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Machine learning analysis of
rogue solitons in supercontinuum
generation

Lauri Salmela'™, Coraline Lapre?, John M. Dudley? & Goéry Genty*

Supercontinuum generation is a highly nonlinear process that exhibits unstable and chaotic
characteristics when developing from long pump pulses injected into the anomalous dispersion regime
of an optical fiber. A particular feature associated with this regime is the long-tailed “rogue wave"”-

like statistics of the spectral intensity on the long-wavelength edge of the supercontinuum, linked to
the generation of a small number of “rogue solitons” with extreme red-shifts. Whilst the statistical
properties of rogue solitons can be conveniently measured in the spectral domain using the real-time
dispersive Fourier transform technique, we cannot use this technique to determine any corresponding
temporal properties since it only records the spectral intensity and one loses information about the
spectral phase. And direct temporal characterization using methods such as the time-lens has resolution
of typically 100’s of fs, precluding the measurement of solitons which possess typically much shorter
durations. Here, we solve this problem by using machine learning. Specifically, we show how supervised
learning can train a neural network to predict the peak power, duration, and temporal walk-off with
respect to the pump pulse position of solitons at the edge of a supercontinuum spectrum from only the
supercontinuum spectral intensity without phase information. Remarkably, the network accurately
predicts soliton characteristics for a wide range of scenarios, from the onset of spectral broadening
dominated by pure modulation instability to near octave-spanning supercontinuum with distinct rogue
solitons.

The broadband fiber supercontinuum (SC) has developed into a widespread and versatile light source that has
found many important applications in areas such as spectroscopy, imaging, and precision frequency metrology'.
The noise properties of broadband SC spectra have been a subject of much interest, not only from an applications
perspective, but also as an example of the rich instability dynamics that can arise in a highly nonlinear system. Of
particular focus has been the study of SC generation seeded by picosecond (or longer) pulses, where the spectral
broadening is triggered by modulation instability (MI) which exponentially amplifies noise components out-
side the pump spectral bandwidth'. In the time domain, this instability induces the break-up of the pump pulse
envelope into a series of high-intensity breathers with random characteristics?>. With further propagation and
the influence of higher-order dispersion and stimulated Raman scattering, these temporal breathers evolve into
localized soliton structures whose subsequent dynamics seed the development of a broadband SC spectrum>.
The noise-seeded nature of the overall process leads to an incoherent spectrum with large shot-to-shot spectral
fluctuations particularly pronounced on the long-wavelength edge'*.

There has been much interest in studying the spectral fluctuations on the long-wavelength edge of the broad-
band SC*, as these have been shown to exhibit highly skewed statistics associated with extreme events and the
emergence of rogue solitons of tens of femtosecond duration*-®. Originally characterized using long-pass filtering
and the real-time dispersive Fourier transform*, the observation of these fluctuations stimulated a large number
of subsequent theoretical, numerical and other experimental investigations, linking the emergence of rogue sol-
itons with collision dynamics during the initial SC development phase>”. Related work has since extended the
study of the properties of rogue solitons to a wider range of SC generation regimes and input conditions®'*-'3,

The dispersive Fourier transform technique has now become a standard tool to study ultrafast instabili-
ties in the spectral domain'*'>, yielding significant insight into the dynamics of many complex nonlinear sys-
tems!1216-20, However, a drawback of the dispersive Fourier transform is that it only measures the spectral
intensity but not the spectral phase, which prevents extracting quantitative information about the associated
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single-shot temporal intensity profiles. In order to characterize real-time temporal fluctuations associated with
incoherent dynamics, more complex techniques using time-lens or heterodyne approaches need to be used'**' -4,
yet measurements in this case are generally restricted to specific (narrow bandwidth) wavelength ranges with
sub-ps timescale resolution. These limitations preclude the characterization of solitons or localized structures
with 10’s of femtosecond duration which is typically the duration of solitons emerging in supercontinuum
generation.

Machine learning (ML) is an ensemble of numerical techniques specifically developed for classification, pat-
tern recognition, prediction, and system optimization from large data sets®®. Recently, there has been a growing
interest in applying the techniques of machine learning to optical systems, and in particular for the control of
ultrafast dynamics with applications to pulse compression and shaping?®?’ using neural networks, or supercontin-
uum spectrum customization using genetic algorithms?**°. Machine learning is also a powerful tool to correlate
quantitative characteristics in a complex system with multiple data features, a strength which has been success-
fully exploited to determine the maximum intensity of temporal peaks in modulation instability based only on
spectral measurements®.

In this paper, we extend the scope of machine learning applications to the analysis of SC instabilities and show
how machine learning can overcome the current limitations of real-time experimental techniques by analyzing
real-time spectral intensity measurements in a way that allows key temporal characteristics of SC rogue solitons
to be determined. More specifically, we train a supervised neural network (NN) using numerical simulations of
the generalized nonlinear Schrodinger equation (GNLSE) to correlate key temporal characteristics (peak power,
duration, temporal walf-off with respect to the pump pulse position) of the most red-shifted rogue soliton in a
SC with the corresponding complex supercontinuum spectral intensity profile. Despite the absence of any phase
information at the network input, the trained network is able to infer the red-shifted soliton characteristics with
excellent accuracy, exceeding that obtained when using a single-parameter metric such as e.g. the spectral band-
width or energy in the long-wavelength edge of the SC spectrum. Significantly, the NN analysis remains accurate
over a wide variety of dynamical regimes, from the onset of spectral broadening dominated by modulation insta-
bility, to near octave-spanning supercontinuum with distinct rogue solitons.

Results

Rogue soliton generation and machine learning. We begin by illustrating in Fig. 1(a) a schematic
of our numerical experiment. Ultrashort pulses from a pulsed laser are injected into a highly nonlinear fiber
triggering the development of a broadband supercontinuum. The shot-to-shot spectral intensity fluctuations are
captured using the dispersive Fourier transform technique, stretching consecutive supercontinuum pulses in a
strongly dispersive fiber and measuring the dispersed spectra with a fast photodetector and oscilloscope'*'*. A
long-pass filter can also be used to isolate the long-wavelength components®. The noise sensitivity of the SC gen-
eration process and rogue soliton emergence when spectral broadening is seeded from a long pump pulse injected
into the anomalous dispersion regime is shown in Fig. 1(b,c). The input conditions here correspond to hyperbol-
ic-secant pulses with 2 ps duration (full-width at half-maximum FWHM), 400 W peak power and 810 nm central
wavelength injected into an 85 cm long photonic crystal fiber (PCF) with zero-dispersion at 750 nm. Input noise
is included in the spectral domain using a standard one-photon-per-mode background with random phase’. See
Methods for additional simulation parameters.

We performed simulations to generate an ensemble of 30,000 pairs of spectra and temporal intensity profiles
using different random noise seeds. The middle panels in Fig. 1 plot results from one realization in the ensemble
to show the spectrum (b) and the corresponding temporal intensity profile (c) associated with rogue soliton
characteristics. In particular, we clearly identify the initial stage of noise-seeded modulation instability after a
propagation distance of about 30 cm, with the generation of distinct spectral sidebands and the break-up of the
pump pulse envelope into multiple breather structures®. With further propagation, the breathers evolve into fun-
damental solitons experiencing Raman self-frequency shift and separating in time from the residual background
envelope®!. After a distance of ~50 cm, collisions between multiple solitons increase the frequency-shift rate of
one of the solitons emerging from the envelope center, leading to the generation of a distinct rogue soliton with
extreme red-shift>””’.

The results in Fig. 1(d) show a selection of 5 supercontinuum spectra from the ensemble, and the black lines
in (e) show the corresponding temporal intensity profiles. Note that we have sorted the results in (d) and (e) to
show increasing spectral width from top to bottom but of course these results occur randomly in the ensemble.
From these results, we clearly see how the noise-sensitive dynamics lead to large shot-to-shot spectral variations
between different results in the ensemble, and we see particularly how the shot-to-shot spectral variations in the
long-wavelength edge correspond to isolated solitons with different peak power, duration and temporal walk-off.

The numerical results in Fig. 1(d,e) shows how the dispersive Fourier transform approach indeed isolates the
temporal solitons*, where the blue region in (d) shows the filter cutoff region, and the blue curves in (e) shows the
corresponding temporal intensity profiles after numerical Fourier transform. However, the temporal duration of
these rogue solitons (10’s of femtoseconds) is too short for direct real-time measurements.

But it is here that we can apply machine learning to extract the temporal characteristics of the rogue solitons
only from simple unfiltered spectral measurements [see Fig. 1(a)]. Specifically, we apply a supervised feed-forward
neural network to correlate the full spectrum and the temporal characteristics of the most red-shifted soliton of a
given (noisy) SC spectrum. A schematic of the neural network is shown in Fig. 2. The NN input is a vector
(X, = [xp x,, ..., xy]) corresponding to the SC spectrum, whilst the NN output is a scalar value equal to the
maximum temporal intensity, duration or temporal walk-off or delay (defined with respect to the pump pulse
center) of the most red-shifted soliton. The NN is trained from an ensemble of 20,000 simulated single-shot SC
using a conjugate gradient back-propagation method?** See Methods for further details.
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Figure 1. (a) Schematic of machine learning application to the analysis and prediction of rogue soliton
temporal characteristics in supercontinuum generation based only on single-shot spectral measurements. (b-e)
Dynamics of noisy supercontinuum generation. Single-shot spectral (b) and temporal (c) evolution where we
see enhanced spectral broadening associated with the emergence of a rogue soliton. (d,e) show a selection of

5 random supercontinuum spectra and corresponding temporal intensity profiles in black. The blue curve in

(e) shows the rogue soliton temporal intensity associated with the long-pass filtered spectral components (blue
area) in (d) while the black dotted line shows the full time-domain intensity.

After the training, the NN is tested using an independent ensemble of 10,000 simulated single-shot SC spectra
that were not used in the training phase. The results are shown in Fig. 3, where we compare the peak power
[Fig. 3(a)], duration [Fig. 3(b)] and temporal delay [Fig. 3(c)] of the most red-shifted soliton predicted by the NN
from the single-shot SC spectra and the expected (“ground truth”) value extracted directly from the simulated
time-domain profiles. For convenient visualization, the comparison is plotted as a false colour representation of a
histogram (using a logarithmic scale) where the predictions are grouped into bins of constant area, and the histo-
gram shows the normalized density of data points grouped into each bin. For all different characteristics, we can
see near-perfect clustering around the ideal “x=y” relation (indicated by the white dashed line) with a Pearson
correlation coefficient of p = 0.91, p = 0.84 and p = 0.91 for the peak power, duration and temporal delay,
respectively (yellow dashed line).

We also plot the peak power of the most red-shifted solitons against simpler possible “predictive” metrics such
as the wavelength corresponding to the —30 dB SC bandwidth on the long-wavelength edge [Fig. 3(d)], and the
integrated energy in the long-wavelength edge beyond 950 nm [Fig. 3(e)]. In contrast to the strong correlations
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Figure 2. Schematic of the feed-forward neural network used in this work. (a) The input of the network is a
single-shot supercontinuum spectral intensity vector X,, = [x,, x,, ---, xy] yielding the output of the network y
that corresponds to the peak power, duration or temporal delay of the rogue solitons. The network consists of
two fully connected hidden layers and a single output neuron. (b) shows the operation of a single neuron. The
output of a generic neuron ni(k) (" neuron in layer k) is calculated as a weighted sum between the outputs from
the previous layer k — 1 and the weights of each connection w'¥ which is followed by adding a bias term b and

i
nonlinearity. See Methods for more details.

obtained using the NN, we see that the correlation between these simple metrics and the most red-shifted soliton
peak power is extremely poor with correlation coefficients of p = 0.39 and p = 0.21, respectively. These results
clearly illustrate the trained NN’s capability to accurately predict the characteristics of the most red-shifted soliton
from single shot SC spectra without any spectral phase information, and its superiority compared to simpler
metrics such as the spectral bandwidth or filtered spectral energy.

To further evaluate the performance of the NN, we ran a series of additional tests where the NN was trained
from an ensemble of SC spectra with large variations in the input pulse parameters. More specifically, we added a
uniform +50% variation in the input pulse peak power and duration from 200 W to 600 W and from 1 ps to 3 ps
such that the training ensemble now contained a large variety of SC development scenarios from essentially pure
modulation instability to broad octave-spanning spectra. Using an ensemble of 20,000 simulations, the neural
network was again trained to relate the temporal properties of the most red-shifted soliton with the full SC spec-
tral intensity profile, and the network was tested on a separate set of 10,000 simulations not used in the training
phase. The comparison between the peak power, duration and delay of the most red-shifted soliton predicted by
the NN from the single-shot SC spectra and the “ground truth” value extracted directly from the time-domain
profiles are shown in Fig. 4. Despite the large variation in the propagation dynamics, the peak power and delay are
again predicted with a very high degree of accuracy with a correlation coefficient of p = 0.90, and p = 0.99,
respectively, and the soliton duration with a lower value of p = 0.75 nonetheless still indicates strong correlation.
For completeness, we also plot the most red-shifted soliton peak power vs. the SC spectral bandwidth and energy
beyond a wavelength of 950 nm. Again, one can see how the NN performs extremely well, and again with a pre-
diction capacity far superior to the use of a simpler metrics (p = 0.60 and p = 0.39, respectively).

Conclusion

We have applied machine learning to the analysis of supercontinuum instabilities in the long pulse regime and
our results expand previous studies of nonlinear dynamics using machine learning®. Using a feed-forward neural
network trained on numerical simulations of the GNLSE, we have shown how the temporal characteristics of
solitons with extreme red-shift (peak power, duration and temporal delay) can be predicted with high accuracy
based only on single-shot SC spectral intensity profiles without any spectral phase information. The network is
able to accommodate and maintain high accuracy for a wide range of regimes, with far superior performance
when compared to using spectral metrics such as bandwidth or energy over a specific wavelength range. This
shows the potential for machine learning to overcome the limitations of current experimental techniques by
allowing the temporal characteristics of ultrashort localized structures to be determined from only spectral inten-
sity measurements.

Machine learning is particularly suited to the study of complex nonlinear systems, not only because of its abil-
ity to extract specific properties from hidden features in a data ensemble, but also because of the possibility to link
the system parameters with particular dynamical behavior. This is of fundamental interest for nonlinear optical
systems governed by NLSE-type equations where localized structures and short pulses are challenging to capture
in real-time, but also for studies of rogue waves and extreme events in other physical systems where important
quantitative information may be masked in noisy or partial measurements. Moreover, machine learning provides
new opportunities to control and optimize complex nonlinear systems and we anticipate it will become a key
approach for the design and optimization of supercontinuum spectra and frequency combs tailored to specific
applications.

Methods

Numerical modelling. Numerical modelling is based on the generalized NLSE that describes the prop-
agation of the envelope of an optical field'. We model the propagation of 2 ps duration (FWHM) and 400 W
peak power hyperbolic-secant optical pulse centered at 810 nm. The pulse is injected into the anomalous disper-
sion regime of a 85 cm long photonic crystal fiber (similar to NKT Photonics NL-PM-750) with zero-dispersion
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Figure 3. Results showing prediction of the rogue soliton characteristics by the neural network for an ensemble
0f 10,000 SC ensemble generated with identical input pulses (except for the noise seed). (a) compares the
predicted maximum intensity of the most red-shifted soliton with the exact value simulated time-domain
profiles. (b) compares the predicted duration A7 of the solitons with the exact value from the simulations. (c)
compares the predicted delay 7, of the solitons with the exact value from the simulations. (d) plots the relation
between the SC spectral bandwidth and peak power of the most red-shifted soliton. (e) plots the relation
between the SC energy beyond 950 nm corresponding to the shaded area in (f)) and peak power of the most
red-shifted soliton. (f) shows the average spectrum of the data ensemble. For all sub-figures, the logarithmic
histograms show the normalized density of points grouped into bins of constant area. The dashed white line
in each case marks the 1-to-1 correspondence and the yellow dashed line is a linear fit to the predictions along
with the Pearson correlation coefficient p.

wavelength (ZDW) at 750 nm. The fiber has a second ZDW beyond 1200 nm. The nonlinear coeflicient of the
fiber is v = 0.1 W~ m™! and the Taylor-series expansion coeflicients of the dispersion at 810 nm are 3, = —1.24 x
107%2m™1, 3, =894 x 1074 ¢ m ™, B, = —2.54 x 107%0s*m™1, B, = —7.01 X 10770 m~}, B, = 2.28 x 1084 °
m~!and 3, = —2.21 x 10’ m~". The simulations use 16384 spectral/temporal grid points with a temporal win-
dow of 20 ps. Noise is added in the frequency domain in the form of a one-photon-per-mode with random phase.
An ensemble of 30,000 simulations corresponding to different input noise seeds was generated. The ensemble was
split between two sub-ensembles of 20,000 and 10,000 realizations used for the training and testing, respectively.
For the generalization of the training, both the pulse duration and peak power were randomly and uniformly
distributed with £50% variations from the nominal values above, resulting in dynamics from essentially pure MI
to octave-spanning SC.

Deep learning. The neural networks relies on supervised learning where one has the knowledge of the rela-
tion between the input X, and output Y,, of a specific system™®. The training is then based on feeding a large num-
ber of distinct example input and output pairs to create a predictive model that minimizes the prediction error €
between the desired Y and predicted Y* values. Here we have a training set of 20,000 simulations, where the input
is a spectral intensity profile X, (n=1...20,000) and the output Y, is a temporal characteristics associated with
this spectral intensity profile (most red-shifted soliton peak power, duration or temporal delay). The input spectra
are pre-processed to a resolution of 1 nm to reduce the computational load in the training process and allow the
possibility for reasonable future experimental applications such as in ref. *°.

Thus, the input consists of 801 uniformly distributed wavelength bins from 500 nm to 1300 nm. The input is
sequentially fed through the NN with each of the layers operating on the data to yield the desired output at output
layer. The connections between the nodes on following layers are weighted and the output of each node is com-
puted as a weighted sum from the output of the previous layer. Additionally, an adjustable bias term is included
for the sum and followed by a nonlinear activation function to yield the output of the node.

The NN consists of the input layer, two fully-connected hidden layers with 80 and 20 nodes, respectively, and
a single output node. The output of a generic kth layer h*” € R can be calculated by
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Figure 4. Results showing prediction of the rogue soliton characteristics by the neural network for an ensemble
0f 10,000 SC ensemble generated with large (50%) variations in the input pulse peak power and pulse
duration. (a) compares the predicted maximum intensity of the most red-shifted soliton with the exact value
simulated time-domain profiles. (b) compares the predicted duration AT of the solitons with the exact value
from the simulations. (c) compares the predicted delay 7; of the solitons with the exact value from the
simulations. (d) plots the relation between the SC spectral bandwidth and peak power of the most red-shifted
soliton. (e) plots the relation between the SC energy beyond 950 nm corresponding to the shaded area in (f))
and peak power of the most red-shifted soliton. (f) shows the average spectrum of the data ensemble. For all
sub-figures, the logarithmic histograms show the normalized density of points grouped into bins of constant
area. The dashed white line in each case marks the 1-to-1 correspondence and the yellow dashed line is a linear
fit to the predictions along with the Pearson correlation coefficient p.

h® :f(g(k)) :f(w(k)h(k—l) + b(k)), (1)

where W € RM*P ig a matrix of weights between the layers k — 1 (D nodes) and k (M nodes). The vector
b® € RM contains the bias terms for each node in layer k and f{) is the activation function. In this work, hidden
layers were connected by hyperbolic tangent sigmoid activation function f(x) = 2/[1 + exp(—2x)] — L,and a
single node with linear activation function was used for the output layer. The output for a single generic node in
layer k can be written as

N

k k) (k—1 k

hi()f[z:wzj(')h; )+bi()
j=1

2)
k

Here w;; ) are the weights between nodes i and j in layers k and k — 1, respectively. Variable b*" is the bias term

associates with node n¥). The summation includes all the N, , nodes in layer k — 1. We use mean squared error
function

c= L, - vy

N 3)
where N is the number of samples, and Y, and Y}: are the target and predicted outputs, respectively. For the train-
ing, a conjugate gradient back-propagation® is used. The weights and biases are adjusted relative to their current
state according to their partial derivatives respect to the error function. The “speed” of the adjustment determined
by the learning rate or step size 7). The adjustment to weight w.* is taken towards the negative gradient of the error
function, given by Aw'®) = —de/dw™. Once all of the input and output pairs (X,, Y,) in the training set have
been passed through the network one epoch has passed. The networks were trained for 500 epochs until conver-
gence. After training, the NN is tested with a separate set not used in the training phase to evaluate the perfor-
mance of the network.
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