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Unit, Gif/Yvette, France

Abstract

In natural environments, sensory information is embedded in temporally contiguous streams of events. This is typically the
case when seeing and listening to a speaker or when engaged in scene analysis. In such contexts, two mechanisms are
needed to single out and build a reliable representation of an event (or object): the temporal parsing of information and the
selection of relevant information in the stream. It has previously been shown that rhythmic events naturally build temporal
expectations that improve sensory processing at predictable points in time. Here, we asked to which extent temporal
regularities can improve the detection and identification of events across sensory modalities. To do so, we used a dynamic
visual conjunction search task accompanied by auditory cues synchronized or not with the color change of the target
(horizontal or vertical bar). Sounds synchronized with the visual target improved search efficiency for temporal rates below
1.4 Hz but did not affect efficiency above that stimulation rate. Desynchronized auditory cues consistently impaired visual
search below 3.3 Hz. Our results are interpreted in the context of the Dynamic Attending Theory: specifically, we suggest
that a cognitive operation structures events in time irrespective of the sensory modality of input. Our results further support
and specify recent neurophysiological findings by showing strong temporal selectivity for audiovisual integration in the
auditory-driven improvement of visual search efficiency.
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Introduction

Many ecologically relevant events (such as speech, auditory and

visual scenes, music…) present natural periodicities or statistical

temporal regularities [1–4]. These temporal regularities provide

useful cues to help parse and structure events out of complex

sensory streams notably by building strong temporal expectations

on the upcoming sensory inputs. For instance, it has previously

been shown that a steady rhythmic presentation improves the

detection of an event in a stream [5–7]: the detection of an

auditory (visual) event is improved when it appears one period

after the last auditory (visual) event, but impaired when it is

presented earlier or later than at the instant predicted on the basis

of the previous stimulation rate [5–7]. Such results have been

interpreted in the context of the Dynamic Attending Theory

(DAT) [8].

The DAT provides a mechanism for selective attention in time

i.e. for the parsing of objects based on their inherent temporal

structure or based on the temporal structure of an internal

oscillator. One strong assumption of the DAT is that the brain can

not only keep track of temporal regularities (or environmental

rhythms) but also predict, on this basis, the arrival time of a

transient event that fluctuates at the same rate. As such, the

‘temporal context’, defined as the relative timing between past AV

events, becomes an important factor for attentional selection in

time. One implementation of attentional selection in time heavily

relies on oscillatory mechanisms that lock to the temporal structure

of sensory events [8,9] (Figure S1). This process can be compared

to an expectancy profile that naturally allows attention to be

engaged at the very point in time at which a stimulus is anticipated

to appear or change [5–7]. This temporally precise allocation of

attention could bear functional relevance for the early encoding

and selection of features across sensory modalities. Thus, DAT

sketches an attentional-tracking mechanism over time that is

understudied yet offers interesting complementary views to more

traditional space-, feature- or object-tracking approaches in the

study of attention [10,11]. Here, we asked whether the DAT could

be extended across sensory modalities and whether temporal

regularities can be shown to operate automatically in the selection

of appropriate audiovisual (AV) events.

A first motivation for this experimental work is that the

temporal structure of events is a well-known constraint for

multisensory integration [12–19]; yet, previous studies have

provided contradictory results regarding the automaticity of

attentional selection for synchronous streams of AV stimuli. Using

visual search paradigms with dynamic stimuli, the presence of

rhythmic auditory stimuli synchronized with visual targets can

either improve [20,21] or have no effect [22] on visual search

efficiency. One major difference in these studies was the rate at

which AV events were displayed: no AV search efficiency was

observed for 10 Hz [22] but improvements were reported for

1.1 Hz [20]. Second, recent neurophysiological findings have

suggested that tracking the temporal structure of AV events likely

operates in particular temporal regimes [23–25]. Neural oscilla-

tions are classically known to entrain to rhythmic stimuli [26,27],

thereby providing a direct mechanistic implementation for the

DAT (Figure S1): neural entrainment modulates the excitability of

tuned neural population through time. As such, the processing of
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events in phase with the entrained oscillation is facilitated due to

higher neural excitability [28]. In AV context, it has been shown

that rhythmic sounds lead to neural entrainment not only in

auditory cortex but also in visual cortices [24]; this suggests that

rhythmic auditory stimulation can modulate visual processing at

relevant points in time and could presumably affect visual

detection rates. Third, the AV modulation of neural excitability

across sensory cortices has been demonstrated for neural

oscillations of 1–2 Hz or ‘‘delta band’’ [23–25].The specific

involvement of slow frequency oscillations (1–2 Hz range) may

optimize early AV integration for stimuli in that dynamic range.

The temporal rates between studies [20] and [22], the known

importance of AV transience for multisensory integration [21,29–

31], and the temporal structure of AV events [12,17,18] can all be

limiting factors for automaticity in AV integration. Hence, we

were interested in the effect of AV temporal rate and the temporal

context it confers to visual search efficiency. Specifically, on

neurophysiological grounds, the existence of a temporal threshold

(1–2 Hz) on the automaticity of AV integration is here predicted.

To test this hypothesis, we build on the visual conjunction

search paradigm developed by van der Burg and colleagues [20]: a

horizontal or vertical bar (visual target) surrounded by distracters

of various orientations changed colors at particular temporal rates

(Figure 1, Video S1). We used seven temporal rates and three set

sizes to test whether the rate at which the visual target changed

color alone (V), with a synchronized sound (AVc) or with a sound

synchronized with a distracter (AVi) was a determining factor for

search efficiency.

Results

Visual search efficiency was quantified in terms of RTs and

identification rate: for each trial, participants were asked to press a

button as fast as possible when they saw the target; after detection,

they reported its orientation in a 2-Alternative-Forced-Choice (2-

AFC, ‘‘vertical’’ or ‘‘horizontal’’) allowing the assessment of the

correct identification rate. Statistical analysis was performed using

a linear mixed effects model for RTs and a logistic regression

model for identification rate [32,33]. The fixed factors were

display condition (3: AVc, AVi, and V), set size (continuous factor)

and temporal rate (7 discrete levels). Subjects (n = 24) were a

random effect. Significant fixed factors were assessed by means of

a regression model simplification using the Akaike Information

Criterion (AIC). Each model’s goodness of fit was evaluated

against the inclusion of each variable and interactions across

variables of interests. Table 1 summarizes the comparison of the

obtained models. The main effects of ‘temporal rate’ and ‘set size’

and their interaction with the predictor ‘display condition’

accounted for a significant amount of variance on RTs and

identification rate (Table 1: model 4 and 5, respectively). The

interpretation of all models preceding model 5 and 4 are provided

in text. The additional statistical analyses were conducted with the

regression models containing all significant predictors and

interactions for each dependent variable: namely, model 5 for

RTs and model 4 identification rates. Specifically, all regression

coefficients used to assess statistical significance (t-tests, Wald tests

(yielding Z)) were directly drawn from these two models.

Figure 1. Experimental Paradigm. Each trial started with a fixation point lasting between 1 and 4 seconds (randomized across trials). In the
audiovisual conditions (AVc, AVi) two or three sounds appeared before the visual display in order to avoid a surprise effect at the onset of the first
sound. This was followed by the visual display with or without a sound (AVc and AVi or V, respectively). Participants were asked to find a horizontal or
a vertical bar in the visual display while maintaining their gaze on the fixation point at all times. They were asked to answer as fast and as accurately
as possible by pressing the space bar on the keyboard. One trial lasted a maximum of 10 seconds during which the participant was expected to have
detected the target. After detection, participants were asked to identify the orientation of the detected target (vertical or horizontal). If the participant
had not detected the target, he was nevertheless asked to make a guess. Therefore, this design allowed quantifying two dependent variables:
reaction times (RTs – with a 10 sec imparted limit for the participant’s detection) and identification rate. In subsequent analysis, trials in which the
target was not detected within 10 s were discarded for RTs. The experiment was run in 3 pseudo-randomized blocks corresponding to the display
condition (V, AVc and AVi).
doi:10.1371/journal.pone.0040936.g001

Temporal Structure in Audiovisual Perception

PLoS ONE | www.plosone.org 2 July 2012 | Volume 7 | Issue 7 | e40936



1. Transient Sounds Affect Visual Search Efficiency
Irrespective of Temporal Stimulation Rate

Participants were faster and more accurate at detecting the

target in AVc than in V (significance of contrast coefficient AVc vs.

V for RTs: t = 3.2, p,0.001; for identification: Z = 25.8,

p,0.001) but slower and less accurate in detecting the target in

AVi than in V (significance of contrast coefficient AVi vs. V for

RTs: t = 25.9, p,0.001; for identification: Z = 8.5, p,0.001). An

AV congruency effect (contrast AVc vs. AVi) was observed in both

RTs and identification rates (RTs: t = 9.7, p,0.001; identification:

Z = 213.3, p,0.001). These results suggest that a transient sound

facilitates the detection of a synchronized visual target but also

impairs target detection when it is synchronized with a distracter,

in line with prior reports [20].

A main effect of set size was found (Figure 2; Table 1, ‘‘model 2:

model 1+ set size’’): across all display conditions, search efficiency

decreases when the number of distracters increases (RT slope

= 762 ms/item, t = 4.3, p,0.001). As shown in Figure 2, the set

size impaired RTs more in AVi than in AVc (AVi slope value:

1163 ms/item; AVc slope value: 463 ms/item; t = 2.7, p,0.01).

When gathering data across all temporal rates, no significant effect

was found between the AVc and V slopes (V slope value

1162 ms/item; t = 1.8, p = 0.058) or between the AVi and V

slopes (t = 20.8, p = 0.4). Thus, the number of distracters

influences the visual search less in AVc than in AVi or in V.

However, RTs cannot be taken as definite evidence for

improvements in perceptual processing [34,35]. No significant

interaction between display condition and set size was observed for

identification (Table 1) and the slopes for correct identification did

not significantly differ across modalities when temporal rates were

taken out of the model (Figure 2). Identification rates decreased

with increasing number of distracters whereas the search remained

most efficient in AVc and least efficient in AVi. According to our

hypothesis, efficient AV search may not occur across all temporal

rates (cf. main effects of temporal rates in RT and identification

rate in Table 1, model 3) and we thus turn to the specific effects of

temporal rate on visual search efficiency.

2. Temporal Rates and Attentional Selection
Temporal rates accounted for a significant amount of RT and

identification rate variance (Table 1, model 3): significant effects

were observed for both RT and identification rates between the

different temporal rates (Tables S1 and S2, respectively). Overall,

participants were faster and more accurate at temporal rates below

1.4 Hz compared to rates above 3.3 Hz irrespective of modality

and set size (Figure 3, Table S1 and S2). Abrupt visual onsets are

known to capture exogenous attention [36]. In this paradigm, as

the temporal rate increases so does the number of color changes:

this could lead to a larger temporal crowding effect in which

individuating the visual target in time may become particularly

challenging [37]. Interestingly, temporal rates significantly affected

both RTs and identification rates in AVc and in V but not in AVi

(Tables S3 and S4, respectively). The temporal margin introduced

in our paradigm could have diminished the temporal crowding

effect and benefited target identification in AVc but impaired it in

AVi. However, the lack of temporal rate effect on the identifica-

tion rate in AVi suggests that, consistent with the observed slower

RTs, auditory information may either be disregarded or compete

with desynchronized visual information (in this case, the target).

2.1 Search efficiency and temporal stimulation

rate. RTs were significantly faster in AVc than in V for almost

all temporal rates (significance of contrast coefficients AVc vs. V at

each temporal rate: t0.6 Hz = 3.5, p,0.001; t0.8 Hz = 2.4, p,0.05;

t1.1 Hz = 1.95, p = 0.05; t1.4 Hz = 2.7, p,0.01; t2 Hz = 3.2, p,0.01.

t3.3 Hz = 2.3, p,0.01. t10 Hz = 1.95, p = 0.05) but slower in AVi

Table 1. Summary of linear mixed regression analyses.

RTs

Regression models Df model AIC ChisqChi Df Pr(.Chisq)

model 1: display condition + (1|subject) 5 55263

model 2:1+ set size 6 55243 22.92 1 1.69e-16***

model 3:2+ temporal rate 12 55118 136.85 6 ,2.2e-16***

model 4:3+ display cond. *temporal rate 24 55090 51.43 12 7.84e-7***

model 5:4+ display cond. *set size 26 55086 8.46 2 0.0015*

model 6:5+ set size *temporal rate 32 55091 7.03 6 0.32

IDENTIFICATION

Regression models Df Model AIC ChisqChi Df Pr(.Chisq)

model 1:display condition + (1|subject) 4 8055.3

model 2:1+ set size 5 7965.9 91.3227 1 ,2.2e-16***

model 3:2+ temporal rate 11 7923.1 54.8172 6 5.047e-10***

model 4:3+ display cond. *temporal rate 23 7875.9 71.2673 12 1.854e-10***

model 5:4+ display cond. *set size 25 7877.8 2.0273 2 0.362

model 6:5+ set size *temporal rate 31 7885.4 4.3897 6 0.624

Regression model minimization used the Akaike Information Criterion (AIC) and likelihood ratio. Three factors were analyzed: display condition (3 levels), set size
(continuous factor) and temporal rate (7 discrete levels) plus one random effect (24: participants). Six models were tested to explain the data with increasing order of
complexity, namely: model (1): the effect of display condition; model (2): model 1+ set size; model (3): model 2+ temporal rate; model (4): model 3+ display condition 6
set size; model (5): model 4+ display condition 6 temporal rate; model (6): model 5+ set size 6 temporal rate. Bold models designate those variables significantly
contributing to model estimate.
doi:10.1371/journal.pone.0040936.t001
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compared to V only for temporal rates below 3.3 Hz (significance

of contrast coefficients AVi vs. V at each temporal rate: t0.6 Hz

= 25.3, p,0.001; t0.8 Hz = 25.8, p,0.001; t1.1 Hz = 25.8,

p,0.001; t1.4 Hz = 24.2, p,0.001; t2 Hz = 3.2, p,0.01. t3.3 Hz

= 21.3, ns; t10 Hz = 21.1, ns). Note however that the limit of

3.3 Hz in AVi is not due to the interaction of RTs with temporal

rate but rather to the slowing down of RTs in AVc and V with

increasing temporal rates (cf. Fig. 3a). The constant RT difference

(about 320 ms) across temporal rates between AVc and V support

an effect of overall alertness affecting the central decision stage

[38].

Identification was significantly worse in AVi compared to V,

below 3.3 Hz (AVi vs. V: Z0.6Hz = 2.5, p,0.05; Z0.8Hz = 2.9,

p,0.01; Z1.1Hz = 3.8, p,0.001; Z1.4Hz = 5.2, p,0.001; Z2Hz

= 4.3, p,0.001; Z3.3Hz = 1.4, p = 0.15; Z10Hz ,1); for temporal

rates below 1.4 Hz, identification in AVc was significantly better

than in V (AVc vs V: z0.6 Hz = 23.5, p,0.001; Z0.8 Hz = 23.3,

p,0.01; Z1.1 Hz = 22.7, p,0.01; Z1.4 Hz = 21.8, p = 0.07; Z2 Hz

,1; Z3.3 Hz = 21.9, p = 0.055; Z10 Hz = 21.4, p = 0.2).

These results suggest that true AV benefits in search efficiency

(considering both RT and identification rate) are constrained to

temporal rates below1.4 Hz: informational gain could be uniquely

obtained in the range of temporal rates in which auditory

information affects visual analysis and/or the robustness of the

target representation and within which the temporal structure of

events can be tracked.

2.2 Two search regimes based on temporal rate. To

establish whether AV search operates in two modes based on the

temporal structure of events (namely, one of automatic AV

integration at low temporal rates and one of AV competition at

higher temporal rates), data were divided into two groups

(temporal rates below and above 1.4 Hz; preliminary statistical

analysis was conducted to determine this grouping albeit details

are not reported here for sake of clarity).

A main effect of display condition on RTs was found for the

below 1.4 Hz group (AVc vs. AVi: t = 14.77, p,0.001; AVc vs. V:

t = 4.58, p,0.001; AVi vs. V: t = 29.99, p,0.001) and the above

1.4 Hz group (AVc vs. AVi: t = 11.54, p,0.001; AVc vs. V:

t = 5.09, p,0.001; AVi vs. V: t = 26.27, p,0.001). Similarly, a

main effect of display condition was found for identification rates

in the below 1.4 Hz group (AVc vs. AVi: Z = 210.14, p,0.001;

AVc vs. V: Z = 25.41, p,0.001; AVi vs. V: Z = 5.61, p,0.001)

and in the above 1.4 Hz group (AVc vs. AVi: Z = 27.71,

p,0.001; AVc vs. V: Z = 22.06, p,0.05; AVi vs. V: Z = 5.62,

p,0.001). However, differences in identification rate between

AVc vs. V and AVi vs. V conditions obtained in the below 1.4 Hz

group were twice as large as those obtained in the above 1.4 Hz

group (Figure 4).

More importantly, the effect size was only found to be

significant for the below 1.4 Hz group between the conditions of

interests (Figure 4), namely RTs and identification rates were less

affected by the number of distracters in AVc than in V in this

group (RT: AVc slope value: 163 ms/item, V slope va-

lue:1163 ms/item; t = 22.1, p,0.05; identification AVc slope

value: 20.160.02%/item, V slope value: 20.260.07%/item:

Z = 2.1, p,0.05). The slope of RTs was also found to be much

steeper in AVi than in AVc (AVi slope value: 1364 ms/

item;t = 22.0, p,0.05). Additionally, no difference in slopes was

found between AVi and V (RTs: t = 0.3, ns, identification: Z = 0.2,

ns). The major decrease in AVc slope compared to other

conditions suggests that the target is more immune to the presence

of visual distracters in this display condition; 1.4 Hz appears to be

a temporal rate below which a synchronous sound automatically

improves visual search efficiency by helping the individualization

or segregation of visual targets presented in a dynamic stream of

events.

Discussion

In this study, we first replicated prior findings showing that RT

and identification of a visual target in a dynamic conjunction

search task is more efficient when a transient sound is synchro-

nized with the visual target color change (AVc) at 1.1 Hz [20].

Additionally, we showed that visual search efficiency is impaired in

AVi - sound synchronized with a visual distracter color change -

compared to V or AVc. Crucially, we showed the existence of two

temporal regimes: one in which AVc search reveals an automa-

ticity profile for temporal rates below 1.4 Hz (no effect of number

of distracters on RT or identification rate), and the other in which

a competition profile is seen above 1.4 Hz.

The 1.4 Hz temporal limit found here may provide an insight

on how to disambiguate conflicting results in the literature:

whereas some studies have supported the existence of automaticity

in AV integration [20], others have postulated that AV integration

was post-attentional [22]. Our first working hypothesis was that

both studies used a very different temporal rate (1.1 Hz in the

Figure 2. Effect of number of distracters on RT and identification rate collapsed over all temporal rates. Mean response times (A) and
detection rates (B) per condition and per subject as a function of set size. Bars denote two SEM. A significant interaction was found between display
condition and set size for RTs. The slope of the curve RTs = f(set size) was significantly lower in condition AVc than in condition AVi. The number of
distracters affected the visual search less when a sound was synchronized with a target color change than in the absence of sound (V) or in
desynchronized condition (AVi).
doi:10.1371/journal.pone.0040936.g002
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former, ,10 Hz in the latter). We now show that these temporal

rates are indeed in and out of the efficiency search range observed

here, respectively. Thus, our study suggests that the presence of

transient events may be a necessary [21] but insufficient condition

for automatic AV integration: specifically, we suggest that shared

temporal structure between auditory and visual events matters.

1. AV Attentional Selection Depends on Temporal
Structure

In this paradigm, two properties were shared between audition

and vision: first, the transience of a sound aligned in time with the

abrupt visual color change of the target or distracter and second,

the temporal context, namely the relative temporal history

between past AV events. One question is thus whether AV

synchrony is a determining factor in sensory selection [20,21] or

whether the temporal structure of sensory events also matters for

the observed improvements in AV search efficiency.

First, it has previously been argued that AV synchrony and the

transience of events were critical factors for improved visual search

efficiency [21]. If improved search efficiency solely relied on

instantaneous AV integration (i.e. independently of the temporal

context), the temporal stimulation rate effects could be argued to

Figure 3. Main effect of temporal rates collapsed across all set sizes on reaction times and identification rate. Mean response times (A)
and detection rates (B) per condition (V: crosses, AVc: filled circles and AVi: open circles). Bars denote are two SEM. A sound synchronized with the
visual target color change fastens RTs for all temporal rates (Fig. 3a) and improves target detection only below 1.4 Hz (Fig. 3b). The level of
significance between AV (AVc and AVi) and V conditions are reported as follows: *p,0.05; **p,0.01; ***p,0.001, #p,0.055.
doi:10.1371/journal.pone.0040936.g003
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be a consequence of visual temporal crowding effects. Specifically,

as the number of visual event changes increase (with faster

temporal rate), visual search efficiency should decrease (slower

RT, poorer identification rate). Such temporal crowding effect in

vision should equally affect search efficiency irrespective of the

modality of presentation (V, AVc, AVi). Our results clearly suggest

that this is not the case: the profiles observed as a function of

distracter number under different temporal rates indicate speci-

ficities both in the RT and in the identification rates with distinct

patterns under and above 1.4 Hz.

Additionally, recent evidence [39] suggests that multisensory

integration is pre-attentive when the spatial location of a visual

stimulus is already resolved. The discrepancy between Alsius et al.

[39] and van der Burg et al. [20] were deemed to rely on the

nature of audiovisual stimuli: AV speech in the former case,

transients AV events in the latter. If transient sounds can provide

strong temporal anchors for the parsing of visual events thereby

enhancing visual spatial search, temporal information extracted

from auditory speech stream may be more subdued and less

informative for visual segmentation [39]. In our experiment,

transient tones were used (similar to [20]); it could be argued that

at higher temporal rates, the search becomes inefficient due to the

inability to extract temporal anchors from the acoustic stream.

However, the fastest temporal rate in our experiment was 10 Hz

(one 15 ms tone every 100 ms on average). Even at this high

display rate, sounds are perceptually discrete and preserve the

ability to affect in a non-random fashion the discrimination of

temporal visual structure [12]. One interesting question is thus

whether systematic manipulation of the salience in the natural

temporal modulation of AV speech could affect the results

reported in Alsius et al. [39].

Second, the temporal distance between visual events (target and

distracters alike) was carefully controlled so that when a sound

occurred, only one auditory and one visual event could be

integrated at a time (see Methods). For most temporal rates tested

here (except arguably 10 Hz, see Methods) the temporal distance

was large enough for the visual target and the sound cue to

integrate. If improvement in visual search efficiency solely relied

on the integration of a single AV occurrence, no temporal rate

effect should be observed. Hence, the significant temporal rate

effects suggest that AV synchrony is not the sole factor in the

sensory selection process: namely, the temporal context plays a critical

role (in vision see also [40–42]).

The role of temporal context can further provide an account of

the empirical discrepancies regarding the effect of a temporally

incongruent sound in visual search. In our study, the sound-

distracter pairing was temporally uncorrelated with the target’s

color change, i.e. no temporal structure was shared between

distracters and targets. In van der Burg et al. [20], the authors

reported that a sound could improve visual search even when

synchronized with a visual distracter: when a sound-distracter’s

color change shortly preceded the target’s color change, efficient

search was observed. However, in this control condition, the sound

preserved its temporal cueing property with respect to the target:

Figure 4. Grouped RTs and identification rates as a function of set size. Grouped RTs (upper panels) and identification rates (lower panels)
as a function of set size for temporal rates under (A) and above (B) 1.4 Hz. Bars are two SEM. In the below 1.4 Hz group, slopes in AVc are shallower
than in AVi and V conditions; this suggests that visual search is less impaired by distracters in AVc. In the above 1.4 Hz group, no significant
differences in slopes were found.
doi:10.1371/journal.pone.0040936.g004

Temporal Structure in Audiovisual Perception

PLoS ONE | www.plosone.org 6 July 2012 | Volume 7 | Issue 7 | e40936



the sound-distracter pair and the target was systematically and on

average separated by 200 ms. It is thus not entirely surprising that

the sound-distracter pair kept on improving the target detection in

[20] since temporal correlations between sound-distracter and

target color changes were maintained.

For these reasons, we suggest that the improvement (impair-

ment) observed in AVc (AVi) search efficiency below 1.4 Hz

originates from AV perceptual grouping in time. One important

issue in multisensory integration is whether the identity of AV

information matters in the integration process. This has lead to

two hypotheses: ‘‘multisensory enhancement hypothesis’’ or

‘‘perceptual grouping’’ hypothesis [29,30]. Although our paradigm

essentially addressed the former issue, our results are consistent

with the ‘common-fate’ Gestalt principle, namely, features that

have the same dynamics are more likely to be perceived as

belonging to the same perceptual object. This has previously been

demonstrated in visual [40–42] and in auditory grouping [43–44].

Our data add to this literature and suggest that a similar principle

may be driving AV integration for certain temporal regimes. AV

synchrony [20] but also, and crucially, AV temporal structure are

fundamental to perceptual grouping in AV integration.

2. AV Temporal Prediction Benefits Visual Encoding
In line with - and as a multisensory extension of – the original

DAT proposal [8] (Figure S1 panel A), selective attention can

fluctuate in time and predict the arrival of future events based on

the rate of presentation of the preceding stimuli. This, we suggest,

may occur irrespective of the sensory modality of input.

Additionally, the rhythmic occurrence of AV events may enable

the elicitation of a (AV) temporal expectancy profile. It is

noteworthy that two to three auditory events occurred before

the visual display was shown thereby enabling a temporal

expectancy profile to emerge even before the visual target first

changed color. This may partly account for the overall faster RT

observed in our study as compared to original findings [20].

Importantly, at rates below 1.4 Hz, both RTs and identification

rates improved suggesting specificity in the AVc integration

process. As observed within modalities [5–7], AV stimulus

repetition may improve the precision of visual encoding. For

instance, in agreement with the repetition-expectation effect [45],

the extraction of visual information may be enhanced by the

temporal predictability of the visual target based on the AVc

temporal rate. Said differently, the shared temporal structure of

AV events enables precise temporal prediction of the timing of the

visual target change (Figure S1, panel B). In AVi condition, AV

integration is prevented as sounds cue for the color change of a

distracter (Figure S1, panel C). Additional experiments are needed

to explore to which extent auditory and visual streams may enter

in competition for attentional selection at these rates.

Like the DAT, alternative approaches based on the temporal

statistics of events [46,47] predict the establishment of an

expectancy profile after the presentation of rhythmic stimuli.

Based on the interval-based mechanism of perceptual timing [46],

the extraction of temporal properties of a stimulus relies on the

memory of interval durations between previous stimuli, not on the

synchrony of events entrained by an internal oscillator. In our

study, the arrival time of the next AV event would thus be

computed based on the distribution of previous temporal delays

between AV events. The central tendency and the dispersion of

the distribution could encode the nature and the strength of the

temporal expectancy. However, our main finding cannot be

accounted for by these models: specifically, in case of repeated

stimulation, such models predict an increase in strength and

accuracy of the temporal prediction. In this paradigm, this would

translate into a more efficient search for high temporal rates –

considering that more events are displayed per second. The

opposite effect was found here.

3. The Attentional Selection Threshold is Consistent with
Neurophysiological Findings

Recent neurophysiological findings have suggested that atten-

tional selection across sensory modalities may be implemented as

entrainment of neural oscillations whether stimuli are rhythmic or

present inherently a complex temporal structure [23–25,28,48–

50]. Using simple rhythmic AV stimuli, the neural entrainment of

auditory and visual cortices has been demonstrated in the 1–2 Hz

range (‘‘delta band’’) [23–25].

One mechanistic view of brain function is that cortical

oscillations naturally impose their temporal granularity on the

parsing of sensory information. This has been shown in speech

[51], in vision [48,52] and extended to AV parsing [3]. If AV

attentional selection operates in the 1–2 Hz range as suggested by

monkey neurophysiology work [23–25], this mechanism should

bear functional relevance to the central question of automaticity in

AV integration [53]. These findings constitute a major prediction

for the existence of a temporal boundary for AV attentional

selection.

The 1.4 Hz limit in AV search efficiency is thus in line with

neurophysiological predictions: specifically, neural entrainment

above that temporal modulation would lead to a processing

bottleneck of event tracking in time (Figure S1, panel B, cases

illustrating the .1.4 Hz). Neural entrainment is characterized by

an increased neural excitability at a particular phase of the

entrained oscillation: if (i) neural entrainment is conceived as the

mechanistic implementation of the expectancy profile hypothe-

sized in the DAT [7] and (ii) auditory stimuli can entrain

oscillations in visual cortices [24], then our results suggest that the

encoding of visual events co-occurring with the sound will be more

efficient at the time predicted by the auditory stimuli. In this

context, the encoding of a visual event is as efficient for a target as

for a distracter, as long as it shares its temporal structure with the

auditory stream. Hence, when the visual event is a target, RTs and

identification benefit from this automatic attention selection

mechanism; when the visual event is a distracter, this mechanism

impairs efficient detection of the target. In AVi, the automaticity of

temporal parsing induced by the auditory rhythm hinders, and

perhaps competes with, the detection of the visual stream that does

not share the same temporal structure. Indeed, in AVi, the visual

target stream cannot be tracked automatically and requires

additional attentional resources as can readily be seen with the

RTs increase and the lower identification rate irrespective of

temporal rates (Figure 3). This attentional selection mechanism

provides specific and testable neurophysiological predictions of

increased (AVc) and decreased (AVi) search efficiency - or

decreased and increased AV competition, respectively (Figure

S1, panel B and C).

Interestingly, a complementary and very recent hypothesis has

been put forward suggesting that auditory events affect the

number and duration of visual fixations during visual search.

Specifically, using a very similar paradigm, the authors showed

that sounds synchronized with the visual target changes induced a

‘freezing’ of oculomotor scanning thereby allowing for a temporal

and spatial enlargement of attentional focus [54]. These results

also nicely suggest temporal limits on the attentional sampling

mechanisms, albeit with an occulomotor perspective; the effect of

different temporal rates on the occulomotor behavior could thus

be interesting to explore. However, it is noteworthy that the notion

of temporal freezing related to previous work [55] is difficult to
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reconcile with the faster RT in congruent AV conditions. Whether

occulomotor scanning is implicated and necessary in the reported

effects or whether a purely perceptual and neurophysiological

temporal sampling account is sufficient remain to be elucidated.

One limitation remains in both our study and early neurophys-

iological findings [23–25], namely: the temporal structure of

events is imposed by the stimulation rate and not necessarily

imposed by ongoing neural oscillations. Automaticity is demon-

strated in the context of salient entrainment of AV stimuli but it is

unclear whether a similar limit on the automaticity of attentional

selection would be observed for AV stimuli with more complex

dynamics (e.g. as in AV speech [39]) or using a very different

paradigmatic approach (e.g. as in [29–30]). Nevertheless, a recent

behavioral study [56] using non-rhythmic stimulation further

suggests that similar selection attentional mechanisms can affect

perception: in a visual detection task, hit rates were shown to

change periodically through time and maximum hit rates were

phase-locked to the sound onset. The authors reported that the hit

rates periodicity approximated 1 Hz although different temporal

rates were not explicitly tested.

4. Conclusion
In a visual conjunction search paradigm, sounds can improve

and impair search efficiency when synchronized or desynchro-

nized with a visual target, respectively. Major improvements in

search efficiency are limited to temporal stimulation rate slower

than 1.4 Hz whereas impairments are consistent across temporal

rates. Our results are interpreted in the context of the DAT [8] in

the temporal frequency range predicted by monkey and human

neurophysiology [23,24,25]: specifically, brain rhythms in the 1–

2 Hz range naturally impose a limit on the attentional selection of

events in time irrespective of sensory inputs. This can be

considered a temporal Gestalt that operates at a slow rate across

sensory modalities and enables automatic audiovisual integration.

Materials and Methods

1. Subjects
Twenty-four volunteers (13 females, mean age: 22.5 years old)

participated in the study. All had normal, corrected-to-normal

vision, normal color vision and normal hearing, and were naive as

to the purpose of the study. Each participant provided an

informed consent in accordance with the Declaration of Helsinki

(2008) and the Ethics Committee on Human Research at

NeuroSpin (Gif-sur-Yvette, France).

2. Stimuli
Experiments were run in a darkened soundproof cabin.

Participants were positioned on a headrest apparatus 70 cm away

from a Viewsonic CRT monitor (1999, 60 Hz). Auditory stimuli

were presented via two speakers located on each side of the

monitor. Visual stimuli consisted of an array of colored bars

displayed on a black background (Figure 1). All bars were the same

size (length: 0.57u; width: 0.19u) and randomly placed on a circular

display with maximal eccentricity at 30u. All bars had random

orientations except for the target which was vertical or horizontal.

In each trial, the set size was 36, 48 or 60. A target could never

appear within a radius of 3u around the white fixation point. In the

initial frame, a color (red and green) was randomly assigned to

each bar. All bars changed color through time. The timing of color

changes was manipulated so that they always occurred at a given

average temporal rate within one trial (but differed across trials).

The temporal rates (F) tested were 0.56, 0.77, 1.1, 1.4, 2, 3.3 and

10 Hz. For a given trial presented at F, the delay between two

color changes of a given bar was randomly chosen following a

normal distribution with a mean of 1/F and a standard deviation

of 1/4F. Three modalities of presentation were examined. In V,

visual stimuli were displayed without any sound. In AV, a 15 ms

(incl. 5 ms fade-in and -out) 2 kHz tone (44.1 kHz sample rate,

16 bit, mono) was synchronized with the color changes of a given

bar in the display. In AVc, the sound was synchronized with the

color change of the target; in AVi, the sound was synchronized

with a randomly chosen distracter (the same one within a trial).

Importantly, a sound had to be synchronized with only one bar at

a time: to minimize the perceived synchrony between the color

changes of the distracters and the sound, a temporal margin

surrounding the sound/target onset was introduced during which

no bars could change color. This temporal margin was scaled on

the tested F: 616.7 ms for 10 Hz, 650.1 ms for 3.3 Hz,

683.5 ms for 2.0 Hz, and 6117 ms for the remaining rates. In

V and AVc, the temporal protection margin was applied to the

target; in AVi, it was applied to the distracter.

3. Procedure
Participants were asked to find as fast and as accurately as

possible the target while maintaining their gaze on a central

fixation point. Each trial started with the presentation of the

fixation point for a random duration (1–4 seconds) followed by the

visual display. In AVc and AVi, two or three sounds were played

before the visual onset to avoid surprise effects at the onset of the

first sound. The presence of a sound synchronized with the target

was expected to improve the speed of target detection [20]. In our

paradigm, the sound onset was directly tied to F, namely, the

higher the F, the earlier the auditory onset. To avoid a confounded

faster RT, the first color change of the target occurred

systematically at 300 ms after the display onset in all conditions.

After detection or after 10 s has elapsed, participants reported the

orientation of the target in a 2-Alternative-Forced-Choice (vertical

or horizontal). The efficiency in visual search was quantified in

terms of reaction times (RTs) and correct detection rate. We

excluded the RTs from trials in which the target was not detected

within 10 s (14% of the trials) from the data analysis. Each

condition was repeated 15 times. The experiment was run in 3

blocks corresponding to the modality of presentation. Participants

were told to ignore sounds as they were irrelevant to the task. The

order of block presentation was counterbalanced across partici-

pants. The first block was used as a training session for all

participants. The analysis focused on the last two blocks, when

participants had reached asymptote on the task.

4. Statistical Analysis
Statistical analysis was performed using Linear Mixed Effects

models [32] with R [57] (R Foundation for statistical computing).

Linear mixed models can be thought of as a generalization of

linear regression models: in mixed regression models, data are not

aggregated, and statistics are made on all observations. Specifi-

cally, participants were considered as a random effect and separate

regression models were fitted to the entire data set (i.e. one for

each participant). This approach increases statistical power

without over-fitting the data. On the contrary, classical regression

models and repeated measures ANOVAs are based on the

comparisons of measured means according to variables of interest

(or fixed factors). Hence, unlike repeated measures ANOVAs in

which comparisons are made between averaged data (information

carried out by each observation is lost), in the mixed models used

here, each observation is taken into account while considering the

variability between subjects as a random effect. Additionally, the

analysis of a categorical dependent variable (e.g. identification
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rate) is possible using a logistic mixed regression whereas

ANOVAs may bring spurious results [33].

Thus, we selected this method as it is best suited for this study:

fixed factors were display condition (3: AVc, AVi, and V), set size

(continuous factor) and temporal rate (7 discrete levels). Subjects

(n = 24) were a random effect. We considered ‘set size’ as a

continuous factor because the RTs and identification rates as a

function of set size fit well with the assumptions of a linear

regression. We considered ‘temporal rate’ as a discrete factor

because the dependency of RTs and identification rates as a

function of temporal rate is not linear. Significant fixed factors can

be assessed in two ways: (i) a regression model simplification using

the Akaike Information Criterion (AIC) or (ii) the likelihood ratio

using Chi square. The AIC is a measure that optimizes model fit

by taking into account the amount of explained variance as well as

the degrees of freedom. This procedure ensures that the obtained

model achieves the best fit to the data with the minimum number

of predictor variables. When two models are compared, the AIC

provides information about whether the predictors added in the

second model account for a significant amount of variance in the

dependent variable. The best model corresponds to the minimal

AIC. For instance, in the reported tables (e.g. Table 1), the list of

models is provided along with their respective AIC index. The

model that best fit the data is the one with the minimal AIC, here

model 5 (for the RTs) and model 4 (for the identification rates).

Consistent with this, the best models can also be found using Chi

square.

The best model using the likelihood measure is defined by a

significant Chi square test (Pr (.Chisq)) comparing one model in

the list to the next (e.g.: model 1 vs. 2, then model 2 vs. 3 and so

on). The last comparison providing a significant effect points to the

best model: namely, in our example, model 5 (RTs) and 4

(identification rates). The ‘‘ChisqChi’’ value corresponds to twice

the difference of the log likelihood of the two models. Both AIC

and Chisqu values are reported in Table 1.

Simpler models (for instance, let’s consider models 1 to 4 for

RTs in Table 1) do provide crucial information. Low AIC or

significant Chi square tests for these models are interpreted as

follows: the factor of interest (e.g. model 2, factor of set size)

significantly impacts the model fit irrespective of all other factors –

and hence, has a significant effect in our paradigm. This is

analogous to stating a ‘‘main effect’’ for the more classic ANOVA

approach. Here, the procedure is iterative such that adding

another factor may enable better model fit (e.g. model 3 and so on)

leading to the preferred model that explains most of the data

(model 5 in our example). Hence, all factors up to model 5

(including their interactions) showed significant RTs effect.

The lme4 package [58] was used to obtain parameter estimates

and the language package [32] was used to obtain the reported p-

values. The ‘lmer’ function yielded regression coefficients and

related t statistics (exclude degrees of freedom), and p-values were

derived from a Markov Chain Monte Carlo (MCMC) [32].

Statistical tests were carried out on the contrast coefficients resulting

from the selected linear mixed effect model. For instance,

contrasting two levels for the display condition (AVc vs. V) yields a

contrast coefficient submitted to a t-test for RTs and Wald test for

identification rates. As a rule of thumb, statistical tests reported here

vary according to the dependent variables, namely Student t-tests for

the RTs and Wald tests for the identification rates [33].

Supporting Information

Figure S1 Dynamic Attending Theory (DAT), neural
implementation as oscillatory entrainment and rele-

vance for findings on AV selective attention. (A) The DAT

[8] postulates that attention is a dynamical process which oscillates

in time and entrains to the temporal structure of events. Event
Timing: dynamics of stimuli in a scene. Stimuli need not be

isochronous – for illustrative purposes, events are represented with

a particular rhythm. Events can be auditory or visual. Modula-
tion of attentional focus over time: a temporal expectation

profile builds up over time (i.e. after several occurrence of a same

event) leading to a narrowing of attentional focus (from ‘‘wide’’ to

‘‘narrow’’, [5]). The ‘‘narrow foci’’ are also times of high

expectation (temporal prediction). Thus, the attentional profile

oscillates between periods of high and low temporal expectation.

Implementation: one suggested implementation of the DAT

[5,7] is via an oscillatory mechanism represented here as a simple

waveform entrained to the rhythm of events. Recent neurophys-

iological evidence has suggested a similar neural implementation

for attentional selection across auditory and visual sensory

modalities, specifically with neural oscillations in the 1–2 Hz

range [23–25]. In neural terms, high temporal expectations (or

narrow attentional foci) are periods of high neural excitability. The

encoding of events at the entrained rhythm is more efficient during

period of increased neural excitability. For synchronized AV

events, the auditory entrainment of oscillations in visual cortices

leads to high expectation/excitability periods synchronized to the

sound [23–25]. We now illustrate the implications for the AVc and

AVi conditions tested in this study. (B) In AVc, the high

expectation/excitability period is aligned to the target enabling

faster RTs and improved identification rate. (C) In AVi, these

periods are aligned with a distracter, leading to slower RTs and

poorer identification rate. Temporal rate effects: modulation

of visual search efficiency by the temporal rate of AV displays. The

working hypothesis was that visual search efficiency would be

frequency-specific: search would be efficient in the range of

oscillatory entrainment but not above. Data revealed a 1.4 Hz

boundary. Neural predictions: oscillations in visual cortex are

entrained to the sound. Neural entrainment (alternation of high

and low excitability phases) yields an expectancy profile favoring

the encoding of visual events synchronized with the sounds (either

the target (B), or one distracter (C)). When the temporal rate is

above the oscillatory mechanism (B or C, right panels), the sound

phase resets the entrained oscillation before it reaches a low

excitability state. As the system is continuously solicited, no

expectancy profile can be built and visual targets cannot benefit

from the sound despite sharing the same temporal structure.

(TIF)

Table S1 Effect of temporal rate on RTs irrespective of display

condition (V, AVc and AVi combined). Table shows contrast

coefficients (italics, regression coefficients referring to contrast

between two levels of one factor) between the different temporal

rates and their related t values. Statistics were computed using

mixed regression analysis with model 4 (cf. Table 1). Corrected

p values were estimated using a Monte Carlo procedure. The

reported significance values are as follows: *p,0.05; **p,0.01;

***p,0.001

(DOC)

Table S2 Effect of temporal rate on identification rate

irrespective of display condition (V, AVc and AVi combined).

Table shows contrast coefficients (italics, regression coefficients

referring to contrast between two levels of one factor) between the

different temporal rates and their related Z values (Wald tests).

Statistics were computed using mixed regression analysis with

model 4 (cf. Table 1). Corrected p values were estimated using a
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Monte Carlo procedure. The reported significance values are as

follows: *p,0.05; **p,0.01; ***p,0.001.

(DOC)

Table S3 Effect of temporal rate on RTs per display condition.

Table shows contrast coefficients between temporal rates for each

display condition level and their related t values. Statistics were

computed using mixed regression analysis with model 4 (cf.

Table 1). Corrected p values were estimated using a Monte Carlo

procedure. The reported significance values are as follows:

*p,0.05; **p,0.01; ***p,0.001.

(DOC)

Table S4 Effect of temporal rate on identification rate per display

condition. Table shows contrast coefficients between the temporal

rates for each display condition and their related Z-values. Statistics

were computed using mixed regression analysis with model 4 (cf.

Table 1). Corrected p values were estimated using a Monte Carlo

procedure. The reported significance values are as follows: *p,0.05;

**p,0.01; ***p,0.001.

(DOC)

Video S1 Experimental paradigm. The video shows

successively a trial (frequency of 1.1 Hz) in visual (V), congruent

audiovisual (AVc), and incongruent audiovisual (AVi) conditions.

Note that the display rate may be altered pending computer

parameters.

(MPG)
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