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Designing novel antimicrobial peptides is a hot area of research in the field of
therapeutics especially after the emergence of resistant strains against the conventional
antibiotics. In the past number of in silico methods have been developed for predicting
the antimicrobial property of the peptide containing natural residues. This study
describes models developed for predicting the antimicrobial property of a chemically
modified peptide. Our models have been trained, tested and evaluated on a dataset that
contains 948 antimicrobial and 931 non-antimicrobial peptides, containing chemically
modified and natural residues. Firstly, the tertiary structure of all peptides has been
predicted using software PEPstrMOD. Structure analysis indicates that certain type
of modifications enhance the antimicrobial property of peptides. Secondly, a wide
range of features was computed from the structure of these peptides using software
PaDEL. Finally, models were developed for predicting the antimicrobial potential of
chemically modified peptides using a wide range of structural features of these
peptides. Our best model based on support vector machine achieve maximum MCC
of 0.84 with an accuracy of 91.62% on training dataset and MCC of 0.80 with an
accuracy of 89.89% on validation dataset. To assist the scientific community, we have
developed a web server called “AntiMPmod” which predicts the antimicrobial property
of the chemically modified peptide. The web server is present at the following link
(http://webs.iiitd.edu.in/raghava/antimpmod/).

Keywords: chemically modified peptides, antimicrobial peptide prediction, machine learning technique,
resistance, fingerprints, peptide therapeutics

INTRODUCTION

The emergence of drug-resistant pathogenic strains is one of the major threats for the survival of
humans and livestock; antibiotics designed to eliminate these pathogens are losing their sensitivity
(Price et al., 2012; Veltri et al., 2018). The rapid emergence of the antibiotic resistance has
endangered the efficacy of antibiotics, and one of the potential causes of this is the misuse and
overuse of antibiotics (Gould and Bal, 2013; Sengupta et al., 2013; Wright, 2014). Hence, there is a
need to develop more potent and effective drugs to combat deadly diseases occurring worldwide. In
the past few decades, peptide-based therapeutics has been preferred for the drug development over
the small molecule-based drugs. Peptide-based drugs are highly selective, efficacious, safer and well
tolerated compared to conventional small molecule-based drugs (Otvos and Wade, 2014). Proteins
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and peptide-based drugs cover around 10% of the pharmaceutical
market as per the current report and will continue to grow in
future (Bruno et al., 2013; Craik et al., 2013). Currently, more
than 239 therapeutic proteins and peptides have been already
approved by US-FDA (Fosgerau and Hoffmann, 2015; Usmani
et al., 2017) and therefore researchers nowadays are focusing
more on peptide-based drugs.

Broadly, peptides can be classified in four classes based on
their therapeutic potential; (i) peptides as drug delivery vehicle,
(ii) peptides as vaccine candidates, (iii) peptide-based inhibitors,
and (iv) peptides-based disease biomarkers. Group I peptide can
be used for delivering small molecules or drugs at their targets
such as cell penetrating peptides, tumor homing peptides, brain
barrier penetrating peptides (Gautam et al., 2012, 2013, 2016;
Kapoor et al., 2012; Van Dorpe et al., 2012; Holton et al., 2013;
Sharma et al., 2013; Agrawal et al., 2016; Wei et al., 2017; Wolfe
et al., 2018). Group II peptides can be used for designing epitope-
based vaccines or subunit vaccine; these are generally synthetic
peptides or subunits of the whole organism commonly known as
epitopes (Singh and Raghava, 2001; Ansari and Raghava, 2010;
Singh et al., 2013; Shi et al., 2015; Oyarzún and Kobe, 2016;
Alonso-Padilla et al., 2017; Jespersen et al., 2017). Group II
peptides are one of the important categories of peptide-based
therapeutics and can be clearly seen by the number of in silico
methods developed in last decade (Rammensee et al., 1999; Singh
and Raghava, 2003; Bhasin and Raghava, 2007; Zhang et al., 2008,
2011; Kringelum et al., 2012; Dhanda et al., 2013; Singh et al.,
2013; Jurtz et al., 2017). These peptides generate memory cells
and hence are very important nowadays for treating pathogenic
infections. Epitopes/peptides are poor immunogens on their own
and hence need the assistance of molecules known as adjuvants
for increasing its potency (Sayers et al., 2012; Chaudhary et al.,
2016; Nagpal et al., 2015, 2017, 2018).

Group III, peptides are inhibitors which can be used as
drug molecules or inhibiting activity of drug targets (Eldar-
Finkelman and Eisenstein, 2009; Groner et al., 2012; Beekman
and Howell, 2016). These peptides kill pathogens by disrupting
their cell membranes, by inhibiting their regulatory enzymes
or by carrying out lysis (Ivanciuc et al., 2003; Rashid et al.,
2009; Pirtskhalava et al., 2016; Wang et al., 2016, 2018; Singh
et al., 2018). AMPs represent one of the broadest class of this
group, for which number of databases and prediction methods
have been developed in order to identify novel peptides which
could act as drugs (Saha and Raghava, 2006; Gautam et al.,
2014; Mehta et al., 2014; Kumar et al., 2015; Meher et al., 2017;
Agrawal et al., 2018). Lastly, Group IV consists of those peptides
which could potentially act as a biomarker and can be useful
in developing different diagnostic kits (Shao, 2015; Bhalla et al.,
2017). For example, peptides obtained from urine have been used
as potential biomarkers for identifying multiple diseases (Siwy
et al., 2011). Likewise, many computational methods have been
created to maintain information related to peptides which could
act as biomarkers (Zhang et al., 2006; Bhalla et al., 2017). Despite
tremendous potential of peptides, there are many challenges
in designing therapeutic peptides that include short half-life,
challenges in oral delivery, immunotoxicity, cytotoxicity, etc. To
address these issues, a number of computational resources has

been developed in last two decades (Gupta et al., 2013; Sharma
et al., 2014; Mathur et al., 2016, 2018; Liu et al., 2017; Porto et al.,
2017b).

In the past few years, numerous methods have been developed
to predict AMPs. Broadly, these methods can be classified
in the following two groups (i) General methods and (ii)
Class specific methods. The first group includes methods like
CAMPR3, APD, AmPEP, and CS-AMPPred which predicts
whether the given peptide is AMP or non-AMP (Porto et al.,
2012; Wang, 2015; Waghu et al., 2016; Bhadra et al., 2018).
CAMPR3 implements four different machine learning techniques
for developing a prediction model (Waghu et al., 2016). APD
is a physicochemical property based method that predicts AMP
from the physicochemical property of the peptide (Wang,
2015). AmPEP is a random forest-based model developed using
distribution patterns of amino acid properties along the sequence
(Bhadra et al., 2018). CS-AMPPred is a support vector machine
(SVM) based AMP prediction method developed for cysteine-
stabilized peptides (Porto et al., 2012). The second group, i.e.,
class specific methods are those methods which are designed to
predict peptides that can kill/inhibit specific class of organism
and not in general. For example we have methods which predicts
and designed peptides which are effective specifically either to
bacteria or fungi or viruses or parasites. For example, Antibp
and Antibp2 are two widely used SVM based methods developed
to predict the antibacterial nature of the given peptide (Lata
et al., 2007, 2010). AVPpred is developed for predicting antiviral
peptide using machine learning technique SVM; features like
the amino acid composition and physiochemical properties
were used in this method (Thakur et al., 2012). Similarly,
a method called Antifp has been developed for predicting
antifungal peptide, it uses features like amino acid composition,
binary profile (Agrawal et al., 2018). In addition, there are
methods that predict the class of AMP (e.g., antibacterial,
antifungal, and antiviral) like ClassAMP (Joseph et al., 2012).
Similarly, another method iAMPpred predicts the probability
of a peptide as an antibacterial, antifungal, and antiviral by
providing the probability score for all the three classes (Meher
et al., 2017). In past methods also developed for predicting AMPs
in first step and class of AMP in the second step (Xiao et al.,
2013).

Despite tremendous advances in the field of prediction
of antimicrobial peptides, limited attempt has been made to
predict antimicrobial peptides of chemically modified peptides.
CS-AMPPred is a only method developed for predicting
antimicrobial activity of a specific-type of chemical modification
(cysteine-stabilized peptides). Best of our knowledge no method
has been developed in past that can predict antimicrobial activity
of a modified-peptide, which supports wide range of chemical
modifications. In reality, most of the FDA approved therapeutic
peptides are chemically modified, as the chemical modification
is important for improving the stability of peptides in the
body fluid, protection of peptide from the immune system,
reducing the toxicity of peptide (Usmani et al., 2017; Al Musaimi
et al., 2018). Thus it is need of time to develop a method that
can predict antimicrobial inhibition potential of a chemically
modified peptide from its tertiary structure. In this study, a
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systematic attempt had been made to predict AMP potential of
a chemically modified peptide.

MATERIALS AND METHODS

Dataset Creation
Modified AMPs were extracted from the SATPDB database
(Singh et al., 2016) which maintains information about more
than 19,000 natural and modified peptides. All those peptides
which show any modification (terminus, chemical, and D-amino
acids), is antimicrobial and whose tertiary structure is present
were assigned as modified AMPs. In total, we got 948 such
peptides. To develop any prediction method, we need negative
dataset also. In our case, we selected those peptides as modified
non-AMPs/negative dataset which exhibits any modifications
(terminus, chemical, and D-amino acids), is non-antimicrobial
in nature and whose tertiary structure is present in the SATPDB
database. In the end, we got 931 such peptides. Therefore, we built
the dataset of 948 positive peptides and 931 negative peptides.

Internal and External Validation Dataset
The dataset was divided into two parts (i) training and (ii)
validation dataset (Kumar et al., 2018). The training or main
dataset consists of 80% of the total data, i.e., 758 modified
AMPs and 745 non-AMPs. The validation dataset comprises of
remaining 20% data, i.e., 190 modified AMPs and 186 non-AMPs.
These peptides were selected randomly to avoid any biasness.
Training dataset was used for internal validation, where models
were trained and tested using fivefold cross-validation technique
(Gautam et al., 2013). Performance of the best model achieved
using training dataset was evaluated on the validation dataset, in
the process commonly known as external validation.

Additional Dataset
Discriminating between peptides which are compositionally
similar but show different activity is a challenging task (Loose
et al., 2006; Porto et al., 2017a). In order to evaluate the
performance of different models developed in this study,
we prepared another dataset “Mod_AMP_similar” having
compositionally similar modified AMPs and non-AMPs. The
positive set consists of those peptides which are present in the
validation dataset whereas negative set consists of those peptides
which are compositionally similar to the positive peptides.
Compositionally similar peptides were identified by computing
Euclidean distance between the diatomic composition of two
peptides and the peptides having minimum Euclidean distance
were selected. This kind of methodology has already been used in
earlier studies (Kumar et al., 2008; Agrawal et al., 2018).

Model Development
Feature Computation From Peptide Structures
Atom composition
Atom composition was calculated from modified AMPs and non-
AMPs by converting peptides structures in SMILES format using
openbabel (O’Boyle et al., 2011). The SMILES were further used

to calculate atom composition of following atoms C, H, O, N, S,
Cl, Br, and F. The atomic composition is calculated using formula
1 and provides a fixed length of eight vectors.

Fraction of atom (a) =
total number of atom (a)

total number of all possible atoms
× 100

(1)
where atom (a) is one out of all eight atoms.

Diatom composition
Diatom composition was computed in a similar manner as atom
composition. The diatomic composition provides information
about the pairs of atoms in each residue (e.g., C-C, C-O, C-N,
etc.) of the peptides. The diatomic composition was computed
using formula 2 which provided us a fixed length of 64 (8 × 8)
vectors.

Fraction of atom (a) =
total number of diatom (a)

total number of all possible diatoms
× 100

(2)
where diatom (a) is one out of all 64 diatoms.

Chemical descriptors
Chemical or Molecular descriptors are terms that represents
specific information of a given chemical molecule and determines
its biological properties. Chemical descriptors represent the
correlation between the physical, chemical and biological
properties of a molecule and its chemical constitution in
the form of numerical values (Roy et al., 2015). Majority of
these chemical descriptors are classified on the basis of their
dimensionality, which refers to the molecule representation from
which descriptor values are calculated. Broadly, these descriptors
are calculated as one dimensional (1D), two dimensional (2D),
three dimensional (3D), and fingerprints (Xue and Bajorath,
2000). In the past, researchers have used the molecular
descriptors to develop QSAR based prediction methods (Kumar
et al., 2015). In our study, we used PaDEL software (Yap,
2011), which is a freely available software for calculating various
descriptors of a given molecule. We calculated different types
of descriptors which includes 2D descriptors and 10 different
types of fingerprints. We performed feature selection technique
to remove unnecessary descriptors, since all descriptors don’t
correlate with the biological activity of the molecule, hence
reducing noise from the dataset.

In this study, feature selection was performed using WEKA
software (Data Mining: Practical Machine Learning Tools
and Techniques, 2018) at default parameters. We selected
“CfsSubsetEval” as an evaluator and “Best First” as a search
method. The feature selection was performed in the forward
direction with amount of backtracking, N = 5 and lookup size
D = 1.

Statistical Analysis
To find out the significant difference between modified AMPs
and non-AMPs, we performed the Mann–Whitney–Wilcoxon
test, which is a non-parametric test, using in-house R-script
on the selected features of 2D descriptors, fingerprints, and
combination of 2D descriptors and fingerprints.
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FIGURE 1 | Feature extraction using SMILES format. Different features were calculated using SMILES format (A) binary profile generation of only atoms, (B) binary
profile generation of only symbols, (C) binary profile generation of both symbol and atoms, (D) atom composition, and (E) diatom composition.

Binary Profiles
Differentiating AMPs with non-AMPs with similar peptide
sequence is one of the challenging tasks. Although features
like the composition and chemical descriptors can differentiate
between AMPs and non-AMPs, they are unable to maintain the
order of the residues in the peptide. To combat this situation,
we converted the peptides into its SMILES format and extracted
different numbers of atoms, symbols and both from the N
and C terminus. Binary profiles of these atoms and symbols
were generated, and prediction models were developed in three
different categories. The first category includes only atoms
present in the SMILES format, the second profile consists only of
symbols, and the third contains the mixture of both. The binary
profile was created from terminus (N, C, or both) for the first
25, 50, and 100 elements in case of only atoms and only symbols
whereas for both (atom+ symbol) first 50, 100, and 200 elements
were considered. In the case of only atoms, there were total 8
atoms (C, H, O, N, S, F, Cl, and Br) where the presence of atom
was represented by “1” and the absence by “0”, hence generating a
vector of N× 8. In case of only symbols, we considered the most
commonly occurring symbols (@, +, =, #, [, ],.). These symbols
are the chemical notations of a given chemical. For example,
“-” is used to represent single bond, “=” is used to represent
double bond, “#” is used to represent triple bond and so on.

These symbols are represented in such a way so when given as an
input, computer can easily understand it. Here also, the presence
of symbol was indicated by “1” and the absence by “0”, hence
leading to the vector of N× 7. In case of both, atom and symbols
as mentioned above were taken, generating the vector of length
N× 15. Binary profile generation is explained in Figure 1.

Performance Measure
Performance of models were evaluated using different parameters
which can be divided into two groups (i) threshold dependent
parameters and (ii) threshold independent parameters.

The first group, i.e., threshold dependent parameters include
Sensitivity (Sen), Specificity (Spc), Accuracy (Acc), and Matthew’s
Correlation Coefficient (MCC). Here Sensitivity is defined as the
true positive rate; Specificity is the true negative rate; Accuracy as
the ability to differentiate between true positive and true negative
whereas MCC is a correlation between observed and predicted
value. These can be calculated using equations 3–6.

Sensitivity =
TP

TP + FN
× 100 (3)

Specificity =
TN

TN + FP
× 100 (4)
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FIGURE 2 | Comparison of atom composition present in modified AMPs and non-AMPs.

Accuracy =
TP + TN

TP + FP + TN + FN
× 100 (5)

Matthew’s Correlation Coefficient

=
(TP∗TN)− (FP∗FN)

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

× 100

(6)

where TP and TN represents correctly predicted modified AMPs
and non-AMPs, respectively. FP and FN represent wrongly
predicted modified AMPs and non-AMPs, respectively.

The second group, i.e., threshold independent parameter
includes AUROC, i.e., Area Under Receiver Operating
Characteristic.

RESULTS

Analysis
Percent average composition of atoms present in modified AMPs
and non-AMPs was computed for understanding the type of
atom preference. Overall, the profile was found to be more or less
the same in modified AMPs and non-AMPs. AMPs were found to
be slightly higher in “C” atom compared to non-AMPs whereas
non-AMPs were found to be higher in “S” atom compared to
AMPs. Halogens were found to be absent in AMPs and non-
AMPs (Figure 2). We also analyzed the diatoms composition
and observe that diatom “CC” is dominant in AMPs whereas
“NC,” “OC,” “CS,” and “SC” were more abundant in non-AMPs
(Figure 3).

Machine Learning Based Prediction
Model
Peptide tertiary structure can present different types of chemical
modifications. Therefore, the structure of peptides was utilized to

compute the feature and predict its antimicrobial nature. Various
machine learning techniques like SVM (Cortes and Vapnik,
1995), Random Forest, Naive Bayes, J48, and SMO were used
to develop the prediction model in the study. These models
utilize different features for discriminating modified AMPs form
non-AMPs. The results are explained below in the following
sections:

Composition Based Prediction
We developed prediction models for the atomic and diatomic
composition of the peptide using various classifiers. In case of
atomic composition, SVM model performed better than other
models with an accuracy of 86.83% with MCC of 0.74 on the
training dataset and accuracy of 83.51% and MCC of 0.67 on the
validation dataset (Table 1). For diatomic composition, Random
Forest model achieved the highest accuracy of 89.75% with MCC
of 0.80 on training dataset whereas on validation dataset the
model showed the accuracy of 87.50% and MCC of 0.75 (Table 2).

Chemical Descriptors Based Prediction
Individual models were developed for 2D descriptors and
fingerprints as well as the single model was developed combining
features of 2D descriptors and fingerprints. These model were
developed on the complete features as well as features obtained
after feature selection process (see section “Materials and
Methods”). In case of 2D descriptors, initially 231 descriptors
were calculated, and SVM based model achieved the highest
accuracy of 61.29% with MCC of 0.23 on training dataset and
accuracy of 60.90% and MCC of 0.28 on validation dataset
(Table 3). We applied feature selection process on these 231
features reducing them to 4. List of these features is provided
in Supplementary Table S1. Machine learning techniques were
applied on these selected features, and we observed that SVM
based model achieved the highest accuracy of 80.68% with MCC
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FIGURE 3 | Comparison of diatom composition present in modified AMPs and non-AMPs.

TABLE 1 | The performance of atom composition based models developed using different machine learning techniques.

Machine learning techniques (parameters) Main dataset Validation dataset

Sen Spc Acc MCC AUROC Sen Spc Acc MCC AUROC

SVM (g = 0.1, c = 9, j = 1) 90.37 83.22 86.83 0.74 0.92 89.47 77.42 83.51 0.67 0.88

Random Forest (Ntree = 20) 89.58 81.74 85.70 0.72 0.93 91.05 81.72 86.44 0.73 0.90

SMO (g = 0.1, c = 3) 88.39 82.15 85.30 0.71 0.85 90.00 76.88 83.51 0.68 0.83

J48 (c = 0.15, m = 5) 88.13 80.27 84.23 0.69 0.88 85.79 77.96 81.91 0.64 0.85

Naive Bayes (Default) 89.84 62.55 76.31 0.55 0.77 87.89 60.75 74.47 0.51 0.79

Sen, Sensitivity; Spc, Specificity; Acc, Accuracy; MCC, Matthew’s Correlation Coefficient; AUROC, Area Under the Receiver Operating Characteristic curve.

TABLE 2 | The performance of diatom composition based models developed using different machine learning techniques.

Machine learning techniques (parameters) Main dataset Validation dataset

Sen Spc Acc MCC AUROC Sen Spc Acc MCC AUROC

SVM (g = 0.05, c = 15, j = 2) 89.71 86.85 88.29 0.77 0.93 90.53 81.72 86.17 0.73 0.92

Random Forest (Ntree = 150) 94.20 85.23 89.75 0.80 0.96 92.11 82.80 87.50 0.75 0.93

SMO (g = 0.1, c = 5) 88.79 87.92 88.36 0.77 0.88 88.95 83.33 86.17 0.72 0.86

J48 (c = 0.25, m = 1) 89.71 83.22 86.49 0.73 0.88 86.84 83.87 85.37 0.71 0.86

Naive Bayes (Default) 87.86 63.09 75.58 0.53 0.74 87.37 62.37 75.00 0.51 0.74

Sen, Sensitivity; Spc, Specificity; Acc, Accuracy; MCC, Matthew’s Correlation Coefficient; AUROC, Area Under the Receiver Operating Characteristic curve.

of 0.62 on training dataset and accuracy of 79.79% and MCC of
0.60 on validation dataset (Table 3).

In case of fingerprints initially, we calculated 4812 features
and developed the SVM model which shows 91.62% accuracy
with 0.84 MCC on training dataset and 89.89% accuracy and
0.80 MCC on the validation dataset (Table 4). We applied feature
selection technique on these features reducing them to a total of
18 features (Supplementary Table S2). The SVM based model

developed on these 18 features showed the accuracy of 81.77%
with MCC of 0.64 on the training dataset and accuracy of
79.26% and MCC of 0.59 on the validation dataset. Therefore,
we developed different machine learning models using complete
features and reported the performance in Table 4.

In case of all combined features (2D descriptors +
fingerprints), we calculated 5043 features initially. SVM model
developed using complete feature showed the accuracy of 59.59%
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TABLE 3 | The performance of 2D descriptors based models developed using different machine learning techniques.

Machine learning techniques (parameters) Main dataset Validation dataset

Sen Spc Acc MCC AUROC Sen Spc Acc MCC AUROC

SVM full feature (g = 1e-05, c = 2, j = 2) 56.88 65.77 61.29 0.23 0.70 30.53 91.94 60.90 0.28 0.75

SVM after feature selection (g = 0.1, c = 1, j = 1) 84.92 76.38 80.68 0.62 0.85 84.74 74.73 79.79 0.60 0.87

Random Forest (Ntree = 20) 82.01 77.45 79.75 0.60 0.88 83.68 75.81 79.79 0.60 0.86

SMO (g = 0.1, c = 1) 87.04 74.63 80.88 0.62 0.81 85.79 71.51 78.72 0.58 0.79

J48 (c = 0.25, m = 6) 81.08 77.99 79.55 0.59 0.85 83.68 74.19 78.99 0.58 0.83

Naive Bayes (Default) 87.30 62.82 75.15 0.52 0.83 87.89 61.29 74.73 0.51 0.81

Sen, Sensitivity; Spc, Specificity; Acc, Accuracy; MCC, Matthew’s Correlation Coefficient; AUROC, Area Under the Receiver Operating Characteristic curve.

TABLE 4 | The performance of fingerprints based models developed using different machine learning techniques.

Machine learning techniques (parameters) Main dataset Validation dataset

Sen Spc Acc MCC AUROC Sen Spc Acc MCC AUROC

SVM full feature (g = 0.001, c = 4, j = 1) 95.91 87.25 91.62 0.84 0.97 93.16 86.56 89.89 0.80 0.97

SVM after feature selection (g = 0.1, c = 6, j = 1) 82.85 80.67 81.77 0.64 0.87 82.63 75.81 79.26 0.59 0.84

Random Forest (Ntree = 100) 92.88 90.07 91.48 0.83 0.98 92.63 89.25 90.96 0.82 0.97

SMO (g = 0.001, c = 4) 91.29 89.66 90.49 0.81 0.90 89.47 90.32 89.89 0.80 0.90

J48 (c = 0.4, m = 1) 90.50 88.99 89.75 0.80 0.88 88.95 86.02 87.50 0.75 0.85

Naive Bayes (Default) 84.30 64.56 74.52 0.50 0.74 78.42 65.05 71.81 0.44 0.72

Sen, Sensitivity; Spc, Specificity; Acc, Accuracy; MCC, Matthew’s Correlation Coefficient; AUROC, Area Under the Receiver Operating Characteristic curve.

with MCC of 0.29 on training dataset and accuracy of 59.57%
and MCC of 0.28 on the validation dataset. Feature selection
technique reduced the number of features from 5043 to 20
(Supplementary Table S3). SVM model developed on these
features showed the higher accuracy of 81.76% and MCC of
0.64 on the training dataset, and on the validation dataset, it
achieved an accuracy of 82.71% and MCC of 0.65. Performance
of other classifiers obtained on these features is provided in
Supplementary Table S4. Random Forest performed best among
all the models with accuracy of 90.35% and MCC of 0.81 on
training dataset and accuracy of 88.56% and MCC of 0.77 on the
validation dataset.

Significance of Features
Significant difference was observed between the positive and
negative features based on p-values. For most of the features,
we found the p-value less than 0.05. Therefore, we can
conclude that these features are important and can be used
to discriminate between modified AMPs and non-AMPs. Mean
value of features (positive and negative) along with their
p-value for 2D descriptors, fingerprints and hybrid feature
(2D descriptors + fingerprints) is provided in Supplementary
Tables S1–S3, respectively.

Binary Profile Based Prediction
In this part of the study, the binary profile was generated
using SMILES format, and prediction models were developed
in three different categories. In the first category, where only
atoms were taken we developed SVM based models for the
first 25, 50, and 100 elements from N terminus (N25, N50,

and N100), C terminus (C25, C50, and C100) and joining
both termini (N25C25, N50C50, and N100C100). We obtained
the best performance for the N100C100 binary profile with an
accuracy of 89.84% and MCC of 0.80 on training dataset and
accuracy of 87.37% and MCC of 0.75 on validation dataset
(Table 5). In the second category, we considered only symbols
and calculated the binary profile in the same manner as for the
first category. Here also, N100C100 binary profile achieved the
highest accuracy of 87.42% and MCC of 0.75 on training dataset
and accuracy of 80.53% and MCC of 0.61 on the validation
dataset (Supplementary Table S5). For the last category, where
both symbol and atoms were considered we calculated the binary
profile for the first 50, 100, and 200 elements from N-terminus,
C-terminus, and by joining elements of both termini. Here, the
model developed on N200C200 binary profile performed better
than other models with an accuracy of 89.35% and MCC of 0.79
on training dataset and accuracy of 85.86% and MCC of 0.72 on
validation dataset (Table 6).

Additional Dataset Performance
We evaluated the performance of the model developed on the
additional dataset termed as “Mod_AMP_similar”. Performance
of the SVM models developed on different features like
the composition, chemical descriptors and binary profiles is
compared in Table 7. It can be clearly seen that model developed
using fingerprints with an accuracy of 90.26% and MCC of
0.81 followed by the model developed using N100C100 binary
profile where only atoms were considered performed best with
an accuracy of 89.66% and MCC of 0.80.

Frontiers in Microbiology | www.frontiersin.org 7 October 2018 | Volume 9 | Article 2551

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-09-02551 October 25, 2018 Time: 10:0 # 8

Agrawal and Raghava Chemically Modified Antimicrobial Peptide Prediction

TABLE 5 | The performance of SVM based models developed using binary profile of atoms obtained from terminals of SMILES format.

Feature (parameters) Main dataset Validation dataset

Sen Spc Acc MCC AUROC Sen Spc Acc MCC AUROC

N25 (g = 0.05, c = 8, j = 2) 77.63 75.68 76.67 0.53 0.83 79.59 85.71 82.42 0.65 0.91

N50 (g = 0.01, c = 3, j = 3) 83.17 79.31 81.27 0.63 0.88 90.58 86.40 88.59 0.77 0.93

N100 (g = 0.005, c = 6, j = 2) 85.71 84.18 84.90 0.70 0.93 85.04 84.93 84.98 0.70 0.93

C25 (g = 0.01, c = 5, j = 4) 79.11 70.43 74.70 0.50 0.79 89.19 74.51 82.16 0.65 0.83

C50 (g = 0.1, c = 1, j = 1) 83.47 72.08 77.94 0.56 0.85 88.31 74.83 81.73 0.64 0.91

C100 (g = 0.001, c = 3, j = 2) 82.97 81.85 82.38 0.65 0.89 89.55 77.55 83.27 0.67 0.92

N25C25 (g = 0.01, c = 5, j = 2) 85.69 84.82 85.27 0.71 0.91 84.71 82.31 83.55 0.67 0.92

N50C50 (g = 0.05, c = 2, j = 1) 89.79 87.16 88.47 0.77 0.95 87.43 85.63 86.53 0.73 0.95

N100C100 (g = 0.01, c = 6, j = 1) 90.15 89.58 89.84 0.80 0.96 90.51 84.62 87.37 0.75 0.96

Sen, Sensitivity; Spc, Specificity; Acc, Accuracy; MCC, Matthew’s Correlation Coefficient; AUROC, Area Under the Receiver Operating Characteristic curve;
N25/N50/N100, first 25/50/100 elements from N-terminal; C25/C50/C100, first 25/50/100 elements from C-terminal; N25C25/N50C50/N100C100, first 25/50/100
elements from N-terminal as well as from C-terminal joined together.

TABLE 6 | The performance of SVM based models developed using binary profile of atoms and symbols together obtained from terminals of SMILES format.

Feature (parameters) Main dataset Validation dataset

Sen Spc Acc MCC AUROC Sen Spc Acc MCC AUROC

N50 (g = 0.005, c = 6, j = 2) 75.50 75.76 75.62 0.51 0.80 63.21 92.63 77.11 0.58 0.89

N100 (g = 0.01, c = 2, j = 3) 81.26 80.39 80.84 0.62 0.88 77.62 78.79 78.18 0.56 0.89

N200 (g = 0.01, c = 1, j = 2) 85.28 81.57 83.32 0.67 0.92 81.06 77.48 79.15 0.58 0.90

C50 (g = 0.01, c = 5, j = 2) 72.47 72.13 72.30 0.45 0.79 78.10 71.43 74.88 0.50 0.84

C100 (g = 0.01, c = 3, j = 1) 77.93 75.83 76.94 0.54 0.83 84.42 78.72 81.69 0.63 0.89

C200 (g = 0.005, c = 5, j = 1) 80.80 79.66 80.20 0.60 0.89 83.09 82.05 82.53 0.65 0.92

N50C50 (g = 0.005, c = 8, j = 3) 86.45 84.19 85.36 0.71 0.91 83.97 87.84 85.86 0.72 0.92

N100C100 (g = 0.01, c = 2, j = 1) 90.38 86.25 88.35 0.77 0.96 86.90 84.94 85.93 0.72 0.94

N200C200 (g = 0.005, c = 1, j = 2) 91.59 87.46 89.35 0.79 0.96 89.29 82.93 85.86 0.72 0.94

Sen, Sensitivity; Spc, Specificity; Acc, Accuracy; MCC, Matthew’s Correlation Coefficient; AUROC, Area Under the Receiver Operating Characteristic curve;
N50/N100/N200, first 50/100/200 elements from N-terminal; C50/C100/C200, first 50/100/200 elements from C-terminal; N50C50/N100C100/N200C200, first
50/100/200 elements from N-terminal as well as from C-terminal joined together.

TABLE 7 | The performance of SVM based models developed using different features on additional dataset.

Features (parameters) Mod_AMP_similar Dataset

Sen Spc Acc MCC AUROC

Atom composition (g = 0.1, c = 9, j = 1) 89.47 43.68 66.58 0.37 0.77

Diatom composition (g = 0.05, c = 15, j = 2) 88.42 71.58 80.00 0.61 0.88

2D descriptors (g = 0.1, c = 1, j = 1) 84.74 32.63 58.68 0.20 0.66

Fingerprints (g = 0.001, c = 4, j = 1) 93.16 87.37 90.26 0.81 0.97

Hybrid features (2D + fingerprints) (g = 0.005, c = 7, j = 2) 84.74 58.95 71.84 0.45 0.81

N100C100 Binary profile (only atoms) (g = 0.01, c = 6, j = 1) 90.51 89.44 89.66 0.80 0.97

N100C100 Binary profile (only symbols) (g = 0.005, c = 7, j = 2) 76.98 91.10 84.21 0.60 0.94

N200C200 Binary profile (atom + symbols) (g = 0.005, c = 1, j = 2) 89.29 89.12 89.20 0.78 0.96

Sen, Sensitivity; Spc, Specificity; Acc, Accuracy; MCC, Matthew’s Correlation Coefficient; AUROC, Area Under the Receiver Operating Characteristic curve; N100C100,
first 100 elements form N-terminus and C-terminus, respectively; N200C200, first 200 elements form N-terminus and C-terminus, respectively.

Implementation of the Web Server
To assist the researchers, we have developed a web server
named “AntiMPmod” where the best prediction model has
been incorporated. The PREDICTION module takes a tertiary
structure of the modified peptide (PDB format) as an input
for performing prediction. If a user does not have its own

modified peptide tertiary structure, user can generate the peptide
tertiary structure up to 25 residues in length using the server
“PEPstrMOD”1 (Singh et al., 2015). This server was developed
by our group specifically for tertiary structure prediction of the

1http://webs.iiitd.edu.in/raghava/pepstrmod/
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FIGURE 4 | Schematic representation of AntiMPmod workflow.

modified peptide. A user can select the desired modification
from the wide variety of modification options present at the
server. Once the structure is generated, the user can submit the
structure in the PREDICTION module and can predict whether
the provided peptide was AMP or non-AMP. Another module
termed as “DOWNLOAD”, provides the dataset used in this
study.

Standalone
In order to assist the researchers, we have also developed the
standalone software of AntiMPmod. User needs to pull the
docker image “raghavagps/gpsraghava” and can run the software
using the PERL code provided inside the folder termed as
“gpsr.”

DISCUSSION

Rapidly growing resistance and failure of conventional antibiotics
to treat pathogenic infections are one of the serious public
health concerns (Komolafe, 2003; Fair and Tor, 2014). In

the “post-antibiotic era”, researchers are heading toward the
peptide-based antibiotics due to its various advantages over the
antibiotics. Natural AMPs because of its various therapeutic
properties (bactericidal property, immunomodulatory activity, a
broad spectrum of activity, etc.) have rapidly captured attention
as novel drug candidates. AMPs are short innate immunity
peptides present in almost all living organism and act as a
universal host defense molecule. AMPs belong to diverse families
which include cathelicidins (Zanetti, 2005), defensins (Lehrer,
2004), cercopins (Boman, 2000), and magainins (Berkowitz et al.,
1990). AMPs possess a broad range of properties in terms of
their physiochemical properties, composition, 3D structure and
mechanism of action. Majority of them are small, positively
charged and amphipathic, 4–100 amino acid in length with
diverse amino acid composition (Gentilucci et al., 2006; Wang,
2012). Recently, the 3D structure of the natural AMPs has been
classified into four broad families (i) α-helical (possess helix),
(ii) β-sheet (consists of sheet usually stabilized by disulfide
bonds), (iii) αβ (consists of both helix and sheet), and (iv)
non-αβ (do not have clearly defined structures) (Fjell et al.,
2012). AMPs mostly kill their targets by various mechanisms

Frontiers in Microbiology | www.frontiersin.org 9 October 2018 | Volume 9 | Article 2551

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-09-02551 October 25, 2018 Time: 10:0 # 10

Agrawal and Raghava Chemically Modified Antimicrobial Peptide Prediction

TABLE 8 | The performance of best models developed using different machine learning techniques based on different features.

Feature (machine learning technique with parameters) Main dataset Validation dataset

Sen Spc Acc MCC AUROC Sen Spc Acc MCC

Atom composition (SVM, g = 0.1, c = 9, j = 1) 90.37 83.22 86.83 0.74 0.92 89.47 77.42 83.51 0.67

Diatom composition (Random Forest, Ntree = 150) 94.20 85.23 89.75 0.80 0.96 92.11 82.80 87.50 0.75

2D descriptors (SVM, g = 0.1, c = 1, j = 1) 84.92 76.38 80.68 0.62 0.85 84.74 74.73 79.79 0.60

Fingerprints (SVM, g = 0.001, c = 4, j = 1) 95.91 87.25 91.62 0.84 0.97 93.16 86.56 89.89 0.80

N100C100 Binary profile (only atoms) (SVM, g = 0.01, c = 6, j = 1) 90.15 89.58 89.84 0.80 0.96 90.51 84.62 87.37 0.75

N200C200 Binary profile (atoms + symbols both) (SVM, g = 0.005, c = 1, j = 2) 91.59 87.46 89.35 0.79 0.96 89.29 82.93 85.86 0.72

Sen, Sensitivity; Spc, Specificity; Acc, Accuracy; MCC, Matthew’s Correlation Coefficient; AUROC, Area Under the Receiver Operating Characteristic curve.

such as cell membrane damage or pore formation that leads to
efflux of nutrients and ions (Melo et al., 2009), DNA interference
or signaling responses (Wimley and Hristova, 2011).

Natural ecosystem has been proven a reservoir of a wide
variety of compounds that may be explored for the development
of potential drug molecule. Researchers have explored several
biomes and discovered a large number of AMPs from the
microorganism, plants and animals having therapeutic potentials,
for example, bovine lactoferrin, LL-37 (de Castro and Franco,
2015; Mahlapuu et al., 2016). Literature is full of such discoveries,
and a large number of databases have been developed which
maintains a wide variety of information of AMPs (Novković
et al., 2012; Pirtskhalava et al., 2016; Waghu et al., 2016; Wang
et al., 2016). However, most of the natural AMPs based drug
have not reached clinical trials. This is largely due to the high
structural complexity of the compound, low compound stability,
low activity toward the target, compound side effects, degradation
of the compound by the host enzyme, and the high drug
development cost (de Castro and Franco, 2015). To overcome
the above-mentioned problems, researchers have tried to design
the modified compounds by incorporating various chemical
modifications such as capping, halogenation, hydroxylation,
glycosylation, phosphorylation, designing antimicrobial peptide
mimetic, AMP congeners, AMP conjugates, and immobilized
AMPs. Details of the different kind of modifications for the
novel antimicrobial peptide engineering are reviewed by Wang
(2012). Computational methods have shown a wide variety of
success in the field of drug discovery process (Dhanda et al.,
2017).

In the past, numerous methods have been made for predicting
and designing novel AMP, but one of the biggest limitations of
these methods is that they can only handle the peptide sequence
containing natural residues. In the current study, we have
developed a prediction method which predicts the antimicrobial
property of a given chemically modified peptide using its
tertiary structure. One of the major advantage of using 3D
structure over sequence is the inclusion of chemical modification
information during prediction which is nearly impossible with
sequence based prediction. It is because representing chemical
modification in a sequence is a challenging task. Also, molecular
descriptors can be calculated easily using 3D structure which
covers information of all the chemical properties of a modified
peptide in comparison to sequence. These structure-based

FIGURE 5 | The performance of best models on independent dataset, in
terms of ROC curves developed using different input features.

methods have their own limitations which includes requirement
of tertiary structure of peptides. Experimental techniques (e.g.,
X-ray crystallography, NMR, and cryo-electron microscopy) for
determination of peptide structure are time consuming and
costly. Computational techniques like molecular dynamics and
method like PEPstrMOD for predicting structure from sequence
have their own limitations including accuracy and speed of
prediction. The overall scheme of the AntiMPmod has been
shown in Figure 4. We extracted the modified AMPs and
non-AMPs from the SATPDB database and analyzed these
structures. We found different kind of modifications such as
acetylation, amidation, methylation, glycosylation, and presence
of non-natural residues such as ornithine, norleucine, D amino
acids, etc. Secondary structure content was analyzed by running
DSSP (Kabsch and Sander, 1983; Joosten et al., 2011) and we
found that modified AMPs were highly dominated by turns,
coils and extended loop regions (∼62.5%) followed by helical
content (∼36%) and very little amount of sheet content (∼1.5%).
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We extracted different kind of features such as composition,
chemical descriptors, fingerprints and binary profiles from these
modified peptides and used them for developing prediction
models using various machine learning classifiers. We found that
SVM based model utilizing fingerprints as feature performed
best among all the models followed by the model developed
using binary profiles. In case of binary profile based models, we
observed as the number of terminus elements was increasing
their performance too was increasing and when we join the
elements of both termini, they performed better than their
individual terminus. This suggests that terminus information
plays a significant role in predicting the nature of peptide.
In addition to this, we created an additional dataset where
positive and negative peptides were compositionally similar. We
evaluated the performance of different models on this dataset
and found that binary profile model which considers only atoms
and fingerprint-based model performed best and can classify the
modified AMPs and non-AMPs with higher accuracy. Overall
summary of the result of this study is given in Table 8 where we
have mentioned the best performance obtained by the prediction
model on different input features. Performance achieved on
the independent dataset by the best models developed using
various input features is shown in the Figure 5, where we
have calculated AUROC. We implemented our best model in
the web server “AntiMPmod” and believes that this study will

be helpful for the researchers working in the field of drug
discovery.
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