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A B S T R A C T

Tuberculosis (TB) poses a significant threat to the Indian population, with India accounting for 20 % of the global 
TB cases. The current study aims to identify molecular biomarkers for better diagnostics by comparing the 
transcriptome signatures of healthy individuals against TB-affected individuals. Next-generation sequencing 
(NGS) tools were used to identify critical differentially expressed genes (DEGs). 302 DEGs were identified based 
on a logFC threshold of |3| and adjusted p-value < 0.05. STRING database was used to plot the interactions 
amongst the 302 DEGs. The DEGs were functionally annotated, highlighting numerous physiological functions 
affected due to the dysregulation of the identified hub genes. TLR4, FCGR1A, ITGAM, LTF, and CXCR2 were the 
hub genes identified and observed to dysregulate crucial physiological functions. TLR4 has been implicated in the 
progression of TB in various populations, and the findings of this study will enable researchers to improve the 
current landscape of diagnostics for TB.

1. Introduction

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is a 
contagious disease primarily affecting the lungs and spreading via the 
respiratory route. Only about 10 % of those infected with Mtb develop 
active TB, while most harbor the bacteria dormant. Although TB typi
cally manifests in the chest, it can lead to extra-pulmonary infections, 
which constitute approximately 15 % of all TB cases and are particularly 
challenging to diagnose and treat, especially in HIV patients [1,2]. The 
risk of developing active TB is highest shortly after initial infection and 
significantly increases in individuals with compromised immune sys
tems, such as those with HIV/AIDS [3]. Consequently, TB is the leading 
cause of death among individuals with AIDS, accounting for around 13 
% of AIDS-related deaths globally [4]. HIV-positive individuals have a 
20 to 30 times higher risk of developing active TB [5], which can be 
managed with antiretroviral therapy (ART) alongside intensive TB 
medication. Diabetes mellitus (non-insulin-dependent) is another crit
ical factor for TB patients, associated with higher rates of treatment 
failure, relapse, and mortality [6]. Diabetes adversely affects TB 

treatment outcomes through altered immune responses [7], increased 
insulin resistance induced by anti-TB drugs like rifampicin, and 
compromised immunity [8]. Accurate and timely TB diagnosis is crucial 
for reducing mortality and preventing premature death. Conventional 
diagnostic methods include sputum smear microscopy, cultures, tuber
culin skin test (TST), chest X-ray, nucleic acid amplification tests, TB 
ELISA, and Interferon-gamma Release Assays (IGRAs) [9]. While sputum 
smear microscopy is cost-effective and convenient, it has poor sensi
tivity, with over 30 % of cases yielding false-negative results. Bacterial 
cultures, considered the gold standard for TB detection, are 100 times 
more sensitive than smear microscopy but require over two weeks for 
initial results [10].

Techniques such as TST, IGRAs, ELISA, and urinary lip
oarabinomannan tests diagnose latent TB [11,12]. In contrast, pheno
typic drug susceptibility testing, luciferase reporter assays, probe-based 
assays, molecular drug susceptibility testing, DNA microarrays, and 
loop-mediated isothermal amplification (LAMP) are used to detect 
multidrug-resistant TB. Conventional methods face significant limita
tions, including time consumption, low sensitivity, false negatives, poor 
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efficiency, bacterial viability detection, and inadequate strain differen
tiation [11,12]. To address these challenges, advanced techniques like 
digital PCR have been developed, which are capable of detecting 
extra-pulmonary TB even with minimal DNA and can be combined with 
methods like the Xpert MTB/RIF assay to improve accuracy [13,14].

TB is treated with a six-month regimen of four drugs: isoniazid (INH), 
rifampin, ethambutol, and pyrazinamide, collectively known as HREZ, 
achieving cure rates exceeding 95 %. Each drug serves a specific role: 
isoniazid and rifampin are the most potent, ethambutol prevents addi
tional resistance in INH-resistant Mtb strains, and pyrazinamide acts as a 
sterilizing agent [15]. Resistance to these drugs results in drug-resistant 
TB, often linked to single nucleotide polymorphisms in Mtb genes such 
as gyrA, rpsL, rrs, embB, rpoB, inhA, and katG [16]. Effective treatment 
relies on prescribing the optimal drug combination [17]. Whole-genome 
sequencing (WGS) can help healthcare workers interpret clinically 
relevant genetic variants [18], but a comprehensive catalog of resistance 
biomarkers is needed to distinguish resistant from non-resistant strains 
[19]. Advances in sequencing technology, particularly RNA sequencing, 
have significantly improved accuracy and computational capabilities 
[20,21]. This report examines and compares the differential expression 
of transcriptome profiles in peripheral blood mononuclear cells from 
healthy and TB-affected individuals using the DESeq2 package, which 
employs negative binomial generalized linear models.

2. Methodology

1 Dataset selection and retrieval of raw reads:

The National Center for Biotechnology Information (NCBI) provides 
a platform for researchers to upload and retrieve biomedical and 
genomic information from databases. Gene expression omnibus (GEO) is 
one such database for micro-array and RNA-sequencing technologies 
[22]. GEO was accessed to acquire the dataset that was analyzed in this 
report. Keywords such as “Homo sapiens,” “Tuberculosis,” and “Expres
sion profiling by high throughput sequencing” were used to query the 
search. The dataset with ID “GSE198557″ was selected for analysis in the 
current study. SRAtoolkit was used to import the reads from the 
sequence read archive (SRA) database. The reads were then subjected to 
quality check using the FastQC tool. No clinical analysis was carried out 
during the study. 

2 Processing of raw reads and differential expression analysis (DEA):

FastQC analysis confirmed the absence of adapter sequences; thus, 
the adapter trimming step was omitted. Subsequently, raw reads were 
aligned to the hg38 reference genome assembly using the HISAT2 tool 
[23]. The resulting alignments were stored in SAM format and processed 
with the HTSeq-count tool to generate gene count files. These files were 
imported into R to construct a count matrix for DESeq dataset creation. 
Principal Component Analysis (PCA) assessed sample similarity and 
clustering. Gene expression patterns were also visualized through heat 
maps and volcano plots, utilizing packages such as ggplot2 and pheat
map, among others [24]. Differential expression analysis (DEA) was 
conducted using the DESeq2 package in R [25]. 

3 Identification of DEGs and network analysis:

An adjusted p-value threshold of < 0.05 was established. Log2Fold 
Change (logFC) thresholds were set at > 3 for up-regulated and < − 3 for 
down-regulated genes. The differentially expressed genes (DEGs) were 
input into the STRING database to map their interaction patterns. 
Protein-protein interaction (PPI) networks were visualized using Cyto
scape (v3.10.1). The CytoHubba plugin in Cytoscape identified the top 
25 hub genes among the DEGs [26]. Various statistical algorithms were 
employed, including MCC, MNC, and DMMC. 

4 Functional annotation of DEGs:

Gene Set Enrichment Analysis (GSEA) was utilized to elucidate the 
physiological roles of the DEGs [27]. GSEA facilitates pathway-centric 
analysis of molecular expression data between groups. The analysis 
was performed on the DESeq dataset object, using the hallmark gene set 
as the reference. This set aggregates several MSigDB gene sets to high
light and study predefined cellular processes and functions, enhancing 
the ease of use and implementation in research. ClueGO was employed 
for functional validation, identifying specific DEGs targeting pathways 
[28].

3. Results

1 Data retrieval and data processing:

Raw reads from the GSE198557 dataset were obtained from the SRA 
database using sratoolkit. Quality assessment of these reads was per
formed with FastQC. The HISAT2 tool was employed to align the reads 
to the reference genome. Gene counts were generated using HTSeq- 
count, and the resulting count matrix was used as input for the DESeq 
package in R. Various statistical analyses were conducted, including 
PCA and Z-score normalization. Fig. 1A illustrates the PCA distribution 
among the samples in this study. Thresholds for adjusted p-value 
(<0.05) and logFC (<− 3 for down-regulated and >3 for up-regulated 
genes) were applied. The heatmap in Fig. 1B displays the Z-score 
normalized expression of DEGs meeting these criteria. Fig. 1C presents 
the volcano plot distribution of the DEGs. All expression count files, and 
FastQC reports are supplementary files in the GitHub repository, 
detailed in the data availability section. 

2 PPI network analysis and hub-gene interaction analysis:

The identified DEGs were input into the STRING database to map 
their interactions. The interaction data from STRING was imported into 
Cytoscape (v3.10.1), where PPIs were visualized using the GeneMANIA 
force-directed layout, shown in Fig. 2. Post PPI network generation, the 
DEGs were analyzed with the CytoHubba plugin to identify hub genes, 
applying the previously mentioned p-value and logFC thresholds. 
Various algorithms were employed to determine the hub genes, 
including MNC, MCC, and others. Fig. 3A presents an upset plot with a 
uniform set size of 25, showing the number of common DEGs per set. 
Fig. 3B illustrates the PPI network of the most significant hub genes. 

3 Functional annotation:

Gene Set Enrichment Analysis (GSEA) was performed on the iden
tified DEGs. GSEA identifies gene sets over-represented in each list 
compared to a background set, grouping genes based on their roles in 
known physiological pathways. Fig. 4A lists the hallmark pathways 
impacted by the DEGs, with a significance threshold of adjusted p-value 
<0.05. Fig. 4B illustrates the association of DEGs with these pathways 
and their log2FC expression patterns. Dendrogram clustering was 
applied to both DEGs and hallmark pathway terms. Table 1 presents 
functional enrichment results via GSEA, highlighting the KRAS signaling 
pathway as the most significantly affected. Functional validation was 
conducted using the ClueGO plugin in Cytoscape (v3.10.1), with results 
visualized using the yFiles circular layout in Fig. 5. TLR4 and FCGR3B 
were identified as dysregulating processes like temperature homeostasis 
(GO:0001659) and response to bacteria (GO:0009617).

4. Discussion

TB, a contagious bacterial disease caused by Mtb, transmits among 
humans through the respiratory route and typically infects the lungs. 
Studies have tried to study the transcriptomic signature of individuals 
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suffering from latent TB and active TB [29,30]. In the current report, we 
study the transcriptomic profiles of peripheral blood mononuclear cells 
(PBMCs) from 6 healthy individuals and 6 TB-infected patients in the 
Indian population. The raw reads were retrieved and analyzed using 
numerous high-throughput computational tools like FastQC, Hisat2, etc. 
Differential expressions of the protein-coding genes were implemented 
using the DESeq2 package in R. Numerous genes were aberrantly 
expressed, and a threshold value of logFC > 3 and logFC of < − 3 and 
p-value of 0.05 for up-regulated and down-regulated genes. PPI net
works were generated to study the interaction patterns of the DEGs 
identified amongst each other, depicted in Fig. 2. Furthermore, 
hub-genes were identified using numerous statistical algorithms via the 
cytohubba plug-in, integrated with Cytoscape (v.3.10.1), and the in
teractions amongst the most consistently identified hub-genes among all 
the algorithms have been visualized in Fig. 3B. GSEA has also performed 
to group the genes and discover the physiological pathways and func
tions affected by the grouped genes, as shown in Fig. 4. ClueGO was used 

to conduct functional validation and identify the dysregulated terms by 
each DEG. The results of the functional annotation revealed that the 
differential expression of TLR4, FCGR1A, ITGAM, LTF, and CXCR2 was 
found to affect physiological functions such as response to a bacterium 
(GO:0009617), acute inflammatory response (GO:0002526), tempera
ture homeostasis (GO:0001659) and several other processes, shown in 
Fig. 5.

Toll-like Receptor 4 (TLR4) belongs to the family of pattern recog
nition receptors (PRRs), which represent a crucial receptor protein and 
act as a mechanism to induce a pro-inflammatory response against in
fectious microbial disease [31]. As an integral member of the innate 
immunity response team, the TLR4 pathway works tirelessly to fight off 
microbes by inducing intracellular signals intervened by adaptor 
molecule Toll/IL-1R (TIR). This pathogen receptor acts as a binding 
agent for gram-negative lipopolysaccharides and intrinsic molecules 
produced due to tissue injury [32]. Numerous studies aimed at estab
lishing TLR4 relations with immunity against TB were executed in the 

Fig. 1. Showcases the various statistical tools used; (A) Results of PCA plot, depicting the closeness amongst the patient samples; (B) Heatmap expression distribution 
of the DEGs identified using DESeq2 package; (C) Volcano plot distribution of the genes identified using DESeq2 package.
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Tibetan, Sudanese, and Brazillian populations [33–35]. In the Tibetan 
population, an SNP analysis study found two TLR4 polymorphisms that 
affect the risk of developing pulmonary TB [33]. Subsequently, another 
survey of the Sudanese population identified four SNPs associated with 
TB, suggesting TLR4’s involvement in inducing immunity against bac
terial infection [34]. Similar results were observed in the Brazilian 
population study by analyzing the data from 536 individuals, out of 

which 177 were TB index cases [35].
Consequently, Fc gamma receptor 1a (FCGR1A) also plays a vital role 

in the immune system by encoding a glycoprotein called CD64 that acts 
as the only high-affinity receptor for immunoglobulin G (IgG) in humans 
[36]. Previous research reported on 99 Indian children strongly sug
gested the connection between FCGR1A and the risk of Mtb infection 
[37]. Another study aimed to identify novel biomarkers for 

Fig. 2. PPI interaction plot generated for 302 DEGs using STRING and Cytoscape.

Fig. 3. Showcases relevant information of the hub-genes identified using Cytohubba plugin; (A) Upset plot showcasing the distribution of the hub-genes identified 
using various statistical algorithms; (B) Interaction patterns observed amongst the most relevant hub-genes.
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Fig. 4. Results of GSEA functional analysis; (A) Bar chart showcasing the normalized enrichment score (NES), plotted for the adjusted p-value score; (B) Heatmap 
distribution of the genes affecting the concerned Hallmark pathways, along with the log2FC expression pattern.

Table 1 
Full list of functional annotation terms generated by GSEA.

Pathway P.Val P.Adj NES

HALLMARK_KRAS_SIGNALING_DN 2.85634006796169E-05 6.49168197264021E-05 1.860930877
HALLMARK_UV_RESPONSE_DN 0.026779694 0.03719402 1.397449278
HALLMARK_KRAS_SIGNALING_UP 0.024115372 0.034450531 − 1.332394364
HALLMARK_PEROXISOME 0.012507085 0.018950129 − 1.490742575
HALLMARK_XENOBIOTIC_METABOLISM 0.004869033 0.007607865 − 1.49196214
HALLMARK_TGF_BETA_SIGNALING 0.017145791 0.025214398 − 1.518478019
HALLMARK_ESTROGEN_RESPONSE_LATE 0.003447917 0.005561156 − 1.542511719
HALLMARK_HEME_METABOLISM 0.000368859 0.000635963 − 1.698098067
HALLMARK_GLYCOLYSIS 0.000104404 0.000200777 − 1.723812578
HALLMARK_FATTY_ACID_METABOLISM 0.000333622 0.000595754 − 1.726841615
HALLMARK_MITOTIC_SPINDLE 0.00010325 0.000200777 − 1.729672408
HALLMARK_DNA_REPAIR 9.99661650714606E-05 0.000200777 − 1.755830087
HALLMARK_HYPOXIA 3.03212362203994E-05 6.59157309139117E-05 − 1.770472889
HALLMARK_PI3K_AKT_MTOR_SIGNALING 0.000124326 0.000230234 − 1.832009312
HALLMARK_REACTIVE_OXYGEN_SPECIES_PATHWAY 0.000552481 0.000920802 − 1.949346337
HALLMARK_IL2_STAT5_SIGNALING 5.93012468869746E-08 1.85316396521796E-07 − 2.003168471
HALLMARK_ALLOGRAFT_REJECTION 1.16994522373431E-07 3.44101536392444E-07 − 2.008355151
HALLMARK_P53_PATHWAY 1.65803625666448E-07 4.60565626851244E-07 − 2.013900615
HALLMARK_PROTEIN_SECRETION 2.45447227701795E-06 5.84398161194751E-06 − 2.020459962
HALLMARK_ANDROGEN_RESPONSE 1.03748947470839E-06 2.59372368677098E-06 − 2.091068996
HALLMARK_ADIPOGENESIS 2.32297894055881E-08 7.74326313519603E-08 − 2.098205498
HALLMARK_COMPLEMENT 1.7764140229198E-08 6.34433579614213E-08 − 2.127827307
HALLMARK_UNFOLDED_PROTEIN_RESPONSE 2.38410418949043E-07 6.27395839339587E-07 − 2.170111603
HALLMARK_UV_RESPONSE_UP 1.23951131124001E-08 4.76735119707698E-08 − 2.193127348
HALLMARK_APOPTOSIS 6.62974592670303E-09 3.0135208757741E-08 − 2.195852605
HALLMARK_INFLAMMATORY_RESPONSE 5.70664670673152E-10 2.85332335336576E-09 − 2.230584066
HALLMARK_CHOLESTEROL_HOMEOSTASIS 1.09811680092141E-08 4.57548667050588E-08 − 2.398691197
HALLMARK_TNFA_SIGNALING_VIA_NFKB 2.34098697229536E-13 1.67213355163954E-12 − 2.408307245
HALLMARK_E2F_TARGETS 1.73095020346086E-15 1.44245850288405E-14 − 2.570206274
HALLMARK_G2M_CHECKPOINT 1.36546486615453E-16 2.27577477692421E-15 − 2.606894263
HALLMARK_OXIDATIVE_PHOSPHORYLATION 3.35134841717099E-16 3.53991541941918E-15 − 2.624884615
HALLMARK_MYC_TARGETS_V1 3.53991541941918E-16 3.53991541941918E-15 − 2.627006317
HALLMARK_INTERFERON_ALPHA_RESPONSE 5.3364448434789E-13 2.9646915797105E-12 − 2.654884445
HALLMARK_IL6_JAK_STAT3_SIGNALING 5.1878492849839E-13 2.9646915797105E-12 − 2.76206492
HALLMARK_INTERFERON_GAMMA_RESPONSE 4.18180965872624E-21 1.04545241468156E-19 − 2.842444981
HALLMARK_MTORC1_SIGNALING 1.58562880184299E-28 7.92814400921497E-27 − 3.14071737
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differentiating infection statuses of Mtb compared the DEGs of healthy 
controls, active and latent TB infection. It supported the relation of 
FCGR1A with different infection statuses of M. tuberculosis [38]. In the 
current dataset, FCGR1A was observed to be significantly 
downregulated.

Integrin subunit alpha M (ITGAM) is a part of the heterodimeric cell 
adhesion receptor family that mediates various biological functions. 
ITGAM acts as a macrophage biomarker regulating immune cell func
tions [39]. By facilitating adhesive interactions between monocytes, 
macrophages, and other cell types and the uptake of complement-coated 
particles and microbes [40], ITGAM can be regarded as playing a pivotal 
role in activating a diverse response of these cells, including phagocy
tosis, cell-mediated killing, chemotaxis, and cellular activation [41]. 
Integrins, including ITGAM, have been deemed vital for controlling a 
host of microbial infections, especially in the case of TB. In an experi
ment conducted on mice by comparing wild-type mice to the ITGAM 
knock-out one, it was seen that the latter has decreased T cells in the 
lungs, resulting in a lower capacity to fight against TB bacteria and a 
lesser survival rate [42]. In another study aimed to identify potential 
biomarkers of TB infection in diabetic patients, ITGAM is observed as a 
hub protein and has significant relevance in signaling pathways like 
toll-like receptors, RAP1 signaling routes, and many more [43].

The lactotransferrin (LTF) gene belongs to the transferrin family and 
is an integral part of the human non-specific immune system. The 
complementary protein of the LTF gene is present in secondary granules 
of neutrophils, which helps increase the immune system’s efficiency 
against invasive or foreign disease-causing microbes by competing with 

them for iron due to the high affinity [44]. An experiment on a murine 
model revealed that TB susceptibility was significantly diminished by 
preventing iron overload using LTF [45]. Another study aimed at iden
tifying potential biomarkers for TB by comparing gene expression pro
files from TB patients and Mtb-infected healthy individuals supported 
the role of LTF in protection against TB [46]. C-X-C motif chemokine 
receptor 2 (CXCR2) belongs to the transmembrane G-coupled receptor 
protein group [47]. It is essential to fight against microbial infections by 
assisting in neutrophil infiltration by inducing late apoptotic cell injec
tion [48]. In-depth studies around TB and CXCR2 have suggested that 
CXCR2 interacts with chemokine CXCL5 to facilitate neutrophil accu
mulation [49]. By comparing CXCR2 in healthy individuals against TB 
patients and HIV patients with TB infection [50], it was observed that an 
interesting correlation existed between neutrophil accumulation and 
infiltration using CXCR2. Similar results were observed in another study, 
where CXCR2 was therefore down-regulated in TB-infected patients 
[51].

The current study is limited by a relatively small, homogenous 
sample group and lacks clinical and experimental validation. However, 
experimental validation using RT-PCR techniques in more extensive and 
diverse cohorts has yielded positive results, supporting the potential of 
candidate biomarkers as diagnostic transcriptional biomarkers for TB in 
the Indian population [52,53]. Additionally, alternative diagnostic 
strategies, such as automated chest radiograph interpretation tools 
based on advanced computational algorithms, C-reactive protein-based 
point-of-care systems, and other innovative methods, are being evalu
ated to enhance existing TB diagnostic approaches [54,55]. In 

Fig. 5. Results of ClueGO functional analysis, wherein the nodes labeled in red signify the genes affecting the physiological function, and the colored nodes depict the 
physiological function. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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conclusion, this study provides preliminary insights into the tran
scriptomic profiles of TB patients within an Indian cohort, aiding in the 
development of diagnostic tests that can be effectively applied across 
different ethnicities and population groups.

5. Conclusion

India, the country with the highest TB burden in the world, faces 
significant challenges in the accurate diagnosis of TB. The current study 
highlights the benefits of transcriptome sequencing for diagnosing TB by 
identifying potential biomarkers specific to the Indian population, along 
with corroborating previously published reports worldwide. Similar 
strategies would enable researchers and clinicians to distinguish and 
diagnose individuals with latent TB from healthy individuals, thereby 
providing more insight into the progression of the Mycobacterium 
tuberculosis species. TLR4, FCGR1A, ITGAM, LTF, and CXCR2 genes were 
found to have significant interactions and associations with critical 
physiological functions and signaling pathways.
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