataset; therefore, each replicate can be regarded as the eval-
uation assay with same full dose–response matrix. To obtain
a unique synergy score for each drug combination, we cal-
culated the average inhibition levels for same drug pair on
same type of cancer cell line to get the dose–response ma-
trix.

The average SD of replicate within ALMANAC dataset
(2091 combinations have replicates) is 11.56, and the av-
erage SD of the between-study replicates (352 combina-
tions) is 13.867, which are both higher than that of O’Neil
dataset. We subsequently went through the raw dose re-
sponse levels of these combinations, and found that a ma-
jority of the assayed doses of these replicates are different
from each other, which may result in the relatively unsta-
ble synergy scores. Note that the average SD values within
ALMANAC and between-study replicates are still signifi-
cantly lower than the SD (24.76) of CSS of the union set of
O’Neil and ALMANAC, suggesting that the CSS scores of
replicates are significantly closer than random samples. As
a result, we still believe that the reproducibility is accept-
able. Considering the small quantity of these combinations
in ALMANAC and between studies, we do not combine the
synergy score of these replicates, keeping them for further
assessment.

FUNCTIONALITIES

A website with a user-friendly interface is provided to
make full advantage of the wealth of data. We have devel-

oped a few functional modules, including ‘search’, ‘filter-
ing’, ‘graphical visualization’ and ‘download’ modules. The
search module takes either a single drug or drug combina-
tion of interest as input to search the drug combinations,
and the search results are presented in a tabular viewer, as
shown in Figure 3. Each row of the table lists a drug combi-
nation, the individual agents, the cell line, multiple synergy
scores and the data sources. Note that the drug combina-
tion is represented by separating the individual drug names
using a minus sign. The tabular viewer functions as a portal
to explore more detailed information related to drug combi-
nations. First, to help understand the pharmacological ac-
tions of the drug combination, we display their common
target proteins that are collected from various data source
of drug–target interactions. DrugBank (28) provides targets
of thousands of FDA-approved and experimental drugs.
STITCH (30) gives comprehensive drug–target networks
that combine multiple supporting evidences and compute
a confidence score for each drug–target interaction. In par-
ticular, recent studies have built the mapping of oncology
drugs and their efficacy targets (41). For example, Santos
et al.’s review paper released 4631 drug–target relationships
between 1578 unique drugs and 667 human biomolecules
(41), and each relationship has been annotated with mech-
anism of action, protein homologous families and modula-
tion. Lin et al. adopted CRISPR–Cas9 mutagenesis to in-
vestigate whether a set of cancer drugs really target their pu-
tative targets or not (42). We integrate all these drug–target
relationships so that we can search common targets of in-
dividual drugs in a combination set. Specifically, users can
click the drug combination item to browse the top 10 tar-
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Figure 2. The probability density curve plot of replicated combinations.

get proteins in common between the individual drugs in a
graphical network viewer, in which rectangles represent the
drugs and circles represent their common target proteins.
The table located on the right-hand side shows the prop-
erties of the component drugs, including molecular weight,
chemical structure, SMILES and external links to STITCH
and PubChem. The full list of common target proteins of
the drug combinations, together with the confidence scores
derived from STITCH, is shown in Figure 4. Also, we high-
light the drug targets using differently colored labels cor-
responding to different data sources supporting the drug–
target relationships. Users can also click on the individual
drugs to show their detailed information and full list of tar-
gets in the form of both graphical network graphs and tab-
ular viewers. Particularly, to encourage further research, we
have exploited DrugCentral (25) to annotate the drugs in
our database, and the label of ‘approved’ or ‘investigational’
will be displayed beside the drug name. The cell line names
link to pages that show more details about the cell line and
associated disease. In particular, the sensitivities of the cell
line to the individual drugs are collected from GDSC and
shown in a scatter plot, in which the sizes of the circles are
proportional to the sensitivity measures (IC50 values), as
shown in Figure 5. Mousing over a circle will show details
about the cell line and sensitivity. It is worth noting that this

function enables the user to conduct a comparison of ther-
apeutic efficacy between the drug combination and single-
component drugs.

Moreover, users can click on a synergy score to explore
the raw dose–response landscape. The raw dose responses
are collected from different HTS assays, and the block sizes
are dependent on the HTS platform used and the experi-
mental design. For instance, Figure 6 shows the heatmap of
the raw dose–response matrix of the combination of chlo-
rambucil and thioguanine on the cell line ACHN. Each cell
of the heatmap represents the viability (e.g. IC50) of the can-
cer cells when treated by the drug combination at the corre-
sponding concentrations of the single agents, and its color
depth corresponds to the sensitivity value. Meanwhile, the
� Bliss matrix shows the score matrix computed using the
Bliss independence model.

The ‘filtering’ module helps users rapidly find drug com-
binations regarding diseases of interest. With the filter
panel, user can choose one or more tissues to highlight as-
sociated cancer cell lines and then check the cell lines to fil-
ter drug combinations within the search results. To facili-
tate rapid input of drug names, an ‘autocomplete’ function
was implemented to provide contextual completion func-
tionality for custom text matches based on user input. Ev-
ery time a user types a preconfigured special character, he
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Figure 3. Screenshot of a tabular view of drug combinations, as well as the search and filtering panels.

Figure 4. Common targets of the drug combination MK-4827 and metformin in a graphical network viewer. The table on the right-hand side shows the
chemical properties of the single agents.
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Figure 5. Screenshot of the scatter plot of the drug sensitivity of the cancer cell line to the individual drugs. Note that the drug sensitivity data come from
the GDSC and that the sizes of the circles correspond to the inverse of the log IC50 values.

Figure 6. Heatmap of the raw dose–response landscape (A) and � Bliss matrix (B) of the combination of drugs chlorambucil and thioguanine on cell line
ACHN.

or she will obtain indications about available autocomplete
suggestions displayed in a dedicated drop-down window. In
addition, with the ‘ranking’ function of the tabular viewer,
users can easily select drug combinations with high sensitiv-
ity toward the cancer cells of interest with respect to certain
types of synergy scores, such as Bliss, Loewe or ZIP.

DrugCombDB also aims to help the academic and in-
dustrial community obtain our datasets for further analy-

sis, such as wet-lab screening experiments and in silico pre-
diction algorithms. Therefore, we developed a ‘download’
page through which the user can obtain any dataset of in-
terest. For example, all drug combinations with quantita-
tive synergy scores can be downloaded and classified us-
ing custom thresholds into synergism and antagonism. Our
prebuilt sets of drug combinations already categorized into
synergism and antagonism according to synergy scores can
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also be obtained. To facilitate the construction of a gold
standard set of drug combinations, all FDA-approved drug
combinations have been released. Moreover, the literature-
supported and clinically tested drug combinations are also
available. We expect that the in silico prediction of synergis-
tic drug combinations or preclinical experiments may ben-
efit from our datasets.

DISCUSSION AND CONCLUSION

With the exponentially increasing amount of pharmacology
and transcriptomic data, there is a pressing need to create
in silico methods to predict synergistic drug combinations
that can satisfy personalized cancer treatments and combat
increased drug resistance. However, the current drug com-
bination databases are limited in function when applied in
novel algorithms because of their small sizes. Therefore, the
DrugCombDB presented here can extensively facilitate the
training and validation of many advanced machine learn-
ing algorithms by heuristically providing various types of
datasets.

Our database contains a large amount of data on experi-
mental and well-documented drug combinations. We think
these data would greatly facilitate both wet-lab and in silico
researchers. First, the computed synergy score would pro-
vide effective indications on whether the drug combinations
have the potential to be developed into a viable clinical ther-
apy. We believe that our database will function to narrow
down the number of drug combinations for further experi-
mental study. However, it is worth noting that the synergy
scores only reflect the overall synergistic or antagonistic ef-
fect based on dose–response landscapes, leading to the fluc-
tuation by the changes of assayed dosage concentrations.
According to Figure 1, the distributions of all four types of
synergy scores follow nearly normal distributions with most
samples located close to zero, indicating that a zero cutoff
cannot clearly discriminate the combinatorial effect. As a
result, the weight of synergy scores in the classification of
synergistic or antagonistic is limited.

Second, we have constructed a few datasets of classifi-
cation of synergism and antagonism according to canoni-
cal thresholds to facilitate subsequent usage of the datasets.
More importantly, we have collected a large number of ex-
tra combination sets from FDA Orange Book, clinicaltri-
als.gov database and PubMed literature followed by man-
ual curations. This set of drug combinations includes high-
confidence ones compared to HTS experimental results, so
that we can build a gold standard set of drug combinations
that is particularly important in the development of com-
putational methods that highly depends on the quality of
training data.

Last but not least, we have received much attention since
the release of our database and bioRxiv preprint in De-
cember 2018. We believe that the database will greatly fa-
cilitate both the academic community and industrial enter-
prises. Future efforts include collecting more characteristic
information on cancer cell lines and pathways, such that
researchers can tap into the biological mechanisms more
deeply. Users are welcome to participate in the extension
of the project and help DrugCombDB become more com-

prehensive, which may contribute to the development of in-
novative combinatorial therapies.
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