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Abstract: Since the working environment of Multiple Unmanned Surface Vehicles (MUSVs) is
accompanied by a large number of uncertainties and various hazards, in order to ensure the collision
avoidance capability of MUSVs in complex marine environments, the perception of complex marine
environments by MUSVs is the first problem that needs to be solved. A cooperative perception
framework with uncertain event detection, cooperative collision avoidance pattern recognition and
environmental ontology model is proposed to realize the cooperative perception process of MUSVs
using ontology and Bayesian network theory. The cooperative perception approach was validated by
simulating experiments. Results show the effectiveness of cooperative perception approach.

Keywords: multiple USVs; cooperative perception; complex ocean conditions

1. Introduction

Compared with the research and development of Unmanned Aerial Vehicles (UAV)
and Unmanned Ground Unmanned (UGV), Unmanned Surface Vehicles (USV) started
late, but developed rapidly. In addition to a wide range of military applications, USV can
be used in civilian applications such as environmental surveillance, search and rescue,
navigation, and hydrographic surveys. The U.S. Department of Defense’s 2011–2034
Unmanned Systems Integrated Roadmap also identifies USV with autonomous navigation
capabilities as an important research target [1]. However, a single USV is limited by
the limited payload it can carry in the face of diverse missions. The cooperative system
composed of MUSVs, which has more robustness, mobility, flexibility, higher operational
efficiency, and wider operational range, has become a new form of USV application and
has received widespread attention [2]. The US Navy’s “Master Unmanned Vessel The US
Navy’s “Unmanned Boat Master Program” envisions a “high-return” mission scenario
for USV, and more and more heterogeneous USV with different functions will be created.
MUSVs can cooperate with UAVs, MUSVs, UGAs, etc. to form a combat system with strong
environmental awareness and multi-dimensional spatial information acquisition capability.

However, the marine environment in which USV work is accompanied by a large
number of uncertainties and various hazards, and factors such as currents, waves, tides,
internal waves, storm surges, and turbulence can change depending on the working
sea area, and these environmental factors are difficult to be predicted and accurately
described [3].The high speed motion characteristics of USV and the complexity of the
working environment bring some challenges to the research and design of MUSVs and
practical applications of MUSVs pose some challenges. Therefore, in order to ensure the
collision avoidance capability of MUSVs in complex marine environments, the sensing of
complex marine environments by MUSVs is the first problem that needs to be solved.

Sensors 2021, 21, 1657. https://doi.org/10.3390/s21051657 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-4884-0231
https://doi.org/10.3390/s21051657
https://doi.org/10.3390/s21051657
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21051657
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/21/5/1657?type=check_update&version=2


Sensors 2021, 21, 1657 2 of 17

This paper focuses on the cooperative perception technology of MUSVs in complex
sea conditions, expecting to make a breakthrough in the theory and technology of the
cooperative MUSVs, and to lay the theoretical foundation and technical support for the
research of practical USV for safe and autonomous navigation in complex sea environments
in China. Therefore, the research of this project has important theoretical significance and
practical value.

In order to navigate safely and autonomously in the marine environment, a variety
of sensors are used in the USV system to obtain environmental information. Such as GPS
(Global Positioning System), ARPA (Automatic Radar Plotting Aid), AIS (Automatic Iden-
tification System), INS (Inertial Navigation System), optical and infrared vision systems,
measuring sea winds, sea breeze, and sea breeze and other environmental sensors, and
communication systems. The USV can use GPS and INS to obtain position information, use
ARPA and AIS to identify dynamic targets and obstacles, and receive and process the tar-
gets. The USV can receive and process target and obstacle information, including its speed,
heading, bearing, etc., during navigation [4]. USV can be considered as a mobile sensing
node with multiple sensors, and the results obtained by each USV are local information
relative to the marine environment and are redundant and complementary to each other.
By collaborating with each other to sense the complex environment, we can share the sens-
ing resources of USV, reduce the uncertainty and ambiguity of sensing, and improve the
cooperative operation capability of MUSVs by sensing the movement intention and current
working status of other USV. The environmental perception methods of unmanned systems
at sea (including USV and MUSVs) mainly include analytical model-based methods, signal
processing-based methods and information fusion methods [5,6]. Currently, the knowledge
representation of USV sensing systems is mainly achieved by building perception models.
As the amount of information in USV increases in the process of performing complex
tasks, the use of ontological semantic knowledge framework to implement uncertain event
models of USV has become a hot research topic. The ontology knowledge representation
has good reusability and stability, and the reasoning capability of the ontology enables USV
to process and understand the source data. For example, USV diagnostic systems using on-
tologies can locate possible faults based on the signs and warnings provided by the sensing
system [7]. The ontology semantic knowledge framework approach not only improves the
cognitive capabilities of the unmanned system, but also enhances flexibility, autonomy, and
robustness in performing tasks [8]. The semantic knowledge framework proposed by E.
Migueláñez et al. can detect and identify uncertain events such as task parameter changes
and various sensor failures that occur in the task execution and system state of MUSVs [9].
The literature on cooperative perception of MUSVs is relatively scarce. The literature
focuses on MUSVs for cooperative navigation and positioning at sea [10,11]. The research
team relied on USV for the cooperative localization algorithm of MUSVs [12]. In the field
of cooperative perception, a lot of research results have been obtained in mobile wireless
sensor networks and mobile robots. The cooperative perception of MUSVs is mainly in
the area of cooperative navigation and positioning, but the cooperative perception and
information fusion of complex marine environments still need to be studied, especially in
the representation of environmental models for knowledge sharing and information reuse,
for which there is no clear implementation method yet.

To this end, the use of MUSVs to cooperative perception marine environmental infor-
mation can improve the perception range and perception credibility. The specific research
contents can be broken down as follows: (1) To facilitate information exchange among
USV and reflect the sharing and reusability of knowledge, research on the knowledge
representation and modeling methods of cooperative perception of MUSVs. (2) Research
on the analysis and identification methods of uncertain events affecting the formation
navigation of MUSVs. (3) Research on the determination methods of cooperative collision
avoidance patterns of MUSVs that satisfy the international rules of collision avoidance
at sea.
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2. Cooperative Perception Architecture

Aiming at the background constraints of MUSVs performing formation safety naviga-
tion tasks in the marine environment and the flow characteristics of information during
cooperative perception of MUSVs, the proposed architecture of cooperative perception
includes [13]: uncertain event detection module, cooperative collision avoidance pattern
recognition module, and environmental ontology model, as shown in Figure 1.

1. Uncertain events detection module: The possible obstacle-dense events, mobile vessel
emergence events, course deviation events, key point unreachability events, deadlock
events, etc. of MUSVs navigating in complex ocean environment will affect the safety
of USV themselves. On the basis of fully summarizing and organizing uncertain
events, we further analyze the causal relationship between uncertain events and
formation navigation, and clarify the strategy for handling uncertain events, so as to
provide a basis for USV formation navigation and cooperative collision avoidance
planning. Firstly, the event state information from the uncertain event ontology is
fuzzy quantified, and the quantified information is compared, analyzed and judged
with the historical events and the event feature template in the domain, so as to
calculate the probability of occurrence of the uncertain event.

2. Collision Avoidance Pattern Recognition Module: Extracts useful information from
the raw data observed by the sensors and generates instances of certain concepts in
the USV ontology, environment ontology, and uncertain event ontology. The new
instances are then reasoned with rules and Abox to determine whether they are
instances of key elements or events. If a key element or event instance is generated,
the collision avoidance pattern processing module is triggered, and the OntoBayes
method is used to apply Bayesian networks to the collision avoidance pattern ontology,
and the degree of influence of uncertain events on the collision avoidance pattern is
determined by using the Bayesian network inference algorithm to finally determine
the collision avoidance pattern that MUSVs should take, and the identification results
are stored in the collision avoidance pattern ontology.

3. Environmental ontology model: The purpose of environmental information ontology
modeling for MUSVs is to represent the knowledge of environmental information
for MUSVs using an ontology approach. Four ontologies can be established: USV
ontology, environment ontology, uncertainty event ontology and collision avoidance
pattern ontology. the USV ontology is used to describe the information of the USV
platform itself, involving concepts such as position, attitude, velocity, direction of mo-
tion, other USV information and other USV system operating states; the environment
ontology is used to describe the working environment in which the USV is located,
and the main concepts are working area, key point, target point, obstruction, sea
wind, waves, currents, visibility, etc. The uncertain event ontology is used to describe
the uncertain event information that affects the formation of MUSVs, and involves
concepts such as event name, event type, event probability, and event impact on each
USV. In addition, the collision avoidance pattern ontology is used to describe the
collision avoidance pattern that USVs should adopt according to the environmen-
tal perception results, including overall collision avoidance pattern, group collision
avoidance pattern, and individual collision avoidance pattern, involving concepts
such as pattern type, group number, and group member information.
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Figure 1. Cooperative perception process diagram. 
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tal information ontology to realize its functions of representation, query, storage and pro-
cessing at the semantic and knowledge levels [14]. 

However, so far, there is no ontology language that details a way to represent and 
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Figure 1. Cooperative perception process diagram.

3. Ontology Modeling of Environmental Information

MUSVs perform formation safety navigation tasks in complex ocean environments.
Individual USV may also have different understandings and representations of uncertain
events, which makes it difficult to share and reuse knowledge, making it more difficult to
perceive the environment cooperatively. Ontology, as a modeling tool that can describe
knowledge models at the semantic and knowledge levels, provides a normative description
of concepts, lays the foundation for knowledge sharing and reuse, improves interoperabil-
ity within and between systems, and uncovers some implicit data relationships. To this
end, this paper applies the ontology to the modeling process of MUSVs environmental in-
formation ontology to realize its functions of representation, query, storage and processing
at the semantic and knowledge levels [14].

However, so far, there is no ontology language that details a way to represent and rea-
son about uncertain knowledge about concepts, properties, and instances inside a domain.
This limitation of ontologies also limits the scope of ontology applications in the field of
cooperative perception of MUSVs environments. Therefore, this paper probabilistically
extends the ontology language OWL so that it can support the representation of uncer-
tain information and combines Bayesian networks and ontologies to compensate for the
deficiency of ontologies in uncertain reasoning.

Using the ontology approach to represent the knowledge of environmental infor-
mation for MUSVs, four ontologies can be created: the USV ontology, the environment
ontology, the uncertainty event ontology, and the collision avoidance pattern ontology.
The semantic knowledge framework of the cooperative perception application ontology is
shown in Figure 2.

The main concepts are: (1) Module: sensor information acquisition, uncertainty event
detection, and collision avoidance pattern recognition; (2) Function: the ability of each
type of sensor to process data on the environment, state, and task execution; (3) Sensor: all
hardware included in cooperative perception; (4) State: the working health of each type of
hardware in MUSVs; and (5) Information: the data to be cognized by the sensor.
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Figure 2. Semantic knowledge framework for cooperative perception application ontology. Figure 2. Semantic knowledge framework for cooperative perception application ontology.

The semantic knowledge framework of the cooperative perception application on-
tology builds semantic relationships among the nodes around the “MUSVs cooperative
perception” node. The sensor information acquisition module, uncertainty event detection,
and collision avoidance pattern recognition module are linked to the MUSVs cooperative
perception system using Part-Of relationships; the sensor information acquisition is linked
to the posture sensor and state awareness using Part-Of relationships; the posture sensor is
linked to the tachometer, GPS, and compass using A-Kind-Of semantic relationships. The
sensors and functions of MUSVs are attribute relations of Can; information and sensors are
perceived and sensed relations. Through the ontological semantic knowledge framework,
the information obtained by each sensor of MUSVs stimulates the cooperative perception
process, and the cooperative perception motivates the decision and execution modules
by establishing semantic relationships with MUSVs, which in turn enables reasoning
capabilities similar to those of human minds.

The logical relationship between the synergy module and the collision avoidance
module when MUSVs perform the task of safe navigation in formation can be represented
by an ontological semantic knowledge framework. The semantic knowledge framework
expresses the synergistic process by means of a graphical representation. The formation
safety navigation task ontology establishes the semantic knowledge framework of the
cooperative perception, decision and execution modules through MUSVs to establish
semantic relationships, as shown in Figure 3.
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Figure 3 The semantic knowledge framework of the formation safety navigation task
is constructed by the semantic knowledge framework fusion above, and the execution
of the formation safety navigation task requires all modules of MUSVs to be realized
cooperatively. Since the semantic knowledge framework of the cooperative perception
modules is constructed in detail above, the semantic knowledge framework only needs to
establish semantic relationships with important concepts and functions as nodes.

The various concepts included in the execution of formation safety navigation tasks by
MUSVs can be described by the gray box diagram in the figure; the relationships between
concepts can be described by the white box diagram; and the connections between concepts
can be described by the dashed lines. The MUSVs in Figure 3 include the cooperative
perception, collision avoidance, and execution modules. The cooperative perception,
collision avoidance and execution modules are linked to the MUSVs using Part-Of semantic
relations. The corresponding function of each module has an attribute relationship with
that module. In addition, the collision avoidance and execution modules also establish
attribute relationships with their own functions. With this semantic knowledge framework,
the MUSVs can react quickly to uncertain events. For example, the cooperative perception
module calculates that the occurrence of an event on the mobile vessel has a high degree of
impact on the current USVs to complete the task of safe navigation in formation, and then
calculates the impact of the uncertain event on each USV, and then identifies the overall
collision avoidance, group collision avoidance, and individual collision avoidance, and
outputs the collision avoidance pattern to the collision avoidance module, which makes a
decision and gives a command to the execution module, and the execution module receives
the command to After receiving the command, the execution module readjusts the angle
and speed of the MUSVs.
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4. MUSVs Cooperative Perception Method Based on Ontology and Bayesian
Network Theory
4.1. Uncertain Event Detection

At the initial stage of MUSVs environment cooperative perception uncertain event
detection, relevant information is first extracted from the raw data observed by sensors
and used to generate instances of certain concepts well defined in MUSVs ontology, envi-
ronment ontology, uncertain event ontology and collision avoidance ontology, i.e., to get
the level of rising from raw data and information to semantic knowledge, with the goal of
identifying the occurrence of relevant events from the underlying sensor data. The new
instances generated are then reasoned using rule-based reasoning to determine whether
they are instances of the relevant events. If the event occurs then the fuzzy logic event
detection process is triggered. Fuzzy logic-based uncertain event detection fuzzifies the
specific values of the event state information passed by the uncertain event ontology mod-
eling, thus quantifying the event state. For different events, different model parameters
can be selected for the establishment of the event state affiliation function. The quantified
information is compared, analyzed and judged against historical events and the event
pattern class feature template in the domain to calculate the probability of occurrence of the
uncertain event. The event detection phase and will deposit the event type, event name and
event occurrence probability as attributes of the uncertain event into the uncertain event
ontology and trigger the collision avoidance pattern recognition process. The uncertain
event detection process is shown in Figure 4.
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(1) Uncertainty event detection rule design
The SWRL rules are constructed to identify MUSVs uncertain events, and some of

them are shown in Table 1.
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Table 1. Partial SWRL rules for detection of uncertain events of MUSVs.

Rule Name Regular Expression

Rule 1 Even(?x) Λ Disto (?y) Λ hasDistance (?y,?z) Λ
swrlb:lessThan(?z,70)→MobileShipAppears (?x)

Rule 2 Event(?x) Λ hasState(?x, ?y) Λ State(?y) Λ hasValue(?y, ?z) Λ
swrlb:greaterThan(?z, 0)→KeyPointNotReachable (?x)

Rule 3 Event(?x) Λ hasDeviation(?x, ?y) Λ Deviation(?y) Λ hasDistance (?y,
?z) Λ swrlb:greaterThan(?z, 10)→OffCourse (?x)

Rule 4 Event(?x) Λ hasState(?x, ?y) Λ State(?y) Λ hasValue(?y, ?z) Λ
swrlb:greaterThan(?z, 0y)→Deadlock(?x)

Rule 5 Event(?x) Λ Dense(?y) Λ hasCollisionRisk(?y, ?z) Λ
swrlb:greaterThan(?z, 0.6)→DenseObstacles (?x)

In the cooperative perception process of MUSVs, if the various types of sensor in-
formation satisfy the SWRL rules for uncertain event detection, then the occurrence of
uncertain events can be inferred from the specified axioms and rules. Figure 5 shows
some of the experimental axioms for uncertain event detection inference based on SWRL
rules. Figure 6 shows the experimental results of partial SWRL axiomatic reasoning in the
cooperative perception process of MUSVs. From the experimental results, it can be seen
that the SWRL rules for uncertain event detection of MUSVs developed in this paper can
achieve effective results.

Sensors 2021, 21, x FOR PEER REVIEW 8 of 17 
 

 

Information on 
Sensors and 

MUSVs' Own 
Parameters

Uncertain Event 
Ontology Instance

OWL Ontology Storage 
File

Are there events 
generated?

Collision Avoidance 
Pattern Recognition 

Module

No

Yes

Generate

Probability 
Expansion and 

Storage

Continue 
Query

Continue 
Query

Query and 
Determine

Test Results

Status Quantification

 
Figure 4. Flow chart of uncertainty event detection. 

 
Figure 5. Experimental axioms for event detection inference based on SWRL rules. Figure 5. Experimental axioms for event detection inference based on SWRL rules.

Sensors 2021, 21, x FOR PEER REVIEW 9 of 17 
 

 

 
Figure 6. Experimental results of event detection inference based on SWRL rules. 

(2) Probability expansion of uncertain event ontology 
In the process of uncertain event detection in MUSVs, the uncertainty knowledge 

between uncertain event classes and their attributes can be represented by probabilistic 
constraint relations, which in turn enables the function of ontology description probabil-
istic knowledge. Since the language cannot represent the uncertainty of uncertain event 
classes, this paper implements the probabilistic extension of uncertain event ontologies 
and collision avoidance ontologies by means of probabilistic extensions to the description 
language. Data type attributes are introduced; classes are introduced to represent the 
probabilities of classes and attribute nodes, which contain subclasses (low level probabil-
ity), (medium level probability) and (high level probability). The above classes and attrib-
utes allow a more comprehensive description of the probabilistic knowledge of the coop-
erative perception process. For example, the instances of the medium rank uncertainty 
event, with respect to the ontology classes, and, are defined as, and, respectively, initial-
ized with probabilities 0.2, 0.7, and 0.1. In a language with probabilistic extensions, this 
can be described as Figure 7. 

 
<Event rdf:D="Event"/> 
<MediumLevel rdf:ID="MediumLeval"> 
<ProbHigh rdf: ID="EventHigh"/> 
<hasValue>0.2</hasValue> 
</ProbHigh> 
<ProbMadium rdf: ID="EventMadium"> 
<hasValua>0.7</hasValue> 
</ProbMadium > 
<ProbLow rdf D="EventLow"/> 
<hasValue>0.1</hasValue> 
</ProbLow> 
</MediumLeve1> 

 
Figure 7. Instances of the medium rank uncertainty event. 
The probabilistic information of uncertain events described in a language with prob-

abilistic extensions is arranged in the order from high, medium and low. Due to the real-
time requirements of the uncertain event detection process, the underlying ontology 
knowledge base also needs to be updated in real time. 

The output of the MUSVs uncertain event detection is a file, which stores and updates 
in real time the identified uncertain event names, ranks and corresponding probability 
values, which are also used as input information for the collision avoidance pattern recog-
nition module. 

Figure 6. Experimental results of event detection inference based on SWRL rules.



Sensors 2021, 21, 1657 9 of 17

(2) Probability expansion of uncertain event ontology
In the process of uncertain event detection in MUSVs, the uncertainty knowledge

between uncertain event classes and their attributes can be represented by probabilistic
constraint relations, which in turn enables the function of ontology description probabilistic
knowledge. Since the language cannot represent the uncertainty of uncertain event classes,
this paper implements the probabilistic extension of uncertain event ontologies and colli-
sion avoidance ontologies by means of probabilistic extensions to the description language.
Data type attributes are introduced; classes are introduced to represent the probabilities of
classes and attribute nodes, which contain subclasses (low level probability), (medium level
probability) and (high level probability). The above classes and attributes allow a more
comprehensive description of the probabilistic knowledge of the cooperative perception
process. For example, the instances of the medium rank uncertainty event, with respect to
the ontology classes, and, are defined as, and, respectively, initialized with probabilities 0.2,
0.7, and 0.1. In a language with probabilistic extensions, this can be described as Figure 7.
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The probabilistic information of uncertain events described in a language with proba-
bilistic extensions is arranged in the order from high, medium and low. Due to the real-time
requirements of the uncertain event detection process, the underlying ontology knowledge
base also needs to be updated in real time.

The output of the MUSVs uncertain event detection is a file, which stores and updates
in real time the identified uncertain event names, ranks and corresponding probability val-
ues, which are also used as input information for the collision avoidance pattern recognition
module.

4.2. Collision Avoidance Pattern Recognition Method for MUSVs Based on Bayesian
Network Theory

The collision avoidance pattern recognition module receives information such as
uncertain event type, level and probability of occurrence of uncertain events from the
uncertain event detection module. The relevant instances in the uncertain event ontology
file are subjected to Bayesian network uncertainty inference to calculate the degree of
impact of the current event on each USV and identify the collision avoidance pattern.
Moreover, instantiate it into the collision avoidance ontology, which facilitates the MUSVs
collision avoidance module to achieve fast decision making through the results of collision
avoidance ontology query.

For the characteristics of MUSVs performing tasks, a method is used to apply Bayesian
networks to MUSVs collision avoidance ontology for uncertainty inference. First, a C
program is written to parse the ontology file described in the language. The classes,
conditional probability scores and prior probabilities in the ontology are saved in the, and
files, respectively; then the C program is written to construct a Bayesian network according
to the rules for constructing a Bayesian network; finally, the uncertainty event model and
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the constructed Bayesian network are used to perform collision avoidance patternl based
on the real-time sensor information. The data flow is shown in Figure 8.
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(1) Ontology Parser Design for Uncertain Event Ontology
The concepts and instances, prior probabilities and conditional probabilities in the

ontology described by the language with probability extensions are parsed and saved in
a txt file. After parsing, the files, and are generated to represent the class and instance
relationships, prior probabilities and conditional probabilities in the MUSVs uncertain
event ontology, respectively.

(2) Construction method of Bayesian network
The construction of Bayesian network mainly consists of three core steps: firstly,

the Bayesian network nodes are generated, in which the class, the instances contained
in the class and the prior probability information corresponding to the instances should
be reflected; then the edges in the Bayesian network indicating the implied causality are
generated based on the class-instance information; finally, the Bayesian network conditional
probability table is generated, in which the conditional probability of the Bayesian network
indicates the occurrence of the parent node under the condition that the child node The
conditional probability of Bayesian network represents the probability of occurrence of
child nodes under the condition that the parent node occurs, i.e., the influence of parent
node on child nodes. The conditional probability table of the Bayesian network can be
obtained from the prior probabilities output by the ontology resolution module.

The Bayesian network conditional probability table and the Bayesian network struc-
ture created by writing a C program according to the rules for establishing Bayesian
networks, combined with the contents of the ClassInstance.txt, Condvalue.txt and Proir-
value.txt files are shown in Table 2 and Figure 9, respectively. The real-time input informa-
tion of the Bayesian network includes not only sensor information, but also initialization in-
formation such as conditional probability and prior probability. p (ThreatLevel) = (0.3,0.4,0.3)
indicates that the probability of MUSVs overall collision avoidance, group collision avoid-
ance or individual collision avoidance is 0.3 for high, 0.4 for medium and 0.3 for low.
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Table 2. Conditional Probability Table.

Dense Obstacles Mobile Ship Appears Off Course Key Point Not Reachable Deadlock

High Medium Low High Medium Low High Medium Low High Medium Low Yes No

High 0.7 0.2 0.1 0.8 0.1 0.1 0.6 0.3 0.1 0.8 0.1 0.1 0.8 0.2
Medium 0.6 0.3 0.1 0.6 0.2 0.2 0.2 0.4 0.4 0.7 0.2 0.1 0.6 0.4

Low 0.1 0.3 0.6 0.1 0.2 0.7 0.1 0.3 0.6 0.2 0.2 0.6 0.2 0.8
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The inference process of the Bayesian network is: assuming the network structure
of the Bayesian network model, the node X possesses a parent node U and m sub-nodes
Y1, . . . , Ym, which is defined as:

Bel: the reliability value of the node X, i.e., the posterior probability distribution;
λ The probability of diagnosis from subnodes, and the effect of the occurrence of

result events on the reason for diagnosis. For leaf nodes, it is the probability of this
probability event;

π Causal probability, which reflects the causal influence from the parent node and the
brother node, is the prior probability for the root node.

Starting from the new event information or prior knowledge, the network obtains the
causal probability from the parent node, obtains the diagnostic probability from the child
node, updates its own reliability, and then spreads the effect of its own reliability update to
other nodes:

In the first step, the reliability of this node is updated according to the newly obtained
information, Bel(x) = αλ(x)π(x), λ(x) = ∏

j
λY(x), π(x) = πX(u)×MX|U

The second step, the bottom-up propagation, λX(x) = λ(x)×MX|U .
The third step, updating from top to bottom, πYj(x) = απ(x) ∏

k 6=j
λyk (x), where πX(x)

is the probability of causal prediction from node U to X, and λYj(x) is the probability
of event diagnosis from child node Yj to X. The normalization operator α guarantees
∑
x

BEL(x) = 1. The evaluation result given by the Bayesian algorithm is a probability

vector corresponding to each state of the threatening node, viz Bel(x) = P(x1, x2, . . . , xn).
MUSVs cooperative perception computes the collision avoidance pattern through a

Bayesian network, where the child node is an uncertain event output by uncertain event
detection and the parent node indicates the collision avoidance pattern. The MUSVs
module can identify collision avoidance patterns by using Bayesian network uncertainty
inference algorithm, combined with the conditional probability matrix of ontology analysis.

5. Navigation Task Cooperative Perception Simulation Experiment

The task scenario is designed for MUSVs to perform formation safety navigation, and
uncertain events may occur during the navigation of MUSVs through a navigation area,
which triggers the collision avoidance pattern identification process to determine whether
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the system should adopt the overall collision avoidance, group collision avoidance or
individual collision avoidance pattern. The uncertain events that may occur in the task of
safe navigation of a formation include uncertain events in the marine environment such as
the appearance of moving vessels, unreachability of key points and course deviation [15].

MUSVs cooperative perception utilizes the MUSVs integrated simulation system built
with SGI OCTANE2 workstation as the core. As shown in Figure 10, the components of the
integrated simulation system are shown in the dashed box. The existing integrated simulation
system can be used for the simulation of MUSVs by adding/changing functions. Interface of
visual simulation and views of graphic workstation are shown in Figures 11 and 12.
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The experiment detects the probability of occurrence of marine environment uncertain
events such as mobile ship emergence events, critical point unreachability events and course
deviation events in the formation safety navigation task, identifies collision avoidance
patterns, and updates the uncertain events and collision avoidance ontology knowledge
base model in real time.

At the beginning of the simulation, no information such as obstacles and currents
are added, no corresponding marine environment uncertain events are generated at this
time, and no uncertain events are generated in the uncertain event ontology model, i.e., no
corresponding OWL ontology instance content is generated in the underlying knowledge
base, at which time the MUSVs navigate normally according to the set target.

(1) Mobile vessel emergence event
Mobile ship emergence is when MUSVs are on a mission and the distance between

the MUSVs and the mobile ship is less than the safe distance, which will cause damage
to the MUSVs if they do not evade in time. Initially, MUSVs sail towards the target point.
After sailing for a certain distance a static obstacle is added at 100 places on the MUSVs’
sailing route with a radius of 40 m; when MUSVs and the obstacle are close to the process,
a random obstacle emergence uncertainty event occurs with a certain probability. The
cooperative perception results are shown in Table 3.

The results of cooperative perception show that the system appears to require the
MUSVs to invoke the collision avoidance procedure in a timely manner due to the prox-
imity of the moving vessels to the MUSVs. At 100 s of system operation, the probability
of occurrence of the mobile vessel emergence event is 0.723, and the grouped collision
avoidance probability exceeds the trigger collision avoidance replanning threshold of 0.6.
This result is reported to the environmental ontology modeling module, which generates
the instance of the mobile vessel emergence event, the probability of occurrence of this
event, and the collision avoidance pattern probability in the underlying knowledge base.
At this time, according to the underlying rules, it is judged that the current uncertain event
to group collision avoidance probability satisfies the conditions for triggering the collision
avoidance module, and the system calls the collision avoidance program and then adjusts
the speed and direction of MUSVs in time. The probability of the event occurring gradually



Sensors 2021, 21, 1657 14 of 17

decreases until the probability of the event occurring on the mobile ship is 0 at 107 s,
and the overall collision avoidance probability, group collision avoidance probability and
individual collision avoidance probability are restored to the initial values of probability
0.3, 0.4 and 0.3. Figure 13 gives the content of the corresponding OWL format file generated
by the bottom layer when the event occurs on the mobile ship in the experiment.

Table 3. Cooperative perception output results.

Time (s) Event Name Event Probability
Overall Collision

Avoidance
Probability

Grouping Collision
Avoidance
Probability

Individual Collision
Avoidance
Probability

100 Mobile ship
appeared event 0.723 0.116 0.653 0.231

101 Mobile ship
appeared event 0.809 0.184 0.724 0.092

102 Mobile ship
appeared event 0.728 0.119 0.643 0.238

103 Mobile ship
appeared event 0.465 0.143 0.58 0.277

104 Mobile ship
appeared event 0.448 0.133 0.3 0.567

105 Mobile ship
appeared event 0.309 0.223 0.312 0.465

106 Mobile ship
appeared event 0.191 0.296 0.313 0.391

107 Mobile ship
appeared event 0.000 0.3 0.4 0.3
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Where MobileShip_2 represents the instance of the generated mobile ship occur-
rence event, HighLevel_2 represents its event level, here is high level, 0.809 indicates the
probability of occurrence of this event. OverallObstacleAvoidance_2 overall avoidance,
0.184 indicates the probability of current overall avoidance. GroupObstacleAvoidance_2
group avoidance, 0.724 indicates the probability of current group avoidance. individu-
alObstacleAvoidance _2 individual avoidance, 0.184 indicates the probability of current
individual avoidance.

(2) Key point unreachable and moving ship emergence event occur simultaneously
Key point unreachability refers to MUSVs’ repeated attempts to reach the target during

the mission due to the sub-target point of MUSVs’ navigation being occupied/encircled
by obstacles, or invalid planning behavior, etc. The addition of two mobile vessels in
close proximity during the navigation of MUSVs leads to the simultaneous occurrence of
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key point unreachability events and random obstacle presence events. The cooperative
perception results are shown in Table 4.

Table 4. Synergistic perception output results.

Time (s) Event Name Event Probability Overall Collision
Avoidance Probability

Grouping Collision
Avoidance Probability

Individual Collision
Avoidance Probability

114
Mobile ship

appeared event 0.358
0.305 0.422 0.273

Key point
unreached event 0.000

115
Mobile ship

appeared event 0.557
0.462 0.458 0.358

Key point
unreached event 0.000

116
Mobile ship

appeared event 0.621
0.625 0.245 0.130

Key point
unreached event 0.385

117
Mobile ship

appeared event 0.693
0.763 0.163 0.074

Key point
unreached event 0.627

118
Mobile ship

appeared event 0.593
0.641 0.254 0.105

Key point
unreached event 0.521

119
Mobile ship

appeared event 0.358
0.445 0.372 0.183

Key point
unreached event 0.417

124
Mobile ship

appeared event 0.089
0.300 0.400 0.300

Key point
unreached event 0.124

When the system runs to 114 s, add a mobile ship, the probability of occurrence of
the event of mobile ship is 0.358, the maximum probability of group collision avoidance
is 0.422, then add another mobile ship, resulting in repeated attempts by MUSVs but
difficult to reach the target. 116 s later the probability of occurrence of the key point
unreachable event is 0.385, while the probability of occurrence of the event of mobile ship
grows to 0.621, at this moment these two uncertain events overall collision avoidance
probability 0.625 exceeds the trigger replanning threshold 0.6, at this time according to
the underlying rules to determine the current uncertain events to meet the conditions for
triggering replanning, the system calls the collision avoidance program, and then adjust
the speed and direction of MUSVs in a timely manner. The probability of the occurrence
of mobile ship emergence event and key point unreachable event gradually decreases
until the overall collision avoidance probability, group collision avoidance probability and
individual collision avoidance probability return to the initial value probability 0.3, 0.4 and
0.3 in 124 s. Figure 14 gives the contents of the corresponding OWL format files generated
by the bottom layer when the moving ship emergence and critical point unreachability
events occur in the experiment.

Where MobileShip _3 represents the generated instance of MobileShipAvoidance
event, HighLevel_3 represents its event level, and 0.621 is its probability representation;
KeyPointUnreached_1 represents the generated instance of KeyPointUnreached event,
MediumLevel _1 represents its event level, and 0.385 is its GroupObstacleAvoidance _3 is
the overall avoidance, 0.625 is the probability of the current overall avoidance. Individ-
ualObstacleAvoidance _3 is the group avoidance, 0.245 is the probability of the current
group avoidance. 3 individual avoidance, 0.130 indicates the probability of current individ-
ual avoidance.
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6. Conclusions

In this paper, a cooperative perception framework for MUSVs with uncertain event
detection, collision avoidance pattern recognition and environmental ontology model is
proposed based on the consideration of various types of uncertainties occurring in the
complex marine environment of MUSVs. By adopting ontology theory, an information
representation model for cooperative perception of MUSVs is established so that the en-
vironmental information acquired by MUSVs cooperatively is shareable and reusable.
Moreover, the combination of ontology and Bayesian networks is used to implement the
process of uncertain event detection and collision avoidance pattern recognition. Simula-
tion experiments are conducted in the context of the application of MUSVs performing
formation safety navigation, and the experimental results mark that the uncertain event
ontology and collision avoidance pattern ontology obtained by cooperative perception
can provide effective data support for cooperative collision avoidance of MUSVs. This
paper verifies the MUSVs cooperative perception method through the experiment. For
the analysis of simulated online data, there is basically no misjudgment. Even if there is a
possibility of misjudgment, the degree of threat of situation is very low, and the collision
avoidance pattern has not changed and can be ignored. Therefore, the research of this
paper has important theoretical significance and practical value.
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