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The rhizobial type III secretion system secretes effector proteins into host plant cells, which may either promote or inhibit
symbiosis with legumes. We herein demonstrated that the type III secretion system of Bradyrhizobium sp. SUTN9-2
obstructed symbiosis with Lotus japonicus Miyakojima, L. japonicus Gifu, and Lotus burttii. A mutant of SUTN9-2 that is
unable to secrete effector proteins showed better nodulation and plant growth promotion than wild-type SUTN9-2 when
paired with these Lotus spp. We propose that SUTN9-2 is a useful strain for understanding the mechanisms by which
effector proteins obstruct symbiosis between Bradyrhizobium and Lotus spp.

Key words: symbiosis, Bradyrhizobium, Lotus spp., type III secretion system, effector protein

Rhizobia induce the growth of symbiotic nitrogen-fixing
organs, called nodules, on the roots of leguminous plants.
Rhizobial nodulation factors (NFs) are key molecules for
symbiosis (Lerouge et al., 1990). NFs are lipochitooligosac‐
charides with a chitin oligomer backbone, the length and
modifications of which are specific to rhizobial species
(Ardourel et al., 1994; Haeze and Holsters, 2002). After
recognizing a compatible NF, the host legume activates nod‐
ulation signaling (Radutoiu et al., 2003; Radutoiu et al.,
2007).

In addition to NFs, the rhizobial type III secretion system
(T3SS) is an important factor for initiating symbiosis. Bac‐
terial T3SS proteins, known as “nano syringes” or “injecti‐
somes”, deliver effector proteins (type III effector proteins,
T3Es) into target cells (Ryan and Stebbins, 2016). The T3SS
of plant pathogenic bacteria, such as Pseudomonas syringae,
suppress plant immunity and contribute to the virulence of
the pathogen (Jakobek et al., 1993). On the other hand, rhi‐
zobial T3SS may either promote or inhibit the establishment
of symbiosis, depending on the host legume (Miwa and
Okazaki, 2017). Rhizobial T3SS facilitate nodulation to pro‐
mote symbiosis (Okazaki et al., 2013), whereas T3SS trig‐
ger plant immune responses that suppress nodulation to
inhibit symbiosis (Sugawara et al., 2018; Kusakabe et al.,
2020).

Bradyrhizobium sp. SUTN9-2 was originally isolated
from Aeschynomene americana nodules (Noisangiam et al.,
2012). SUTN9-2 has a wide host range and establishes sym‐

* Corresponding author. E-mail: uttan@sci.kagoshima-u.ac.jp;
Tel: +81–99–285–8164; Fax: +81–99–285–8163.

Citation: Hashimoto, S., Goto, K., Pyromyou, P., Songwattana, P.,
Greetatorn, T., Tittabutr, P., et al. (2020) Type III Secretion System of
Bradyrhizobium sp. SUTN9-2 Obstructs Symbiosis with Lotus spp..
Microbes Environ 35: ME20041.
https://doi.org/10.1264/jsme2.ME20041

biosis with legume species in several genera (Noisangiam et
al., 2012; Hashimoto et al., 2019). To investigate the role of
the T3SS of SUTN9-2 in symbiosis, a T3SS inactivation
(ΔT3SS) mutant of SUTN9-2, which cannot deliver T3Es,
was constructed by disrupting the rhcJ gene, which encodes
a T3SS component (Piromyou et al., 2015). Inactivation of
the T3SS did not affect symbiosis of SUTN9-2 with the
original host A. americana, which belongs to the Dalber‐
gioids legume clade (Piromyou et al., 2015). However, in
symbiosis with Vigna radiata and Macroptilium
atropurpureum (these plants belong to the Phaseolids
legume clade), SUTN9-2ΔT3SS mutants induced a greater
number of pink nodules and more effectively promoted
plant growth than wild-type SUTN9-2 (Piromyou et al.,
2015). Thus, the T3SS of SUTN9-2 has a negative effect on
symbiosis with V. radiata and M. atropurpureum. However,
it currently remains unclear whether the T3SS of SUTN9-2
affects symbiosis with other host plants. In the present
study, we focused on the symbiotic phenotypes of SUTN9-2
and its ΔT3SS mutant with a model legume of Lotus
japonicus ecotypes B-129 Gifu and MG-20 Miyakojima as
well as Lotus burttii B-303, which all belong to the Gale‐
goids clade. We found that the T3SS of SUTN9-2
obstructed symbiosis with these three Lotus spp.

Bradyrhizobium sp. SUTN9-2 and its ΔT3SS mutant were
grown at 28°C in modified yeast-mannitol medium (Giraud
et al., 2000). Mesorhizobium loti MAFF303099 (Kaneko et
al., 2000), an original microsymbiont of L. japonicus, was
cultivated under the same conditions as SUTN9-2. Lotus
japonicus Miyakojima MG-20 and Gifu B-129 and L. burttii
B-303 were used as host plants.

The seeds of Lotus spp. were surface-sterilized in concen‐
trated sulfuric acid for 10 min followed by 0.2% sodium
hypochlorite and 0.1% Tween 20 for 40 min, and then
washed with sterilized water. After surface sterilization, the
seeds were transferred onto 0.8% agar plates and germinated
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at 28°C. Two-day-old seedlings were transferred to the top
of a test tube containing vermiculite with buffered nodula‐
tion medium (Ehrhardt et al., 1992) and grown at 28°C with
a 12/12-h light/dark cycle. After 1 week, each seedling was
inoculated with 1 mL of a rhizobial suspension adjusted to
an OD600=1.0 with sterilized distilled water. Plant fresh
weights, nodule numbers, and acetylene reduction activity
(ARA; a marker of nitrogenase activity) were measured at 5
or 8 weeks post-inoculation (wpi) according to Hashimoto
et al. (2019).

When grown with L. japonicus Miyakojima,
Bradyrhizobium sp. SUTN9-2 induced only white nodules
with no ARA (Fig. 1B and E), and host plant growth was
not promoted (Fig. 1A and C). However, SUTN9-2ΔT3SS
induced pink nodules with ARA (Fig. 1B and E) and pro‐
moted host plant growth (Fig. 1A and C). The number of
white nodules induced by SUTN9-2ΔT3SS was significantly
lower than that induced by SUTN9-2 (Fig. 1D). 

When L. japonicus Gifu was used as the host plant (Fig.
2), SUTN9-2 induced both white and pink nodules (65 and
35%, respectively, Fig. 2B and D). SUTN9-2ΔT3SS also
induced white and pink nodules; however, the ratio of pink
to white nodules was higher (pink, 74%; white, 26%) than
that induced by SUTN9-2 (Fig. 2D). In addition, the number
of white nodules induced by SUTN9-2ΔT3SS was signifi‐

cantly lower than that by SUTN9-2 (Fig. 2D). Plants inocu‐
lated with SUTN9-2ΔT3SS showed significantly better
growth and 2.7-fold stronger ARA than those inoculated
with SUTN9-2 (Fig. 2A, C, and E). 

When L. burttii was used as the host (Fig. 3), SUTN9-2
induced both white and pink nodules (93 and 7%, respec‐
tively; Fig. 3B and D). On the other hand, SUTN9-2ΔT3SS
induced 45% white and 55% pink nodules (Fig. 3B and D).
The inoculation with SUTN9-2ΔT3SS produced signifi‐
cantly fewer white nodules and significantly more pink nod‐
ules than that with SUTN9-2 (Fig. 3D). Plants inoculated
with SUTN9-2ΔT3SS showed significantly better growth
and stronger ARA than those inoculated with SUTN9-2
(Fig. 3A, C, and E). 

A previous study reported that the T3SS of
Bradyrhizobium sp. SUTN9-2 negatively affected symbiosis
with V. radiata and M. atropurpureum, but not symbiosis
with the original host A. americana (Piromyou et al., 2015).
In the present study, we also found that the T3SS of
SUTN9-2 obstructed symbiosis with Lotus spp. The inocu‐
lation with wild-type SUTN9-2 induced only white nodules,
whereas that with SUTN9-2ΔT3SS induced pink nodules
and promoted the growth of L. japonicus Miyakojima. In
symbiosis with L. japonicus Gifu and L. burttii, SUTN9-2
induced pink nodules; however, the number of nodules and
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Fig. 1. Symbiotic phenotypes of SUTN9-2 and SUTN9-2ΔT3SS with Lotus japonicus Miyakojima. All parameters were measured at 8 wpi. A,
plant growth; B, nodules; C, plant fresh weight; D, nodule number; E, acetylene reduction activity. NI, no inoculum (control). WT, wild type.
Mesorhizobium loti was used as a compatible strain. Values are means±SE (n=7), and asterisks indicate a significant difference (* P<0.05, **
P<0.01, the Student’s t-test).
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Fig. 2. Symbiotic phenotypes of SUTN9-2 and SUTN9-2ΔT3SS with Lotus japonicus Gifu. All parameters were measured at 8 wpi. A, plant
growth; B, nodules (white and orange arrowheads indicate white and pink nodules, respectively); C, plant fresh weight; D, nodule number; E,
acetylene reduction activity. NI, no inoculum (control). WT, wild type. Mesorhizobium loti was used as a compatible strain. Values are means±SE
(n=9), and asterisks indicate a significant difference (* P<0.05, the Student’s t-test).

degree of plant growth promotion were lower than those
with SUTN9-2ΔT3SS. These results suggest that the T3E(s)
of SUTN9-2 interfere with symbiosis with Lotus spp.

Kusakabe et al. (2020) examined symbiosis between
Bradyrhizobium elkanii USDA61 and Lotus spp. A phyloge‐
netic analysis among Bradyrhizobium strains showed that
SUTN9-2 belonged to the same clade as B. yuanmingense
isolated from Lespedeza cuneata (Zhu et al., 2002) and B.
liaoningense isolated from soybean (Xu et al., 1995), but to
a different clade than B. elkanii strains (Fig. S1). However,
the present results were consistent with the findings reported
by Kusakabe et al. (2020) (Fig. 4), suggesting that the T3SS
of Bradyrhizobium obstructed symbiosis with Lotus spp.. 

NopM (Nodulation outer protein M) of USDA61 is a T3E
that suppresses pink nodule formation on L. japonicus
Miyakojima (Kusakabe et al., 2020) (Fig. 4A). M. loti, a
symbiont of Lotus spp., does not possess the nopM gene on
its genome (Kusakabe et al., 2020). Based on comparisons
with genome sequence data available in the MicroScope
database (https://mage.genoscope.cns.fr/microscope/home/
index.php) (Vallenet et al., 2020), SUTN9-2 possesses a
putative nopM gene (the accession number in MicroScope is
shown in Table. S1 as SUTN92_v1_640013), the product of
which shows approximately 75% amino acid sequence iden‐
tity with NopM (accession number in DDBJ, LC471585) of
USDA61. The putative NopM of SUTN9-2 contained the
same leucine-rich repeat (LRR) and ubiquitin ligase domain
as NopM of USDA61 (Fig. S2). The nopM gene of

SUTN9-2 may inhibit the formation of pink nodules on this
plant; however, the T3E(s) of SUTN9-2 responsible have
yet to be identified.

The nopM of USDA61 also suppressed the formation of
pink nodules on L. burttii (Kusakabe et al., 2020) (Fig. 4C).
SUTN9-2 induced pink nodules on L. burttii despite the
presence of a putative nopM (Fig. 3B and D), similar to the
nopM disruption mutant of USDA61 on L. burttii
(Kusakabe et al., 2020) (Fig. 4C). Interestingly, the putative
NopM protein of SUTN9-2 had a smaller number of LRR
than that of the NopM protein in USDA61 (Fig. S2). LRR in
proteins are generally involved in interactions with other
molecules. These results suggest that the NopM proteins of
these two strains either have different affinities for their tar‐
gets or have different targets. The difference in the LRR-
number of NopM may be related to the different phenotypes
in their symbiosis with L. burttii.

A recent study by Kusakabe et al. (2020) suggested that
not only NopM, but also other T3E(s) of USDA61 inter‐
fered with symbiosis with L. burttii (Fig. 4C). However, the
T3E(s) responsible have yet to be identified. Similar to
USDA61, the inactivation of T3SS in SUTN9-2 showed a
better symbiotic phenotype than that of the wild-type strain
(Fig. 4C). This result suggests that T3E(s) common to
SUTN9-2 and USDA61, but not to M. loti, interfere with
symbiosis with L. burttii.

SUTN9-2 induced pink nodules on L. japonicus Gifu, in
contrast to USDA61 (Fig. 2B, D, and 4B). The NopF pro‐
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Fig. 3. Symbiotic phenotypes of SUTN9-2 and SUTN9-2ΔT3SS with Lotus burttii. All parameters were measured at 5 wpi. A, plant growth; B,
nodules (white and orange arrowheads indicate white and pink nodules, respectively); C, plant fresh weight; D, nodule number; E, acetylene
reduction activity. NI, no inoculum (control). WT, wild type. Mesorhizobium loti was used as a compatible strain. Values are means±SE (n=11),
and asterisks indicate a significant difference (* P<0.05, ** P<0.01, the Student’s t-test).

tein (accession number in DDBJ, LC471586) of USDA61
has been identified as a T3E that inhibits rhizobial infection
and nodulation on L. japonicus Gifu (Kusakabe et al.,
2020). Based on comparisons with genome sequence data
available in the MicroScope database (Vallenet et al., 2020),
SUTN9-2 does not possess a gene encoding NopF. The
absence of NopF in SUTN9-2 may explain why SUTN9-2
exhibited a better nodulation ability than USDA61 on L.
japonicus Gifu (Fig. 4B). However, the ability of the
USDA61 nopF disruption mutant (ΔnopF in Fig. 4) to
induce the formation of pink nodules was lower than that of
wild-type SUTN9-2 (Fig. 4B). This result suggests that, in
addition to NopF, USDA61 may possess specific T3E(s)
that interfere with symbiosis with L. japonicus Gifu.

The ΔT3SS mutants derived from both SUTN9-2 and
USDA61 more effectively promoted the growth of Lotus
spp. than their respective wild-type strains, but not as well
as the original microsymbiont M. loti (Fig. 1, 2, and 3;

Kusakabe et al., 2020). This result suggests that not only
T3SS, but also unknown rhizobial factor(s) of SUTN9-2 and
USDA61 obstruct symbiosis with Lotus spp. In addition, the
functions and target molecules of these T3Es in Lotus spp.
cells remain unknown. Comparisons of the sequences of
these putative T3Es among SUTN9-2, USDA61, and M. loti
may provide a more detailed understanding of the functions
of T3E proteins in Lotus spp. cells. Further functional
experiments will reveal the functions of T3E proteins in
Lotus spp. cells. Lotus spp. used in the present study are
useful lines for further investigations to identify the target of
T3E in host plant cells. Thus, the present results will con‐
tribute to clarifying the mechanisms by which rhizobial
T3Es inhibit Bradyrhizobium-Lotus symbiosis.
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