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Abstract

Background: Not all cells in a given individual are identical in their genomic makeup. Mosaicism describes such a
phenomenon where a mixture of genotypic states in certain genomic segments exists within the same individual.
Mosaicism is a prevalent and impactful class of non-integer state copy number variation (CNV). Mosaicism implies
that certain cell types or subset of cells contain a CNV in a segment of the genome while other cells in the same
individual do not. Several studies have investigated the impact of mosaicism in single patients or small cohorts but
no comprehensive scan of mosaic CNVs has been undertaken to accurately detect such variants and interpret their
impact on human health and disease.

Results: We developed a tool called Montage to improve the accuracy of detection of mosaic copy number
variants in a high throughput fashion. Montage directly interfaces with ParseCNV2 algorithm to establish disease
phenotype genome-wide association and determine which genomic ranges had more or less than expected
frequency of mosaic events. We screened for mosaic events in over 350,000 samples using 1% allele frequency as
the detection limit. Additionally, we uncovered disease associations of multiple phenotypes with mosaic CNVs at
several genomic loci. We additionally investigated the allele imbalance observations genome-wide to define non-
diploid and non-integer copy number states.

Conclusions: Our novel algorithm presents an efficient tool with fast computational runtime and high levels of
accuracy of mosaic CNV detection. A curated mosaic CNV callset of 3716 events in 2269 samples is presented with
comparability to previous reports and disease phenotype associations. The new algorithm can be freely accessed
via: https://github.com/CAG-CNV/MONTAGE.
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Background
Mosaicism is non-integer CNV resulting from a mixture
of deleted and diploid or duplicated and diploid cells.
Mosaic CNV creation mechanisms include: chromosome
nondisjunction, anaphase lag, and endoreplication.
Mosaicism was first studied in fruit flies by Alfred

Sturtevant and Curt Stern demonstrating mitotic recom-
bination. “Somatic mosaicism” terminology was used by
C. W. Cotterman in his seminal paper about antigenic
variation [1]. Mosaic CNV detection is important in clin-
ical settings for accurate assessment and estimate of dis-
ease recurrence risk [2–5].
Almost all CNV detection algorithms interpret a split-

ting of genotypes into allelic imbalance to mean duplica-
tion. However, splitting of genotypes into allelic imbalance
clusters means duplication only when paired with a gain
in intensity, otherwise the event is actually a mosaic dele-
tion. In this way, mosaicism is often incorrectly classified
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or missed entirely by conventional CNV detection
algorithms.
Mosaicism calls from publically accessible programs,

such as R-GADA-MAD, BAFSegmentation, Mocha, and
triPOD have provided insight into the prevalence and
impact of mosaic CNVs [6–8]. However, we were moti-
vated to create a computationally efficient and easy to
perform algorithm, particularly at the scale needed for
large projects. The goal of the algorithm was to deliver
results in a high-throughput way with few spurious calls
and to successfully detect mosaic events multiple mega-
bases in size. Previous studies have been limited by small
sample size to achieve accurate frequency estimates ([9,
10], Bonnefond et al. 2013, Schick et al. 2013, [11, 12],
and Rodriguez-Santiago et al. 2010).
Mosaic Alteration Detection (MAD) is among the

most commonly used computational tool to identify mo-
saic events using both B-allele frequency (BAF) and log
R ratio (LRR) values from SNP array data. The MAD
method first performs a segmentation procedure using the
GADA algorithm (Pique-Regi R, Caceres A, Gonzalez JR.
BMC Bioinformatics, 2010), and then searches for aber-
rant segments (mosaic regions) with B-deviations (Bdev)
different from zero. Bdev occurs in mosaic regions when
the locus has a mixture of genotypes from normal and
mosaic tissue. The detected mosaic regions are further
classified as copy-loss, copy-gain, or copy-neutral events
based on the alteration of the LRR from baseline. The
MAD method is implemented as a package in R. and the
program is available at GitHub (https://github.com/
isglobal-brge/MAD). The state of mosaic alterations is de-
termined based on log2-ratio segment values together
with the percentage of normal heterozygous (BAF ∼ 0.5)
and homozygous (BAF ∼ 0 or 1) probes. While MAD has
been successfully applied in several mosaicism projects
(Forsberg et al. 2012, 2014 [11];), the program installation
remains difficult requiring many undocumented depend-
encies including the R package devtools rendering it diffi-
cult to operate.
It’s important to be aware that inherited alleles at

some loci may appear to affect the probability of

somatic mutations, and at other loci they may consti-
tute objects of positive or negative clonal selection.
Several specific mosaic CNVs are strongly associated
with future risk of hematological malignancies [8].
Loh et al. evaluated blood-derived DNA from 151,202
UK Biobank participants genotyped with Affymetrix
arrays, finding 8342 mosaic CNVs ranging 50 kb–249
Mb by using phase-based programming (false discov-
ery rate ≈7.5%). Mosaic deletions were observed more
frequently in males while mosaic duplications were
observed more frequently in elderly and male samples
and copy number neutral loss of heterozygosity
(CNN-LOH) affected the sexes equally.
In addition to the large number of samples from the

Center for Applied Genomics at Children’s Hospital of
Philadelphia biobank presented here (Supplementary
Table 1), we also explored the pediatric and adolescent
age range (Supplementary Fig. 1), providing further
insights into early mosaic detection possibilities. Taken
together, our results reveal clonal expansions with a
wide range of effects on human health.

Implementation
Due to current limitations and difficulties in available
mosaic genomic events callers, we have developed a mo-
saic calling tool programmed in Perl and freely available
through our GitHub webpage https://github.com/CAG-
CNV/MONTAGE. We wrote the Perl code to be flexible
in terms of column order and column inclusion in sam-
ple based input files. The minimum column requirement
for input files is SNP Name, BAF, and LRR. SNP Name
with associated chromosome and base pair position can
be specified separately or combined in the input. Sorting
by chromosome and position (if not done already) is the
first step. This is the most run time consuming step at
25 s. If sorting is detected to be done already, only the
mosaic CNV detection portion of the code runs taking
10 s per sample (Table 1).
Since Windows computers are needed to run Geno-

meStudio to load idats and export BAF/LRR signal files,
we remove any Windows carriage returns. We remove

Table 1 Performance Comparison of Mosaic CNV Detection Tools

Algorithm Install Runtime Sensitivity Specificity URL

MONTAGE Easy Short (35 s/10sa) Good(1/1) Good(0/0) https://github.com/CAG-CNV/MONTAGE

MoChA Difficult Long (1m1sb) Good(1/1) Good(0/0) https://github.com/freeseek/mocha

RGADA-MAD Difficult Short (14 s) Low(0/1) Low(1/0) https://github.com/isglobal-brge/MAD

BAFSegmentation Easy Long (1m14s) Good(1/1) Low(186/0) http://baseplugins.thep.lu.se/wiki/se.lu.onk. BAFsegmentation

triPOD Easy Very Long (10 m) Low(0/1) Low(0/0) https://github.com/jdbaugher/tripod

Install ease based on actual setup with non-superuser credentials, not exclusively the documented setup instructions provided by the algorithm. Runtime listed
per sample 610 k density SNP microarray. aSorted by chromosome and position input file. bEagle phasing pipeline (1 m) and Chromosomal alterations pipeline (1
s) steps included. Sensitivity and Specificity based on running the same sample data through each algorithm and comparing results. In parenthesis is Observed /
Expected mosaic CNV calls. See Fig. 7 for additional Sensitivity/Specificity analysis where we demonstrate in 755 samples a 0.975 false positive rate 0.344
(MONTAGE) vs. sensitivity of 0.920 at false positive rate 0.598 (MoCha) vs. sensitivity of 0.280 at false positive rate 0.627 (RGADA-MAD)
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SNPs that failed to UCSC Liftover or low call rate SNPs
marked with Position REMOVE. If not sorted, sort by
chromosome and position (for linear runtime). Remove
position 0 SNPs. A bash awk statement embedded in the
Perl code efficiently performs a sliding window of 1MB
with 1MB increments to roughly assess potential re-
gions of mosaicism. The algorithm monitors position
modulus window, if diff< 0 then report window: CHIP
REGION AB ABLow ABHigh AAorBB AvgLRR BAF_
SD(0.1–0.9). To define deletion, we take q3 + 1.5 inter-
quartile range (iqr) as BAF standard deviation (SD)
threshold and q1–1.5 iqr as LRR average threshold. To
define duplication, we take q3 + 1.5 iqr as BAF SD
threshold and q3 + 1.5 iqr as LRR average threshold.
PennCNV script clean_cnv merges fragmented mosaic
CNVs in neighboring genomic intervals. We record the
first and last base pair position of mosaic evidence in
these intervals to provide specific breakpoints (Fig. 2).
Methods used include programming in Bash, Perl, and R.

Efficient and minimal dependency coding allows for
rapid ease of deployment of the software.
The BAF ranges used are tallied in the following inter-

vals: (0–0.1) (0.1–0.4) (0.4–0.6) (0.6–0.9) (0.9–1). We
use average LRR for each 1Mb window in comparison
with genome-wide average LRR. This presents the key
command in the script. We note that our current ver-
sion of MONTAGE, runs at 35 s per sample in a sample
independent manner vs. 10 s if the input BAF/LRR signal
file is sorted by chromosome and position.

Data preprocessing
We dynamically assess the column header to determine
the presence and order of SNP Name, Chromosome,
Position, B Allele Freq, and Log R Ratio column data in
the user provided input files. These inputs may be gen-
erated by exporting text files from graphical user inter-
face on Windows: Illumina GenomeStudio or Affymetrix
Genotyping Workbench. Alternatively, these files can be

Fig. 1 Example BAF and LRR Profiles Sampled from Various Levels of Mosaicism. Mosaic deletions have clearing of the 0.5 AB range and relatively
equal banding of AAB and ABB range genotypes reflected by BAF. Less relative gain in LRR is observed in mosaic duplications, making them
more difficult to detect with certainty. Data displayed is simulated to ensure consistent underlying data quality profiles for fair comparison of
different mosaic copy number states
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generated by exporting text files from command line on
Linux: Illumina iaap or Affymetrix apt. The flexibility to
include only SNP Name, B Allele Freq, and Log R Ratio
column data is allowed to minimize the disk space foot-
print of input data files, provided a separate map file
linking SNP Name to chromosome and position. SNP
microarray, whole exome sequencing and whole genome
sequencing data are all supported input data types based
on normalization of read depth to generate LRR signal
and clustering of allele depth to generate BAF.

Mosaicism detection
Using an ultra-efficient awk bash command, we are able
to run an optimal non-overlapping sliding window algo-
rithm to determine BAF in the mosaic deletion indica-
tive ranges of (0.1–0.4) and (0.6–0.9) as well as the
standard deviation of these observations to determine
clarity (lack of noise) in the signal observed in a given
sample. We implemented a sliding window approach to
assess these BAF intervals for allelic imbalances and
strong deviations from expected values. Average LRR
values across the sliding window interval classify the mo-
saic CNV as a deletion or duplication relative to normal
diploid copy number. High standard deviation of BAF
(0.1,0.9) regions were prioritized (for those samples pass-
ing quality control with acceptably low genome-wide
standard deviation of BAF).

Mosaicism breakpoint refinement
PennCNV (version 1.0.4) component script clean_cnv
was used to combine segments in close proximity into
one merged mosaic CNV call. Record the first and last
base pair position of mosaic evidence in these intervals
to provide specific breakpoints (Fig. 2).

Mosaicism algorithm differences
We do not perform phasing as done in MoCha to save
on computational time. We do not require or use family
information as done in triPOD. We focus our code in
the extensible Perl and Bash programming languages as
opposed to RGADA-MAD which is written in R. We
use standard modern GitHub code tracking as opposed
to BAFSegmentation which is on an institutional
website.

Results
We assessed the performance of existing mosaic CNV
detection algorithms (Table 1). We constructed a model
reference of various levels of mosaicism (Fig. 1). We
measured the allelic imbalance between proper heterozy-
gous (AB) genotypes centered on 0.5 BAF versus those
outside of this region (Fig. 2 and Supplementary Fig. 2).
We evaluated mosaic events in 367,785 samples and
found 3716 putative mosaic events in 2269 individuals
with 2/3 of the raw mosaic calls being visually validated.
In total, 187,096 mosaic CNV candidates were suggested
by the first pass screening of our algorithm applied to
approximately 350,000 SNP-array data sets. Next, we

Fig. 2 MONTAGE Algorithm Conceptual Flow Diagram. Code overview with key inputs and variables. First data is normalized to BAF and LRR
values genome-wide for each sample. Then the number of deviating BAF values in a first pass sliding window are accounted to screen for
potential mosaic events as an initial algorithmic step. The first quartile minus 1.5 interquartile range of the LRR paired with strong BAF deviation
defines the calling threshold for mosaic deletion events. Fragmented windows meeting threshold are then merged together to form larger calls.
The breakpoints are then refined based on the first and last specific base pair evidence of strongly deviating BAF within the merged window
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Fig. 3 MONTAGE Filtering to Arrive at Curated Callset. Filtering of the putative mosaic CNV calls and respective size of the curated callset at each
step. PennCNV calls for homozygous deletions (copy number 0) on the same samples analyzed by MONTAGE were intersected with MONTAGE
initial mosaic calls using bedtools software. Further visualization of BAF/LRR underlying potential mosaic CNV calls was conducted manually by a
human expert reviewer (in the case only 1 mosaic call in the sample) or by DeepCNV algorithm (in the case 2 or more mosaic calls in
the sample)

Fig. 4 Higher Levels of Mosaicism Genome-wide LRR BAF plot representative for one Individual. Full deletion of chromosome 1p contrasted by
duplication of 1q is shown along with mosaic deletions of high proportion of cells in the person’s sample on 2q, 8q, and 11p. We use alternating
colors similar to a Manhattan plot for GWAS to represent the switch between chromosomes on a linear x axis
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filtered out mosaic CNV candidates with overlapping
homozygous deletion calls as detected by PennCNV,
since the random noise in BAF for real homozygous de-
letions can give a false indication of aberrant BAF band-
ing, leaving us with 126,020 mosaic CNV candidates in
43,781 samples. The MONTAGE algorithm no longer
requires PennCNV homozygous deletion calls in order
to minimize runtime using an approximation subroutine.
There were 51,326 mosaic CNV candidates with at least
one mosaic CNV candidate > = 3Mb in genomic span.
Finally, 19,090 mosaic CNV candidates had strictly one
mosaic CNV candidate > = 3Mb, suggesting high specifi-
city of mosaic CNV detection in these samples (Fig. 3).
Therefore, we set forth visualizing the underlying BAF
and LRR profiles corresponding to these mosaic CNV
candidates.
We verified ability to detect both high (Fig. 4) and low

(Fig. 5) level mosaic CNV events with high sensitivity
and specificity. We identified 273 putative mosaic CNV
deletions in 76 out of 228 samples analyzed. Of those,
202 visually validated as true positive, confirming mosaic
CNV deletions in 50 samples out of 228 samples. Me-
dian length of these CNVs was 8.5Mb with average
length of 24Mb. The visually validated mosaic calls had
at least 2 AB clearing ratio (equating to 15 AB(0.4–0.6
BAF), 16 low AB (0.1–0.4 BAF), and 16 high AB (0.6–

0.9 BAF) observations in a 1Mb genomic window. Ap-
proximately half of the mosaic calls had non-zero
AB(0.4–0.6 BAF) signal indicating noise and or lower
levels of mosaicism.
In order to validate the rest of the mosaic CNV candi-

dates, we used a machine learning approach we devel-
oped called DeepCNV (in review). DeepCNV is based on
a trained model of positive and negative mosaic CNV
examples based on a human expert’s labeling. Using this
model and images of LRR/BAF plots from PennCNV
visualize_cnv which are standard and popularly used,
probabilistic predictions of the mosaic CNV candidate
being a true positive are output. This makes the prospect
of visual validation much more tractable and reprodu-
cible with minimum generated bias.
We compared our observed mosaic CNV counts and

frequencies to previous studies of mosaicism and found
high concordance in genomic regions and their corre-
sponding frequencies observed in populations (Fig. 6). In
addition, when examined in the context of multiple dis-
ease phenotypes that these individuals harbored, several
disease categories were associated with mosaic CNVs
based on results generated using the ParseCNV software
(Table 2). ParseCNV is a CNV GWAS tool [13]. Associ-
ation p-values as low as 1E-39 were observed across phe-
notypes including: adhd, autism, autoimmune, cancer,

Fig. 5 Lower Levels of Mosaicism Genome-wide LRR BAF plot representative for one Individual. Mosaic deletions of low proportion of cells in the
person’s sample on 3p, 10q, 11q, and 14q
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congenital, healthy, and neurodegenerative [14–16].
Thirty three genomic loci were observed p < 5E-4 associ-
ated between mosaic events and human phenotypes.
Interestingly, we observed potential protective associ-
ation in healthy subjects and also may consider mosaic
CNVs related to healthy subjects as negative controls
[17, 18].
We compared calling on the same sample data for 755

individuals using MONTAGE, MoCha, and RGADA-
MAD (Fig. 7). Using a majority voting scheme, many
more mosaic CNV calls overlap MONTAGE than
MoCha or RGADA-MAD. If we assume samples se-
lected by two or more callers as true positives, then we
have 1748 + 194 + 61 + 418 = 2421. Apparently MON-
TAGE has the highest sensitivity: 1–61/2421 = 0.975,
followed by MoCha 1–194/2421 = 0.920 and RGADA-
MAD 1–1748/2488 = 0.280. To compute specificity
using this similar majority-vote approach, we need to
know the size of the background in the background,
namely, the number of samples that are considered as
negatives by all three callers, which is not well defined.
Alternatively, we can look at accuracy (true positive
rate), which is generally a trade-off for sensitivity. Based
on the Venn diagram, MoCha has the largest number of
samples called by itself (3316). If we assumed the

samples called by only one caller are false positives, then
the accuracy (true positive rate) of MONTAGE is
(1748 + 194 + 418)/ (1748 + 194 + 418 + 1236) = 0.656 vs.
MoCha (1748 + 61 + 418)/(1748 + 61 + 418 + 3316) =
0.402 vs. RGADA-MAD (194 + 61 + 418)/ (194 + 61 +
418 + 1130) = 0.373. This is a better tradeoff for MON-
TAGE. Namely, sensitivity of 0.975 at false positive rate
0.344 (MONTAGE) vs. sensitivity of 0.920 at false posi-
tive rate 0.598 (Mocha). We note that this estimate is
contingent on assumptions. While we acknowledge that
these assumptions are imperfect, this analysis gives good
evidence that our FDR is well-controlled. (We also note
that while we cannot completely rule out the possibility
that our FDR is higher than we estimated, the key results
of our paper are robust to higher FDRs than estimated;
e.g., we would only expect a higher-than-estimated FDR
to weaken GWAS associations and decrease effect sizes.)
63% of the mosaic events identified were found in

males compared to the 50% male percentage in the input
dataset Fisher’s exact test (2-Tail) p = 1.554e-11 (Supple-
mentary Table 2). Mosaic duplications were observed
more in males and older individuals. Mosaic CNN-LOH
were found to affect the sexes equally. The sample race
as determined by principal components analysis is pro-
vided in Supplementary Table 3.

Fig. 6 Genome-wide Count Mosaic CNVs Detected in Curated Callset in Comparison to Previous Studies. Blue line represents the current work
from Montage mosaic CNV callset. Red line represents the Loh et al. mosaic CNV callset. Black line represents the other previously published
mosaic CNV callsets. Previous includes: [9, 10], Bonnefond et al. 2013, Schick et al. 2013, [11, 12], and Rodriguez-Santiago et al. 2010. See
Supplementary Dataset (glessner2020_hg19.txt, loh2018_hg19.txt, and prev_calls_hg19.txt)

Glessner et al. BMC Genomics          (2021) 22:133 Page 7 of 10



Discussion
Mosaic CNVs of intermediate states between integer
copy number variation are important genetic/genomic
events in both clinical and research settings. However,
detection of these mosaic events has been limited to in-
cidental findings from CNV algorithms designed for in-
teger discrete copy numbers and not the continuous
nature of mosaic CNVs. For example, the tripod algo-
rithm requires parents for calling mosaic events there-
fore is limited. Moreover, in a recent study using Mocha
[8], 8342 mosaic chromosomal alterations (mCAs) were

reported in 7585 individuals ranging in length from 50
kb–249Mb. These mCAs were obtained from blood-
derived DNA samples from 151,202 UK Biobank partici-
pants aged 40–70 years using new phase-based computa-
tional techniques (estimated false discovery rate, 6–9%).
However, as 5522 of these mosaics have negative LRR
values, they should be considered to be deletions. MAD
was notably used in The Cancer Genome Atlas (TCGA)
mosaic CNV analysis [19]. Exome sequencing (~ 8000
samples) was used to compare 22 different cancer phe-
notypes with more than 6000 controls using a case–

Table 2 Top 5 Significant Results p < 5E-4 Per Disease Category

Disease chr Start (Mb/hg19) Stop (Mb/hg19) p OR cases controls Telo/Centro cases male controls male

cancer 9 44 45 1.47E-39 0.065 10 251 No 4 117

cancer 9 45 46 1.81E-37 0.065 10 241 No 4 110

cancer 9 46 47 1.38E-31 0.065 10 212 No 4 97

cancer 9 43 44 1.24E-27 0.066 7 177 No 4 83

cancer 1 8 10 5.40E-24 8.701 89 19 No 65 15

autoimmune 16 1 3 5.29E-14 6.130 37 46 telomere 22 21

healthy 9 44 45 1.62E-13 3.038 73 188 No 28 93

neurodegenerative 20 41 42 1.11E-12 12.040 18 42 No 10 31

healthy 9 40 42 1.61E-12 8.797 26 22 No 14 15

neurodegenerative 20 42 45 1.45E-11 11.030 17 43 No 10 33

healthy 9 45 47 2.10E-11 2.986 62 160 No 24 78

autoimmune 19 1 3 3.77E-11 3.822 44 88 telomere 25 52

healthy 9 43 44 7.52E-11 8.797 54 130 No 20 67

healthy 15 21 23 8.05E-11 7.137 25 26 No 8 9

neurodegenerative 20 48 51 2.78E-10 12.400 14 31 No 8 21

other 9 44 46 7.82E-10 2.316 93 158 No 46 68

autoimmune 16 0 1 8.68E-10 5.724 26 34 telomere 18 16

congenital heart 22 22 23 1.11E-09 45.810 8 6 No 6 4

neurodegenerative 20 45 47 1.79E-09 10.370 14 37 No 9 29

neurodegenerative 20 31 32 4.90E-09 12.520 12 26 No 8 21

autoimmune 17 79 81 9.94E-09 7.415 19 19 telomere 9 4

congenital heart 22 20 22 2.36E-08 39.780 7 6 No 5 3

other 9 43 44 2.67E-07 2.270 68 116 No 36 51

other 9 46 47 3.99E-07 2.316 78 144 No 37 64

autoimmune 11 109 110 4.26E-07 0.000 0 113 No 72 1

congenital heart 22 19 20 8.43E-07 28.990 6 7 No 4 3

other 7 48 50 8.21E-06 7.534 14 7 No 10 5

adhd 14 107 107 1.48E-05 45.240 4 4 No 2 2

other 7 38 39 1.83E-05 6.590 14 8 No 11 5

adhd 14 106 107 2.57E-05 16.430 4 11 telomere 2 6

autism 6 20 21 3.14E-05 30.390 3 7 No 2 3

autism 6 24 26 4.27E-05 26.580 3 8 No 2 4

cancer 7 150 159 4.59E-05 4.586 18 7 telomere 10 5

Broad disease category association study of detected and curated mosaic CNV events to implicate genomic loci for disease phenotypes. The “other” disease
category represents subjects without a clear primary diagnosis fitting the broad disease categories defined
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control study design and demonstrate that mosaic pro-
tein truncating variants in these genes are also associated
with solid-tumor cancers.
In light of shortage of high performance tools, we de-

signed a new mosaic CNV detection tool aimed at pro-
viding high sensitivity and specificity mosaic CNV
detection and fast runtime. In comparison, we show that
in certain circumstances other algorithms miss critical
mosaic events while overcalling other false events.
Others have shown that mosaic CNVs are enriched in

males [8]. Our analysis concurs with this, showing that
63% of the mosaic events identified were found in males.
This mosaic CNV detection work has implications in

cancer, cell free fetal DNA, and aging [20, 21]. Tumor-
normal heterogeneity can appear similarly to germline
mosaic CNV. Therefore, cancer phenotyping records are
important in conditioning the assessment of supposed
mosaic CNV callsets. Cell free fetal DNA is another ap-
plication that such mosaic CNV detection and associ-
ation presented here could be of utility. Prenatal testing
could be enhanced by deconvolution of the maternal
and child CNV genotype profile. Aging accumulating
CNVs has been investigated previously [11, 12]. In older
age cohorts which have had more exposure to potential
environmental hazards inducing CNVs in subsets of cells
is another important longitudinal consideration [22, 23].

Conclusions
Mosaic CNVs represent an important class of variation
in clinical genetic diagnosis that are often missed. To
successfully diagnose mosaic CNVs, it’s important to de-
velop targeted detection tools and systematically apply
them to large cohorts to truly understand its relevance
and frequency of mosaic CNVs in the general popula-
tion. Here we demonstrate the utility of our fast scalable
tool, MONTAGE, specifically designed for mosaic CNV
detection. We envision MONTAGE being an integral
part to include for future mosaic CNV detection and
analysis.
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